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The Asymptotically Safe Gravity provides a framework for the description of gravity from the
trans-Planckian regime to cosmological scales. According to this scenario, the cosmological con-
stant and Newton’s coupling are functions of the energy scale whose evolution is dictated by the
renormalization group equations. The formulation of the renormalization group equations on foli-
ated spacetimes, based on the Arnowitt-Deser-Misner (ADM) formalism, furnishes a natural way
to construct the RG energy scale from the spectrum of the laplacian operator on the spatial slices.
Combining this idea with a Renormalization Group improvement procedure, in this work we study
quantum gravitational corrections to the Einstein-Hilbert action on Friedmann-Lemâıtre-Robertson-
Walker (FLRW) backgrounds. The resulting quantum-corrected Friedmann equations can give rise
to both bouncing cosmologies and emergent universe solutions. Our bouncing models do not require
the presence of exotic matter and emergent universe solutions can be constructed for any allowed
topology of the spatial slices.

I. INTRODUCTION

The standard cosmological model provides a successful and accurate overview of the “cosmic history” of our universe
[1]. In this description the existence of an inflationary phase preceding the standard hot Big Bang evolution has become
a paradigm. Inflation solves, for instance, the horizon and flatness problems and explains the anisotropies distribution
in the Cosmic Microwave Background (CMB) radiation [2]. Although the inflationary scenario solves several issues
arising in the standard cosmological model, the problem of the Big Bang singularity remains an open question. In fact,
assuming the validity of General Relativity, the singularity theorems [3] entail that in a non-closed universe spacetime
singularities are inevitable if matter satisfies the standard energy conditions. More specifically, if a non-closed universe
undergoes a phase of accelerated expansion, the spacetime must be past geodesically incomplete [4].

Alternative scenarios avoiding the initial singularity include bouncing models and the emergent universe scenario.
The bouncing universes [5–7] are based on the existence of a “bounce” at a finite radius separating an initial collapsing
phase, in which the universe decreases its spatial volume, and the current expansion phase. Although bouncing
universes avoid the Big Bang singularity, the existence of a nonsingular bounce often entails violations of various
energy conditions [8–10] or the presence of non-standard matter [11–16].

Another interesting alternative which attempts to replace the standard Big Bang model is the emergent universe
scenario [17–19]. According to this model, the universe emerges from an Einstein static state characterized by a non-
zero spatial volume with positive curvature. The Einstein static universe is neutrally stable against inhomogeneous
linear perturbations [20], while it is unstable under homogeneous perturbations [21]. The latter instability allows the
universe to enter the standard inflationary phase. The emergent universe thus avoids the initial Big Bang singularity
while preserving the standard energy conditions. On the other hand, it requires a positive-curved spatial geometry.
Despite the fact that the recent observational data do not exclude the latter possibility, a spatially flat model is
strongly favored [2].
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Modifications of the Einstein theory are expected during the early universe epoch. Although progress in this
direction has been hampered by the non-perturbative character of gravity, in recent years the use of Functional
Renormalization Group (FRG) techniques has allowed a systematic investigation of gravity under extreme conditions.
In fact, a promising approach to construct a consistent and predictive quantum theory for the gravitational interaction
is the Asymptotic Safety scenario for Quantum Gravity [22–26]. As originally proposed by Weinberg [27, 28], gravity
may be a renormalizable quantum theory if the gravitational Renormalization Group (RG) flow runs towards a Non-
Gaussian Fixed Point (NGFP) in the ultraviolet (UV) limit. In this case the theory is well defined at all energy scales
and the NGFP defines the ultraviolet completion of the gravitational interaction. Using the FRG (non-perturbative)
techniques, a UV-attractive NGFP for the gravitational interaction has been found in a large number of truncations
schemes [29–49]. The key object of the modern FRG [50–53] is the so-called effective average action [52], a scale-
dependent version of the standard effective action. The evolution of the gravitational action with the RG energy scale
is dictated by the functional renormalization group equation (FRGE). The resulting running gravitational couplings
can then be used to investigate possible effects of Quantum Gravity in cosmological contexts [54–69], see [70] for a
review. For instance, in [71] it has been shown that the initial singularity may be replaced by a nonsingular bounce.
The latter possibility depends on the specific relation between the RG scale and the cosmic time. In fact, the “cutoff
identification” is not unique and it often depends on the situation at hand. In this regard, an important insight comes
from the Arnowitt-Deser-Misner (ADM) [72, 73] formulation of the FRGE [46]. In [46] it is argued that, in presence of
a foliation structure, the RG scale should be built from the spectrum of the laplacian operator defined on the spatial
slices. In the case of a Friedmann-Lemâıtre-Robertson-Walker (FLRW) background this entails a direct connection
between the RG scale and the scale factor [46].

Using the scale setting proposed in [46], in this work we study possible cosmological scenarios arising from a
quantum-corrected Einstein-Hilbert action evaluated on an FLRW background. The modifications to the Friedmann
equations induced by Quantum Gravity allow us to construct both bouncing models and emergent universes. In
particular, the resulting models do not require exotic matter fields and are valid for any spatial curvature.

This paper is organized as follows. In Sect. II we introduce the formalism and derive a quantum-corrected Einstein-
Hilbert Lagrangian. Sect. III provides a detailed constraints analysis of the RG-improved theory obtained in Sect. II.
In particular, we will see how the classical Hamiltonian constraint is modified by Quantum Gravity effects. Sect. IV
discusses possible cosmological scenarios arising from our RG-improved model and contains our main results. Finally,
a summary of our findings is given in Sect. V.

II. RG-IMPROVED LAGRANGIAN

Let us consider Einstein-Hilbert action

S =

∫
d4x
√
−g

{
R− 2Λk
16πGk

+ Lm
}

(1)

where Lm is the Lagrangian for the matter fields and the subscript k indicates that the gravitational constant and
cosmological constant are running quantities whose evolution in the theory space is dictated by the Renormalization
Group (RG) equations. Let L be the total Lagrangian of the system. The specific form of L can be determined once a
specific (3+1) foliation is chosen. In particular, let the spacetime be endowed with a Friedmann-Lemâıtre-Robertson-
Walker (FLRW) metric of the type

ds2 = −N(t)2dt2 +
a(t)2

1−Kr2
dr2 + a(t)2(r2dθ2 + r2 sin θdφ2) . (2)

Here N(t) is the lapse function and K = −1, 0, 1 as usual. In this case the scalar curvature reads

R =
6(−aȧṄ +N(aä+ ȧ2) + kN3)

a2N3
(3)

where the dot denotes differentiation with respect to the coordinate t. Let us also assume that the matter field is
described by a perfect fluid of energy density ρ and pressure p. In this case the relation between ρ and p is parametrized
by an equation of state of the type p = wρ, where w is a constant. Therefore the conservation of matter stress-energy
tensor Tµν ;ν = 0 with the line element (2) fixes the functional form ρ(a) as

ρ(a) = ma−3−3w (4)

where m is an arbitrary integration constant.
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In the construction of the flow equation for the ADM formalism [72, 73] discussed in [46] the infrared cutoff k of the
RG transformation is built from the spectrum of the laplacian operator defined on the spatial sections. In particular
k ∼ a−1 in [46]. The running Newton’s and cosmological constants thus become functions of the scale factor a(t).

Starting from the action (1), a quantum-corrected Lagrangian for a FLRW background can be derived by imposing
k ∼ a−1, using the expression (3) for the Ricci scalar and putting Lm = −mNa−3w [74]. We thus obtain the following
Lagrangian

L = − 3 aȧ2

8πN(t)G(a)
+

3 aNK

8πG(a)
− a3NΛ(a)

8πG(a)
− 2Nm

a3w
+

3 a2ȧ2G′(a)

8πNG(a)2
+
d

dt

(
3a2ȧ2

8πNG(a)

)
(5)

where G′(a) stands for the derivative of G with respect to a and the total derivative term exactly cancels the York
term [75] in this case.

III. CONSTRAINT ANALYSIS

In analogy to General Relativity, the lapse function N(t) appearing in the Lagrangian (5) is not a propagating
degree of freedom. Therefore, the Hessian determinant associated to the Lagrangian L vanishes and the dynamics
resulting from (5) is degenerate. In classical General Relativity this degeneracy leads to the well-known Hamiltonian
constraint [76].

In the case under consideration the gravitational couplings depend on the degrees of freedom of the system,
specifically the scale factor, and the Dirac analysis of constrained systems [77–79] may give rise to non-standard
constraints. In particular, the quantum-corrected Lagrangian (5) acquires new non-classical contributions and the
resulting Hamiltonian constraint could be different from the classical one. Therefore, before carrying out the analysis
of the quantum-corrected cosmological equations, it is of central importance to discuss the constraints arising from
the quantum-corrected Lagrangian (5).

The system under consideration is characterized by one primary constraint. According to the Dirac constraint
theory [77], the primary constraint φN (qi, pi) ≈ 0 associated to the Lagrangian in eq. (5) is given by

pN =
∂L
∂Ṅ
≈ 0 7→ φN (N, a, pN , pa) = pN ≈ 0 . (6)

Here, following the Dirac notation, ≈ means that the constraint φN is identically zero on the constraint surface φN = 0
only, namely it holds “weakly”. The Hamiltonian analysis for degenerate systems requires the canonical Hamiltonian
HC to be defined on the primary constraint surface M ≡ {φN = 0} so that

HC ≡ piqi − L|M = paȧ− L . (7)

Here the momentum pa associated to the generalized coordinate a(t) is given by

pa ≡
∂L
∂ȧ

= − 6 a ȧ

8πNG(a)
(η(a) + 1) (8)

where η ≡ k∂kGk, with k ∼ a−1, defines the “anomalous dimension” of Newton’s constant as a function of the scale
factor

η(a) = −aG
′(a)

G(a)
. (9)

The canonical Hamiltonian thus reads

HC = − 2πNG(a)2p2a
3a(G(a)− aG′(a))

− 3aNK

8πG(a)
+
a3Λ(a)N

πG(a)
+

2Nm

a3w
. (10)

As it is well-known, according to the Dirac procedure, one should consider the effective Hamiltonian H̃ = HC+λNφN ,
where λN is a Lagrangian multiplier. Since the constraints must be preserved along the dynamics, we must impose
that the dynamical evolution remains on the primary constraint surface

φ̇N = ṗN ≈ 0 7→ ṗN =
{
pN , H̃

}
= −H ≈ 0 (11)
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where { , } denotes the Poisson brackets and H ≡ N−1HC is given by

H = − 2πG(a)2p2a
3a(G(a)− aG′(a))

− 3aK

8πG(a)
+
a3Λ(a)N

πG(a)
+

2m

a3w
. (12)

The secondary constraint H ≈ 0 thus defines the Hamiltonian constraint associated to the quantum-corrected theory
(5).

Finally, the total Hamiltonian HT [77] is obtained from the effective Hamiltonian H̃ by adding the additional
secondary constraints

HT = NH+ λNφN + λHH (13)

λH being a new Lagrangian multiplier. In analogy to the ADM Hamiltonian analysis of General Relativity [76], it is
possible to redefine HT in the following way

HT = NH+ λNφN . (14)

As it can be easily checked, H is preserved along the dynamics generated by the total Hamiltonian HT and therefore
no further constraints arise. In particular, the constraints φN and H are first class constraints, namely {pN ,H} = 0.

The evolution of the spacetime metric (2) is determined by the functional form of the scale factor a(t). The latter can
be obtained by solving Friedmann equations once a gauge choice for the lapse function N(t) has been specified. In the
context of cosmology the most common choice is N = 1. This gauge can be formally implemented by introducing the
additional constraint N−1 ≈ 0. The latter must be preserved along the dynamics generated by the total Hamiltonian
HT

d

dt
(N − 1) = {N − 1, HT } = λN = 0 . (15)

This condition fixes the Lagrange multiplier λN and the total Hamiltonian thus reduces to HT = N H. The constraint
N − 1 ≈ 0 is consistent and hence we fix N = 1 in the following.

IV. BOUNCING AND EMERGENT COSMOLOGIES FROM ASYMPTOTIC SAFETY

The Hamiltonian constraint obtained in the previous section provides us with the following RG-improved Friedmann
equation

K

a2H2
− 8πG(a) ρ+ Λ(a)

3H2
+ η(a) + 1 = 0 , (16)

where η(a) is the quantity introduced in eq. (9) and ρ(a) is given by eq. (4).
Provided η + 1 6= 0, it is useful to put eq. (16) in the following form

ȧ2 = −ṼK(a) ≡ −K + V (a)

η(a) + 1
(17)

where the potential V (a) is given by

V (a) =
a2

3
(8πG(a) ρ+ Λ(a)) (18)

and the scaling of G(a) and Λ(a) is determined by the RG flow. In proximity of the NGFP (early universe) the
following approximate solutions of the RG equations can be deduced [80]

G(a) ' G0

(
1 +G0 g

−1
∗ a−2

)−1
(19)

Λ(a) ' Λ0 + λ∗a
−2 (20)

where λ∗ and g∗ determine the location of the NGFP in the (λk, gk) plane, and the constants Λ0 and G0 are free
parameters which fix the actual RG trajectory emanating from the NGFP. Since G0 and Λ0 define the infrared
(k → 0) limits of the functions G(a) and Λ(a), their values should coincide with the observed Newton’s constant and
cosmological constant, respectively.
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FIG. 1. The effective potential ṼK(a) for a bouncing universe (black), emergent universe (red), singular universe (blue), for
K = 0, w = 1/3, g∗ = 0.1, λ∗ = −0.5 and m = 3. Black, red and blue correspond to Λ0 = 2 × 10−4, Λ0 = 8.3 × 10−4 and
Λ0 = 1.5 × 10−3 respectively.

We now want to analyze the possible cosmological scenarios arising from the potential (18). As it is apparent

from eq. (17) the allowed regions for the evolution of the scale factor are identified by the condition ṼK(a) ≤ 0. In

particular, if ṼK(a) = 0 admits real solutions at some a = ab > 0, then ṼK(a) may give rise to either an emergent
universe scenario or a bouncing model. For a general equation of state p = wρ and spatial curvature K, the equation
ṼK(a) = 0 implies (

a2 +
G0

g∗

)(
a2 +

λ∗ − 3K

Λ0

)
+

8πmG0

Λ0
a1−3w = 0 . (21)

The existence of bouncing solutions depends upon the equation of state and in particular the value of w. For sake of
simplicity, we restrict ourselves to the case of a radiation-dominated universe, w = 1/3. For w = 1/3 eq. (21) has (at
most) two solutions with non-negative real part. The number of such solutions determines the cosmological scenario

arising from ṼK(a). For instance, no solutions implies no bounces and the universe has a singularity in the past, at
a = 0. This simple case corresponds to the blue line in Fig. 1. On the other hand, a bouncing universe is realized
when ṼK(a) has two different zeros. In particular if Ṽ ′′K(a) > 0 the scale factor oscillates between one minimum and

one maximum value. On the contrary, if Ṽ ′′K(a) < 0, the universe has a bounce at either a minimum or a maximum
value of the scale factor (black line model in Fig. 1). Only in the former case the initial singularity is avoided.

The most interesting case is the emergent universe scenario. The key feature of this model lies in a past-eternal
inflationary phase which naturally follows an initial quasi-static state. The universe thus starts at some minimum
scale factor, ab > 0. Subsequently it inflates and evolves according to the standard cosmology as predicted by General
Relativity. This possibility arises when eq. (21) has a double zero at some ab > 0 such that Ṽ ′′K(ab) < 0, and the
special condition ȧb = äb = 0 holds. This case is represented by the red line in Fig. 1.

In the case of an early universe filled with pure radiation, the solutions to eq. (21) can be written as follows

a2b = −G0Λ0 + g∗(λ∗ − 3K)

2g∗Λ0
±

√(
G0Λ0 − g∗(λ∗ − 3K)

2g∗Λ0

)2

− 8πmG0

Λ0
. (22)

Imposing the uniqueness of this solution basically fixes the integration constant m introduced in eq. (4). Moreover,

we require a2b to be positive, as well as Ṽ ′′K(ab) < 0. The condition to realize a non-trivial (ṼK(a) ≤ 0) emergent
universe thus reads

λ∗ − 3K < −G0Λ0

g∗
. (23)

In the classical case λ∗ = 0 and hence, assuming that the infrared values of the cosmological constant Λ0 and Newton’s
coupling G0 are positive, an emergent universe is possible only for positive values of the spatial curvature, K > 0.
On the contrary, the Asymptotic Safety scenario is based on the existence of a NGFP, so that λ∗ 6= 0. In the latter
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case the emergent universe can be realized by all allowed topologies of the spatial slices, K = −1, 0, 1, provided that
λ∗ < 0. Remarkably, although λ∗ > 0 for “pure gravity”, in the case of gravity-matter systems the value of λ∗
depends on the matter content of the theory. In particular, when gravity is minimally coupled to the matter fields of
the Standard Model (or its minor modifications), the gravitational RG flow computed in the ADM-framework has a
unique (UV-attractive) NGFP with λ∗ < 0 [48]. In addition, a cosmological constant which attains negative values
in the ultraviolet limit is necessary to ensure the compatibility of Asymptotic Safety with the latest Planck data [81].

Provided that the condition (23) holds, in the case of an emergent universe eq. (17) reads

ȧ2 = −
g∗Λ0

(
a2 − a2b

)2
3 (G0 − g∗a2)

(24)

where the minimum scale factor ab is given by

ab =

√
−G0Λ0 + g∗(λ∗ − 3K)

2g∗Λ0
. (25)

Note that the condition ṼK(a) ≤ 0 implies

a2 ≥ a2b >
G0

g∗
. (26)

Here the quantity (G0/g∗) corresponds to the value of a(t) at which the anomalous dimension (9) is η = −1. The
value of the minimal length ab cannot exceed this limit.

In order to understand how the universe evolves in the proximity of ab, i.e. at the very beginning of its evolution,
one can linearize the quantum-corrected equation (17) around ab. The resulting approximate equation reads

ȧ2 =
4g∗a

2
bΛ0

3 (g∗a2b −G0)
(a− ab)2 (27)

and its general solution is

a(t) = ab + ε exp

{√
4g∗a2bΛ0

3 (g∗a2b −G0)
t

}
, (28)

ε being an integration constant. As it is clear from eq. (28), the emergent universe scenario associated with eq. (21)
gives rise to an exponential evolution of the scale factor and no ad hoc inflation is needed. In particular, the density
parameter can be written as

Ω− 1 =
3
(
g∗a

2
b −G0

)
K

4g∗a4bΛ0
e−2Ne (29)

where the number of e-folds Ne reads

Ne ' log

(
ε

ab
exp

{√
4g∗a2bΛ0

3 (g∗a2b −G0)
te

})
, (30)

te being the cosmic time at the inflation exit.
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V. CONCLUSIONS

In this work we discussed a class of homogeneous cosmologies consistent with an ADM Renormalization Group
evolution. Our quantum-corrected Friedmann equation provides a new family of bouncing cosmologies which are
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valid near the basin of attraction of the NGFP and avoid the classical singularity. Emergent universe solutions are
also possible depending on the renormalized trajectories around the NGFP. These latter are determined by only two
parameters, which are in principle fixed by observations. In particular we showed that our emergent universe models
do not depend on the topologies of the spatial sections and do not rely on the presence of exotic matter.

The Dirac analysis shows that the constraint algebra of the quantum-deformed dynamical variables is closed. An
interesting question is the generalization of our approach beyond the mini-superspace approximation used in this
work. We hope to address this issue in a future work.
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[57] B. Guberina, R. Horvat, and H. Štefančić, Phys. Rev. D 67, 083001 (2003), hep-ph/0211184.
[58] M. Reuter and H. Weyer, Phys. Rev. D 70, 124028 (2004), hep-th/0410117.
[59] M. Reuter and H. Weyer, Phys. Rev. D 69, 104022 (2004), hep-th/0311196.
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