
2018Publication Year

2020-11-11T17:18:44ZAcceptance in OA@INAF

HDB@ELK: another noSql customization for the HDB++ archiving systemTitle

DI CARLO, Matteo; Canzari, M.; DOLCI, Mauro; SMAREGLIA, RiccardoAuthors

10.1117/12.2312464DOI

http://hdl.handle.net/20.500.12386/28265Handle

PROCEEDINGS OF SPIESeries

10707Number

PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

HDB@ELK: another noSql
customization for the HDB++
archiving system

Di Carlo, M., Canzari, M., Dolci, M., Smareglia, R.

M. Di Carlo, M. Canzari, M. Dolci, R. Smareglia, "HDB@ELK: another noSql
customization for the HDB++ archiving system," Proc. SPIE 10707, Software
and Cyberinfrastructure for Astronomy V, 107072D (6 July 2018); doi:
10.1117/12.2312464

Event: SPIE Astronomical Telescopes + Instrumentation, 2018, Austin, Texas,
United States

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 13 Oct 2020 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

HDB ++

Viewer

Tango
Configuration

DB

HDB ++

Configuration

Configuration
Archiving DB Manager

Archiver
(EventSubscri ber)

Archiver
(EventSubscri ber)

Device Server 1 Device Server 2 Device Server n

KGUIcool

Client /Server CallI
Tango Event

Legend

Device
Server

HDB@ELK: another noSql customization for the HDB++ archiving
system

M. Di Carlo*a, M. Canzaria, M. Dolcia, R. Smaregliab

aINAF Osservatorio Astronomico d’Abruzzo, Teramo, Italy; bINAF Osservatorio Astronomico di
Trieste, Trieste, Italy

ABSTRACT

The TANGO controls framework community has put a lot of effort in creating the HDB++ software system that is an
high performance, event-driven archiving system. Its design allows storing data into traditional database management
systems such as MySQL as well as NoSQL database such as Apache Cassandra. The architecture allow also to easily
extend it to other noSql database like, for instance, ELK. This paper describes the step needed to extend the HDB++ and
explore the possibilities to use the ELK technology in term of analysis being enabled and tools provided.

Keywords: TANGO, HDB++, Elasticsearch, ELK, noSql DB

1. INTRODUCTION TO TANGO AND HDB++
The tango controls system is built on top of the CORBA (Common Object Request Broker Architecture, [3]) standard,
limiting the possibility to introduce new objects with the IDL (interface definition language) to the “device” concept, in
order to build distributed control system. Therefore, a device is mainly an object with attributes within a process called
“device server” [4].

One of its core feature is the event model, which allows the communication between devices according to a predefined
event. One of the event typology available is the archive event, that can be configured to be fired with an absolute or
relative change in value (for a particular attribute of a device) or it can be configured to archive in a polling fashion. [5]

Figure 1. HDB++ Runtime View.

* matteo.dicarlo@inaf.it; phone +39 0861 439711; fax +39 0861 439740; www.oa-abruzzo.inaf.it

Software and Cyberinfrastructure for Astronomy V, edited by Juan C. Guzman, Jorge Ibsen, Proc. of SPIE
Vol. 10707, 107072D · © 2018 SPIE · CCC code: 0277-786X/18/$18 · doi: 10.1117/12.2312464

Proc. of SPIE Vol. 10707 107072D-1
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 13 Oct 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Configuration
Manager

Event
Subscriber

T
Database

Abstraction Layer

IM1
I

Cassandra

C ++ module

Figure 1 (available on the online documentation, [5]) shows the main runtime components of the HDB+ system that
are the Configuration Manager and the Event Subscriber (aka Archiver). The first one is a device that assists in
adding, modifying, moving, deleting an attribute to/from the archiving system while the second one is the receiver
of the event, the one that has to store the value of the configured attribute.

1.1 Customization: the “Abstract DB” abstraction

Figure 2 shows the architecture of the HDB++ in term of modules (mainly c++ library). The two main module are the
“Event Subscriber” and the “Configuration Manager”. Both of them use a third module, called “Database Abstraction
Layer”, that define two interfaces (namely DBFactory and AbstractDB) for extending the archiving system to other
database system. Extending the HDB++ system, therefore, is very easy: it is only needed to implement the above two
interfaces.

At the moment, there are two implementations of the abstraction layer that allows the interaction (for storage purpose) to
the Mysql [6] database system and the Cassandra [7] database system.

Figure 2. HDB++ Module View.

1.2 Data Model

The tradeoff of the simplicity of extending the system is a fixed data model, which is the schema of the database. This
means that the archiving interfaces (both the “Event Subscriber” and the “Configuration Manager”) cannot be changed
and what is archived must always have the same shape. In essence, it consists of five tables, shown in Figure 3, which
stores the following information:

• AttributeConfiguration: for each attribute (to store in DB when needed) there is an entry in this table which
associate it with a specific data type;

• AttributeConfigurationHistory: for each operation on attributes (add/remove/start/stop), a row is inserted with
the timestamp of the operation;

• AttributeParameter: for each attribute (to store in DB when needed) there is an entry in this table which
associate it with the list of parameter already stored in the TANGO database;

• AttributeEventData: for each event there is a row which stores the information associated with the event
(mainly timing and quality factor);

• Value: for each event stored in the AttributeEventData, there is an entry in a Value table (double, long, string
and so on).

Proc. of SPIE Vol. 10707 107072D-2
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 13 Oct 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

AttributeConfiguration

AttributeEventData

IAttributeConfigurationHistory

AttributeParameter

Double

Value

Long String

Table

Figure 3. HDB++ Data Model.

2. INTRODUCTION TO ELASTICSEARCH
Elasticsearch [1] is a real-time distributed search and analytics engine. The term “real-time” refers to the ability to search
(and sometimes create) data as soon as they are produced; traditionally, in fact, web search crawls and indexes web
pages periodically, returning results based on relevance to the search query. It is distributed because its indices are
divided into shards with zero or more replicas. But the main ability is the analytics engine which allows the discovery,
interpretation, and communication of meaningful patterns in data.

It is based on Apache Lucene [8], a free and open-source information retrieval software library, therefore Elasticsearch is
very good for full text search (like for logging data or text files in general). It is developed alongside a data-collection
and log-parsing engine called Logstash, and an analytics and visualization platform called Kibana. The three products are
designed for use as an integrated solution, referred to as the "Elastic Stack" (formerly the "ELK stack").

2.1 Elasticsearch as noSQL database

Looking at the definition given in [1], it is not straightforward to assert that Elasticsearch is a noSql Database; the
problem is the definition of noSql which it is not very precise: “Next Generation Databases mostly addressing some of
the points: being non-relational, distributed, open-source and horizontally scalable" [9].

Since that definition is not exact, the only possibility is to summarize the main features of Elasticsearch in order to
understand its qualities. They are:

• no transaction: no support for transaction;
• schema flexible: there is no need to specify the schema upfront;
• relations: denormalization, parent-child relations and nested objects;
• robustness: to properly work, elasticsearch requires that memory is abundant;
• distributed: it is a CP-system in the CAP (Consistency-Availability-Partition tolerance) theorem [10]
• no security: there is no support for authentication and authorization.

When using a software like Apache Lucene or Elasticsearch, all the features must be well considered and, also, an
important consideration deserves the relations.

ELK see data as everything is flat: basically every document, stored in ELK, is independent and therefore every
document should contain all of the information required to decide whether it matches a query. In particular, this helps in
indexing, in searching and in scalability since documents can be spread across multiple nodes. But relations are
important and there are mainly four ways to bridge the gap.

The first possibility is the application-side join, which means that there are no relations in the data and the only
possibility is to make more than one query to filter and emulate a join. An example is the relation between user and posts
in a blog: to make a query that join the two entities, one can make two queries.

Proc. of SPIE Vol. 10707 107072D-3
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 13 Oct 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

HdbEventDataType

use*

auses

usen

E

EventData

AttrConfEventData

AbstractDB o
opera ..s

+insert_Attr()
+insertyaram_AttrO
+configure_Attrp
+updateTTL_AttrO
+event_AttrO

HdbPPELK

DAL

+GetAttrib uteCo n fig u ration O
+GetAttrib uteCo n fig u ration H istory()
+SaveAttributeCon figuration()
+SaveAttributeConfgurationH sstory()
+SaveAttributePara meter()
+SaveAttributeEventData()
-InsertElastic()
-UpdateElastic()
-SearchElastic(
- GetElasticBykl()

auses

a

.uses

auses

.uses-
auses

AttributeConfigu ration

AttributeName

-)

AttributeParameter

Altri buteEventData

AttributeConfigu ration History

DBEntity
operations

+SetParameterFromJson ()
+ToJsonO
+ToElkScript4U pdate()
+GetJsonQuery()

The second technique is the data denormalization [11], which is the process of increasing read performance adding some
redundant copy of the data. In the previous example, one could store, in the posts document, the information related to
the user. As opposite, the write performance would decrease. Of course there are some disadvantages in denormalization,
like index dimension (bigger documents, bigger index) and, overall, the concurrency (which can be solved with various
lock mechanisms).

The third way of handling relations in ELK is the use of nested objects; this means that it is possible to relate a document
with a nested document that is indexed together (so there is a variety of special operator in order to query these types of
document).

The last possibility is the parent-child relationship which is very similar to the nested objects mechanism. Through this
way it is possible to create a one-to-many relationship where a document can be a parent of another one and one child
can have only one parent but the documents are completely separated. This means that one can change the parent without
updating all the children or that one can add/modify/remove a child of a document.

3. IMPLEMENTATION
The selected development language was C++ mainly because HDB++ is made in that language. The new library had to
be able to work with REST [12] and with Json data [13] and, for this reason, two libraries have been selected to include
these functionalities: “REST client for C++” [14] and “Json for modern C++” [15].

Figure 4. Class diagram.

The total amount of time needed to implement (source code development) the AbstractDB was around 4 weeks while the
total amount of work done for testing and studying was around two months for a total amount of three months of work.
Figure 4 shows the class diagram of the implementation done. The central class is the HdbPPELK which realizes the
main methods of the interface AbstractDB (that uses the classes HdbEventDataType, EventData and AttrConfEventData
belonging to the TANGO core library). The classes AttributeName and Log were already developed and are used to
extract the information needed from the full attribute name and to log data messages. The class DAL (refer to Data
Access Layer [18]) provides to the HdbPPELK class a simple access to the ELK functionalities. In fact, it implements

Proc. of SPIE Vol. 10707 107072D-4
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 13 Oct 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Kibana

Tango
Configuration

DB

HDB ++

Configuration

Configuration
Elasticsearch Manager

*41'
Archiver

(EventSubscriber)

AMICA Device

Archiver
(EventSubscriber)

CMT Device

GUI

Tool

Legend

Device
Server

Client /Server Call

Tango Archive Event

four private methods which represents the basic operation (except for the delete operation) that can be done with a
database (Insert, Update, Get single entity and search for entities). Usually those methods are in another class so that
more than one database can be added to the project but since the need is only for one repository, it has been decided to
join the two classes. With the help of those simple methods and for each information to store, there are one or more
method to save and read the data. For example, if a new archive event arrives to the system (represented with the class
AttributeEvenData), the HdbPPELK will create the object (in this case an instance of AttributeEvenData) and simply
pass it to the DAL which will store it. It is important to note that if an entity has to be stored it has to inherit from the
abstract class DBEntity and implements four methods that will help the DAL to send data to the ELK repository. The
other entities to consider are mainly those explained in Figure 3.

The analysis of the result obtained has been studied with two test cases: a set of monitoring data taken from the camera
AMICA [16] installed in Antartide for a period of time of 116 days and the set of monitoring data taken from the Global
Centroid-Moment-Tensor (CMT) Project [17] (recording earthquakes since 1976). Two TANGO devices have been also
developed in order to simulate the production of monitoring data both of the camera and the CMT and stored them
through the normal mechanism of the HDB++ architecture. It is worth to notice that, for each device, together with the
normal attributes, there was a special attribute that allowed to archive the entire attributes in one time. This is to avoid
the problem of the data aggregations explained in section “Aggregating data”.

Figure 5 shows the runtime view (Figure 1) adapted for this specific test case.

Figure 5. HDB++ Runtime View - Test case.

3.1 Archiving result

It has been simulated more than forty thousand events for the CMT project and more the two hundred thousand events
for the AMICA project. The goal was to find out the possibilities in using the ELK tools such as Kibana.

There are also many possibilities in term of standard plots like histograms, line graphs, pie charts, sunbursts and so on.
For example, Figure 6 shows the trend of the three lines of a three-phase expressed in Volt.

Figure 7 shows the plot of the geolocation for the CMT project grouping them by position (the bigger the point, the more
events there are).

Proc. of SPIE Vol. 10707 107072D-5
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 13 Oct 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Search... IeB. stawzxoo AND extension:PU P)
Uses lacere query syntax

Count 737

Latitude 2 8471.9816708740

Table

oayxoo.a Active Power 1 Active Power 2:

NeeemmmP,.dee-"-äááâ

Active Power 3

.,..Powe,

.,,cuve Power
cuve Power

o

eo o

O o

O O
Oo..e Q.2a1.

Figure 6. AMICA project Active Power trend.

Figure 7. CMT project Aggregating GeoLocation.

3.2 Aggregating data

Those two figures are just two simple examples of what can be done with a tool like Kibana but were enough to show
some controversial aspect of aggregating data. Let’s consider the simplified view of the data model shown in Figure 8; it
shows how the system stores a specified number of attributes M in a specific number of events N (the table shown is the
AttributeEventData of the data model that can be simplified seeing it together with the value tables).

Unless the purpose of the archiving are time series, it is not easy to aggregate the data available with the above model. In
fact, the only possibility (without creating a specific software for doing it) is to perform the join with the the event
information (hopefully same time means same event).

Figure 9 shows an example for the CMT project. The event information is present for every attribute and for each
attribute, there is one value with all the other column with null value. While for time series, this model works very well,
this is not true for structured data, like the geographics location (Figure 7). This means that, with a tool like ELK, it is
not possible (at query time) to transform the initial table into a usable table.

Proc. of SPIE Vol. 10707 107072D-6
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 13 Oct 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Event Attribute
Name

Value
double

Value string Value Date

t1 Latitude -28.39

Longitude -176.79

Location "KERMADEC ISLANDS REGION"

Date 1976/02/15 21:23:22.6

t2 Latitude -14.74

Longitude 167.10

Location "VANUATU ISLANDS"

Date 1976/03/04 02:50:00.5

tN

Event Latitude Longitude Location Datea t1 -28.39 - 176.79 "KERMADEC 1976/02/15 I
ISLANDS REGION" 21:23:22.6

t2 -14.74 167.10 "VANUATU 1976/03/04
ISLANDS" 02:50:00.5

tN

t-1

Attribute
Name

Attribute
Value

t-2

t-N

Attribute
Name

al
a2

a3

Event

tl
tl
tl

aM tN

Value
double

Value
string

Figure 8. Archiving M attributes with N events.

The general transformation is shown in Figure 10. It is worth to notice that it depends on the grouping needed: in this
case, it is a cube: event, device and attribute. However, it can be any kind of grouping.

In order to avoid the transformation problem, a json attribute (with the needed changes in the source code to be able to
archive another type) was introduced whenever the aggregation was needed. In this way, it has been used the nested type
relationship described above.

Figure 9. Joining attributes together.

Proc. of SPIE Vol. 10707 107072D-7
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 13 Oct 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Attribute Name Value double Value string

u al

aM

t2

tN

The dimension depends on the
grouping one want to do (for

instance, time-device-attribute)

Figure 10. General transformation.

4. CONCLUSION
The present paper represents a study of the HBD++ architecture in order to understand the time needed for the
customization of the archiving system with a noSql technology like ELK. The result is that the architecture allows the
expansion with a new database system in a very easy way.

The system appears to be thought for archiving time series and not structured data: the difficulties of aggregating data is
the tradeoff of this architectural choice. Structured data can be archived with json string, changing the system where
needed (the implementation of the abstraction layer), or with array.

New development of the TANGO core model can be helpful to reduce the aggregation tradeoff, for example with a
specific json data type, but, together with this, the possibility of scheduling custom archiving scripts can be beneficial
too.

5. ACKNOWLEDGEMENT
This work has been made possible thanks to the financial support by the Italian Government (MEF - Ministero
dell'Economia e delle Finanze, MIUR - Ministero dell'Istruzione, dell'Università e della Ricerca).

REFERENCES

[1] ELK, www.elastic.co
[2] Di Carlo, Matteo et al., TM Services: an architecture for monitoring and controlling the Square Kilometre array

(SKA) telescope manager, Proc. of the SPIE Astronomical Telescopes and Instrumentation 2018, paper no.
10707-59 (this conference)

[3] Corba, www.corba.org
[4] TANGO controls, tango-controls.org
[5] HDB++ introduction, http://tango-controls.readthedocs.io/en/latest/tools-and-extensions/archiving/HDB++.html
[6] Mysql, www.mysql.com

Proc. of SPIE Vol. 10707 107072D-8
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 13 Oct 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

[7] Cassandra, cassandra.apache.org
[8] Lucene, lucene.apache.org
[9] noSql, nosql-database.org
[10] CAP theorem, en.wikipedia.org/wiki/CAP_theorem
[11] Denormalization, en.wikipedia.org/wiki/Denormalization
[12] REST, en.wikipedia.org/wiki/Representational_state_transfer
[13] JSON, www.json.org
[14] REST client for C++, https://github.com/mrtazz/restclient-cpp
[15] Json for modern C++, https://github.com/nlohmann/json
[16] Dolci, M.; Valentini, A.; Ragni, M.; Di Cianno, A.; Di Rico, G.; Straniero, O.; Romano, D.; Christille, J.-M.;

Piluso, A. 2012: AMICA at Dome C: results from the first year of automatic operation tests in Antarctica, Proc.
of the SPIE, 8446, 844645

[17] Global CMT, http://www.globalcmt.org/
[18] DAL, https://en.wikipedia.org/wiki/Data_access_layer

Proc. of SPIE Vol. 10707 107072D-9
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 13 Oct 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

