
2018Publication Year

2020-11-11T17:15:56ZAcceptance in OA@INAF

TM Services: an architecture for monitoring and controlling the Square Kilometre
Array (SKA) Telescope Manager (TM)

Title

DI CARLO, Matteo; CANZARI , MATTEO; DOLCI, Mauro; SMAREGLIA, Riccardo;
Barbosa, D.; et al.

Authors

10.1117/12.2309341DOI

http://hdl.handle.net/20.500.12386/28264Handle

PROCEEDINGS OF SPIESeries

10707Number

PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

TM Services: an architecture for
monitoring and controlling the Square
Kilometre Array (SKA) Telescope
Manager (TM)

Di Carlo, M., Canzari, M., Dolci, M., Smareglia, R.,
Barbosa, D., et al.

M. Di Carlo, M. Canzari, M. Dolci, R. Smareglia, D. Barbosa, J. B. Morgado, J.
P. Barraca, "TM Services: an architecture for monitoring and controlling the
Square Kilometre Array (SKA) Telescope Manager (TM)," Proc. SPIE 10707,
Software and Cyberinfrastructure for Astronomy V, 107071N (6 July 2018);
doi: 10.1117/12.2309341

Event: SPIE Astronomical Telescopes + Instrumentation, 2018, Austin, Texas,
United States

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 13 Oct 2020 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

TM Services: an architecture for monitoring and controlling the
Square Kilometre Array (SKA) Telescope Manager

M. Di Carlo*a, M. Canzaria, M. Dolcia, R. Smaregliab, D. Barbosac, J. B. Morgadoe, J.P. Barracad
aINAF Osservatorio Astronomico d’Abruzzo, Teramo, Italy; bINAF Osservatorio Astronomico di

Trieste, Trieste, Italy; cInstituto de Telecomunicações, dUniversidade de Aveiro, Campus
Universitario de Santiago, 3810-193 Aveiro; eCICGE, Faculdade de Ciências da Universidade do

Porto, 4430-146 V. N. Gaia

ABSTRACT

The SKA project is an international effort (10 member and 10 associated countries with the involvement of 100
companies and research institutions) to build the world’s largest radio telescope. The SKA Telescope Manager (TM) is
the core package of the SKA Telescope aimed at scheduling observations, controlling their execution, monitoring the
telescope and so on. To do that, TM directly interfaces with the Local Monitoring and Control systems (LMCs) of the
other SKA Elements (for example, Dishes, Correlator and so on), exchanging commands and data with them by using
the TANGO controls framework (see [1]). TM in turn needs to be monitored and controlled, in order its continuous and
proper operation is ensured and this higher responsibility has been assigned to the TM SER package.

Keywords: SKA, TM, TANGO, SER, Services, LMC, Virtualization

1. INTRODUCTION
In the overall SKA architecture, each of the two telescopes (SKA MID and SKA LOW) is composed by several
Elements covering all required functionalities: DISH and MFAA (Mid Frequency Aperture Array, for SKA MID) and
LFAA (Low Frequency Aperture Array, for SKA LOW) are the front-end Elements for direct radiation detection, while
elements such as CSP (Central Signal Processor), SDP (Science Data Processor), SAT (Synchronization And Timing),
INFRA (Infrastructure) and SaDT (Signal and Data Transport) are devoted to all other operational and support
functionalities. The global orchestration of this huge system is performed by a central element called Telescope Manager
(TM) [2]. SKA Elements (level 2) consist of multiple sub-elements (level 3), which in turn can be decomposed into
applications (level 4), components (level 5) and so on, down to the line replaceable units (LRUs). Each SKA Element, in
particular, is provided with a Local Monitoring and Control (LMC) system. TM interfaces with the each of the SKA
Element LMCs to exchange commands and responses, gather monitoring data, events and alarms, and provide
capabilities for diagnostics and upgrades. TM in turn needs to be monitored and controlled, in order its continuous and
proper operation is ensured and this higher responsibility has been assigned to the TM Services (TM SER) package.

The problem of monitoring and controlling a software is an artificial intelligence problem consisting in the research in a
state space characterised by:

1. an initial state;

2. a set of possible actions which transform a state to another one;

3. a path from a state to another state (list of actions).

This description of the problem helps in understanding what is needed to realize the architecture for the TM SER that is a
set of actions and a set of monitoring data from which a state can be calculated.

* matteo.dicarlo@inaf.it; phone +39 0861 439711; fax +39 0861 439740; www.oa-abruzzo.inaf.it

Software and Cyberinfrastructure for Astronomy V, edited by Juan C. Guzman, Jorge Ibsen, Proc. of SPIE
Vol. 10707, 107071N · © 2018 SPIE · CCC code: 0277-786X/18/$18 · doi: 10.1117/12.2309341

Proc. of SPIE Vol. 10707 107071N-1
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 13 Oct 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

TM component

TM Maintainer

Archive logs

Search for log
information

TM Developer TM Administrator
(TM SER Operator)

Manage Logging
Architecture/parameters

Add /Remove Specific
Monitoring Activity

Monitoring
Software

component

The analysis carried out on TM requirements yielded the main system’s functions shown in Figure 1 and Figure 2. They
can be summarized in the following list:

• TM generic monitoring and fault management to detect internal failure and gather TM performance;

• TM lifecycle management to manage the versions of the TM and the TM applications which includes:
configuration of TM software applications, starting, stopping and restarting of TM software applications, update
and downgrade of TM software applications;

• TM Logging, which includes the control of the destination of log messages, the transformation of the message
(if required) and the query GUI;

• Control of the virtualization system (see [3]).

Another important function of the system is the aggregation of the TM health status and TM State (of the various TM
applications) and its reporting it to the Operator. This function can be considered an application of the present
architecture (see [4]).

Figure 1. TM SER use cases, monitoring and logging.

Proc. of SPIE Vol. 10707 107071N-2
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 13 Oct 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Use /Launch
Application

Configure /Start
Application

Add Application
Version

Remove Application
Version

TIYI User

List
Applications

TM Administrator
(TM SER Operator)

Restart Application

Set On line
Application Version

Set Off line Application
Version

Update Application) Entity Management

DOMAIN /BUSINESS

SERVICES

INFRASTRUCTURE

Figure 2. TM SER use cases, lifecycle.

2. CONTEXT
The TM Services take place in the middle between the domain logic and the infrastructure. In particular, Figure 3
explains the above concept with a layered structure:

• Domain/Business Layer: functional monitoring and control of business logic performed by each application;

• Services Layer: Monitors and controls processes on a generic level (non-functional) like web services, database
servers, custom applications;

• Infrastructure Layer: Monitors and controls virtualization, servers, OS, network, storage.

Figure 3. TM SER Context.

3. QUALITY ATTRIBUTES
The main quality that drove the development of the present architecture was the maintainability intended as availability
(reliability and recovery), modifiability, testability and more in general the ability of a system to cope with changes.

Concerning availability, many tactics are implemented in the present architecture and in particular:

• Detecting fault: ping, monitoring activities, heartbeat and timestamp;

• Recovering from fault: active redundancy, software upgrade and reconfiguration;

Proc. of SPIE Vol. 10707 107071N-3
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 13 Oct 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

logicalComposition

1

«block»
LogicalComposition

monitoredProcess

«blocks
Entity
Values

Singleton : Boolean

version «blocks
Version

configuration

pans

Active: Boolean
Alpha : Boolean
Beta: Boolean

value
Singleton : Boolean

version").

«block»
MonitoredProcess

pans
isProduct : Boolean

«block»
Application

va ues
isProduc: Boolean

«block»

Virtualization

«block»
MonitoringActivity

0

template,p..1

«block»
Template

«block»
Configuration

pans
Timestamp: DateTime
default : Boolean = false
attributes : Dictionary
aScript : Script
configurationResource : ConfigurationResource"'' [1.1
precondiionCheck: PreconditionCheck

«block»
vResource

type

«valueType»
ConfigurationType

enumera Don bterefS
Configure
Start
Stop
Restart

Notation: Sysml
Q

• Preventing faults: predictive model and transaction (when accessing to repositories).

The modifiability is reached in the following areas of the system: monitoring activities, lifecycle scripts, logging rules
and fault rules. In particular, cohesion has been increased and coupling reduced so that it is easy to add new version of an
application and to add new monitoring activities.

The testability is reached by limiting the complexity of the system. In fact, it is easy to add a new monitoring activity to
the system so that, if there is a new test to be performed, it will be possible to add a monitoring point for it that can
represent a state, a measure or a simple message. Once the needed specific monitoring point is available, it is also easy to
generate an event to intercept the problem raised with the test.

4. ENTITIES DECOMPOSITION
The entity managed by the TM SER package can be summarized in Figure 4. In particular, the central block of the
diagram is the Entity, that is the main data wherewith every TM Services application refer to. It can be:

• a monitored process, that is an OS process that needs to be monitored and controlled or

• an application, that is an aggregation of MonitoredProcess selected according to a particular version with the
block LogicalComposition or

• a monitoring activity, that is a process that monitors an entity and produces monitoring data or

• the virtualization, that is a generic term indicating a virtualization system (Openstack, Cloud system and so on)
or

• a vResource, that is a resources managed by the virtualization including CPU, storage, and networking or

• a Template, that is a description of a set of instances (servers, VMs or containers) needed to run a particular
configuration of an application.

Figure 4: Entity decomposition.

5. MODULE DECOMPOSITION
Figure 5 shows the decomposition of the system into units of implementation and highlights the distinction between off-
the-shelf software and built software.

The lifecycle Manager (LM) realizes the lifecycle management defined as the ability to control a software application in
the following phases of its lifetime: configuration, start, stop, update, upgrade or downgrade (version control). The LM

Proc. of SPIE Vol. 10707 107071N-4
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 13 Oct 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

J
Built Off- the -shelf

software

Combination of
built and off -

the -shelf
software

uses

KEY

Service GUI

Software
System

Monitor (SSM)

Fault Rules

Lifecycle
Manager

(LM)

Virtualization
service

TM
Monitor

Monitoring
activities

Lifecycle
scripts

Tango

framework

Logging
forwarder

rules

Logging
Service (LS)

engine (off-the-shelf) executes the lifecycle scripts directly into the client host (where the application run) and realizes a
specific phase of the application lifetime.

In particular, the first phase is the configuration, which is the ability to set all the parameter of a software application in
order to start the product on the second phase (the configuration phase is the preparation of the start phase). Once the
application has started, it is possible for a user to work with it. In the start phase, it is very important to consider the
application typology (OS service, web application, desktop application and so on). In fact, if the application is, for
instance, on web (web app) then the start phase corresponds to the start of the web server and perhaps the database. Only
after that (and after a test phase), a user can work with it.

An application can also be stopped or killed if there is the need for doing that, for instance because the application goes
offline or there is a new version of it, either resulting from the standard update cycle or from a redesigning stage
triggered by new requirements released over the SKA life-time. All these activity can be done through an IT automation
tool like puppet [5], chef [6], ansible [7] and so on.

Figure 5. Module decomposition.

The Generic Monitoring is composed by a software system monitor (SSM) plus some specific monitoring activities in
order to monitor:

• network services (SMTP, POP3, HTTP, NNTP, ICMP, SNMP, FTP, SSH);

• host resources (processor load, disk usage, memory, etc.);

Proc. of SPIE Vol. 10707 107071N-5
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 13 Oct 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

SSM

Generic
Monitoring system

• any hardware (like probes for temperature, alarms, etc.).

The SSM is a software component used to monitor resources and performance in a computer system: for every node of
the TM network, there is a local agent that is able to collect information from the operating system and from the local
processes of TM applications. The local agent executes one or more monitoring activities and reports the collected data
to the SSM engine.

The SSM is also responsible of the aggregation of the TM health status and TM State (of the various TM applications).
This function can be accomplished through the development of specific monitoring activities both for the local agent and
for the server engine that collect state information (client) and aggregate them (server).

Every information collected by the monitoring system has to be reported to the Operator in order to give a clear picture
of the functional and non-functional view of the system. For this reason, a TM Monitor has been developed as a Tango
Device server (www.tango-controls.org) for reporting all the monitoring information into the control system (see Fig. 4).

Figure 6. Reporting to Operator.

The fault rules are the basis of the fault management activity that uses the SSM and the LM in order to perform its duty
that is:

• Detection that is the ability to understand if there is a fault in the system;

• Isolation, that is the ability to isolate a fault by understanding where it occurred;

• Recovery that is the ability to recover the situation.

A monitoring activity together with alarm filtering (usually available in any software system monitor) realizes the
detection activity. The same monitoring activity together with log information realizes the isolation while the recovery is
essentially a control operation: for instance an online action, which is a lifecycle command (reconfigure, restart, etc.) or
an offline activity like raising a modification request for the software maintenance.

A good logging service should focus on how many inserts can the architecture support (throughput) and how the system
manages the growth of event data. In the module decomposition, two different modules are devoted to these two distinct
aspects, one called Logging forwarding rule and one called Logging Service (LS).

The Service GUI is the entry point for the TM Services software package and will allow the Operator to access all the
functionalities provided from one single UI (see [8]).

It is very important to notice that Monitoring activities, fault rules, Lifecycle scripts and Logging forwarding rules are
separated from the execution engine (SSM vs Monitoring activities, SSM vs fault rules, Lifecycle Manager vs Lifecycle
scripts, Logging service vs Logging forwarding rules) in order to increase the modifiability of the system. This also
highlights the Client/Server architecture of the system.

Proc. of SPIE Vol. 10707 107071N-6
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 13 Oct 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

LS
Fomaae,

Server Client
LS Dala

r

r
SSM

L
41.TMLaxam I

nalum M Il
o.x rodx.

Virtualization

4 a J
NDeu

Repository

Confie Oa

Mmroxna
Agent

ua1va40n EnmnmeM

LM Sabla

-y
=GUI

CIS 51103

PWSW

Pub/Sub Sfl

Script Execution

PO. VO

TM
ppluh

Softenb)ebnlb
6FamMUyp

IlkvyLa Man;er

L
NMtl4cn

w.w

6. RUNTIME VIEW
Figure 7 highlights the runtime components of the system and their relations. Highlighted in green are the runtime
components of the logging service with a three entities architecture: the LS data repository, the LS engine and the LS
forwarder. The LS forwarder is a service located near the TM applications that gives the possibility to forward the
message to the central database cluster according to certain rules (logging forwarding rules).

Figure 7. Runtime view.

The LS Engine is responsible for collecting and storing the log messages (transformed by the forwarder) into the data
center together with the ability to receive queries from the external world and to answer in a timely manner. There are
several best practises and possibilities for this service. It is possible to use simple files (as in the case of MeerKAT
project, see [9]) or a relational DB (as for ASKAP, see for example [10]) or a NoSql DB (as for LHC, see for example
[11] with ELK [12]). A performance evaluation of the three possibilities has been made and, focusing on fast write and
centralized solution, the best solution resulted to be ELK. In fact, writing simple file is fast but is not a centralized
solution, relational DB is a centralized solution but is not fast while the NoSql DB is both fast and centralized.

Highlighted in blue are the runtime components of the SSM that is composed by:

• the SSM Core, responsible for the interaction with the SSM Agents,

• the Fault Engine, responsible for the execution of the fault actions (if required),

• the Notification System to notify the SER Operator of any information and

• two repositories, the FM repository, responsible for the storage of the fault rules, and the MonData Repository,
for the archiving of all the monitoring data.

Highlighted in orange are the LM runtime components: the LM Core, the LM repository and the LM Service. The LM
Service retrieves from the LM Core the specific lifecycle script assigned to the particular TM application and applies it
locally so that the requested action is performed. It is also possible to have an agentless lifecycle manager like for
instance Ansible (see [7]). The LM repository contains all the versioned lifecycle scripts developed and it interacts with
the LM Core only.

It is also important to notice that the Service GUI interacts with all the principal components of the SER modules
together with a configuration DB (to maintain information like geographical information, entities information, version
information, configuration information and so on) and the AAA (Authentication, Authorization and Auditing) package.

Proc. of SPIE Vol. 10707 107071N-7
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 13 Oct 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

cvalueTypes
Template State
enumeration hreais

INITIALIZED
ACTIVE
PAUSED
SUSPENDED
STOPPED
DELETED
ERROR

DependsOn

1

«block»
Virtualization

I«Manage»

0..1

«block»
Template

vResource

-

«Manage»

template`1)..1

«block»
Version

0

«block»
vResource

pans
IP Address [1..1
floating IP Address [1..1

vResource

«block»
vResourceNetwork

«block»
vResourceStorage

«block»
vResourceCompute

Notation: sysml
N

«valueType»
vResource State

enumeration óferafs
INITIALIZED
PAUSED
SUSPENDED
SOFT DELETED
ERROR
RESCUED
STOPPED

«block»

> vResouce Descriptor

«block»
Hardware

SerialNumber: String

blocks
vHardware

-

«block» -xeOnHost «block»

Container VM

«block»

Product Execution
File Descriptor

«block»

Physical Resource
File Descriptor

vM

The Virtualization block manages resources (vResources) assigned to a specific configuration of an entity (see Figure 4
for the entity decomposition). Usually, every entity has associated a template that is a description of the set of instances
(servers, VMs or containers) with an SLA (Service Level Agreement), user ACLs (Access Control Lists) and network
ACLs needed by the entity.

A vResource can be:

• a vResourceCompute, that is a Virtualized computational resource (an Hardware, a vHardware, a Container or a
Virtual Machine);

• a vResourceNetwork, that is a Virtual network for a cloud application;

• a vResourceStorage, that is a virtual storage for a cloud application.

The Template and the vResource blocks have a state associated that is collected and managed by the SSM. Figure 8
shows the data model for the use of the virtualization system made for TM.

Figure 8. Virtualization data model.

Proc. of SPIE Vol. 10707 107071N-8
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 13 Oct 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

7. CONCLUSION
The architecture developed for the TM Services package, devoted to monitoring and control the SKA1 Telescope
Manager system, has been described in this paper. The work has successfully passed the SKA1 Pre-Construction Phase
TM Critical Design Review and is ready for construction. The SKA1 Construction Phase is expected to start in 2019,
while the overall SKA Telescope is expected to enter its fully operational phase in 2025.

8. ACKNOWLEDGEMENT
This work has been made possible thanks to the financial support by the Italian Government (MEF - Ministero
dell'Economia e delle Finanze, MIUR - Ministero dell'Istruzione, dell'Università e della Ricerca). This research is also
supported by the project Enabling Green E-science for the SKA Research Infrastructure (ENGAGE SKA), reference
POCI-01-0145-FEDER-022217, funded by COMPETE 2020 and FCT, Portugal.

REFERENCES

[1] TANGO, www.tango-controls.org.
[2] Bridger, Alan et al., The SKA telescope manager software: a status update, Proc. of the SPIE Astronomical

Telescopes and Instrumentation 2018, paper no. 10707-2 (this conference)
[3] Morgado, J. Bruno et al., Very large scale high performance computing and instrument management for high

availability systems through the use of virtualization at the Square Kilometre Array (SKA) telescope, Proc. of
the SPIE Astronomical Telescopes and Instrumentation 2018, paper no. 10707-20 (this conference)

[4] Dolci, Mauro et al., Achieving a rolled-up view of SKA TM health status and state: definition and analysis of
aggregation methods, Proc. of the SPIE Astronomical Telescopes and Instrumentation 2018, paper no. 10707-
19 (this conference)

[5] PUPPET, http://puppet.com
[6] CHEFF, http://www.chef.io
[7] ANSIBLE, http://www.ansible.com
[8] Canzari, Matteo et al., TM services GUI prototype: compliance with the user-centered design approach for the

Square Kilometer array, Proc. of the SPIE Astronomical Telescopes and Instrumentation 2018, paper no.
10707-100 (this conference)

[9] Justin L. Jonas, MeerKAT-The South African Array with Composite Dishes and Wide-Band Single Pixel
Feeds, Proceedings of the IEEE (Volume: 97, Issue: 8, Aug.2009), Page(s): 1522 - 1530, DOI:
10.1109/JPROC.2009.2020713.

[10] S. Johnston et al., Science with ASKAP The Australian square-kilometre-array pathfinder, Exp Astron (2008)
22:151–273, DOI 10.1007/s10686-008-9124-7

[11] S. Chatrchyan et al., (CMS Collaboration), Search for Signatures of Extra Dimensions in the Diphoton Mass
Spectrum at the Large Hadron Collider, Phys. Rev. Lett. 108, 111801 - Published 12 March 2012,
DOI:https://doi.org/10.1103/PhysRevLett.108.111801

[12] ELASTIC, https://www.elastic.co/

Proc. of SPIE Vol. 10707 107071N-9
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 13 Oct 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

