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ABSTRACT
Pulsar Wind Nebulae (PWNe) constitute an ideal astrophysical environment to test our current
understanding of relativistic plasma processes. It is well known that magnetic fields play a
crucial role in their dynamics and emission properties. At present, one of the main issues
concerns the level of magnetic turbulence present in these systems, which in the absence
of space resolved X-ray polarization measures cannot be directly constrained. In this work,
we investigate, for the first time using simulated synchrotron maps, the effect of a small-
scale fluctuating component of the magnetic field on the emission properties in X-ray. We
illustrate how to include the effects of a turbulent component in standard emission models for
PWNe and which consequences are expected in terms of net emissivity and depolarization,
showing that the X-ray surface brightness maps can provide already some rough constraints.
We then apply our analysis to the Crab and Vela nebulae and by comparing our model with
Chandra and Vela data, we found that the typical energies in the turbulent component of the
magnetic field are about 1.5–3 times the one in the ordered field.

Key words: MHD – polarization – radiation mechanisms: non-thermal – relativistic processes
– ISM: individual objects: Crab nebula – ISM: supernova remnants.

1 IN T RO D U C T I O N

Pulsar Wind Nebulae (PWNe) are bubbles of relativistic particles
and a magnetic field arising from the interaction of the relativistic
pulsar wind with the ambient medium (interstellar medium [ISM]
or supernova remnant). They shine in non-thermal (synchrotron and
inverse Compton) radiation in a broad range of frequencies from ra-
dio wavelengths to γ -rays (see Gaensler & Slane 2006 for a review).
At X-rays, many PWNe show an axisymmetric feature known as jet-
torus structure. This feature has by now been observed in a number
of PWNe among which are the Crab nebula (Weisskopf et al. 2000),
Vela (Helfand, Gotthelf & Halpern 2001; Pavlov et al. 2001) and
MSH 15-52 (Gaensler et al. 2002; DeLaney et al. 2006), to name
just a few. It is now commonly accepted that this structure arises
due to the interplay of the anisotropic energy flux in the wind with
the toroidal magnetic field, as confirmed by a long series of numer-
ical simulations (Komissarov & Lyubarsky 2003, 2004; Del Zanna,
Amato & Bucciantini 2004; Del Zanna et al. 2006; Volpi et al. 2007;
Camus et al. 2009; Porth, Komissarov & Keppens 2014; Olmi et al.
2014, 2016). In general, two-dimensional models are built on the
axisymmetric assumption of a purely toroidal magnetic field, while
three-dimensional models usually have a much lower resolution and
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can only investigate large-scale deviations from axisymmetry. How-
ever, recently, several arguments have been put forward advocating
the presence of small-scale turbulence in PWNe: the presence of a
large diffuse X-ray halo at distances in excess of the naive expecta-
tion for synchrotron cooling and advection (Tang & Chevalier 2012;
Bühler & Blandford 2014; Zrake & Arons 2016); the suggestion that
radio-emitting particles could be continuously re-accelerated in the
body of the nebula (Olmi et al. 2015; Tanaka & Asano 2016); and
the observation of recurrent γ -ray flares requiring localized strong
current sheets (Uzdensky, Cerutti & Begelman 2011).

Radio polarization maps are available, but being radio emission
dominated by the outer region of PWNe, where the effects of the
interaction with the SNR are stronger, they provide at best a good
estimate of the degree of ordered versus disordered magnetic field
for the overall nebula, but cannot be used to constrain the conditions
in the region close to the termination shock where most of the
variability and the acceleration processes take place. In the Crab
nebula, the polarized fraction in radio is on average ∼16 per cent
(Conway 1971; Ferguson 1973; Velusamy 1985; Aumont et al.
2010) with peaks up to 30 per cent, lower than in optical, where
the average polarized fraction is ∼25 per cent (Velusamy 1985).
Moreover the polarized flux in radio anticorrelates with the location
of the X-ray torus. The values of the radio polarization are consistent
with a largely turbulent magnetic field in the outer part of the nebula
(Bucciantini et al., in preparation).
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Recently, high-resolution HST observations in polarized light
have been presented both for the inner region of the Crab nebula
(Moran et al. 2013) and for the Vela PWN (Moran, Mignani &
Shearer 2014). The study of the Crab nebula focused on the brightest
optical features, namely the knot and the wisps, which are shown to
have typical polarized fractions of about 60 per cent and 40 per cent,
respectively. The results in the Crab nebula are consistent with the
general picture of a strongly ordered toroidal magnetic field just
downstream of the termination shock with a possible hint of the
development of turbulence: the polarized fraction of the wisps is
lower than the one in the knot and numerical simulations suggest
the former to be slightly more downstream than the latter. Vela is
not detected in polarized optical light, but this might not be very
constraining given that there is no optical counterpart observed
for this nebula (Marubini et al. 2015). The major problem with
optical emission is that there is usually a large foreground, often
polarized (see for example the polarization analysis of the Crab
nebula presented in Hester 2008), and the jet-torus structure, which
is so prominent in X-ray, is much fainter. Ideally, one would like
to probe these systems using X-ray polarimetry (Bucciantini 2010)
and there is a large interest in the scientific community for such an
objective (Soffitta et al. 2013; Weisskopf et al. 2016). Incidentally,
the Crab nebula is, at the moment, the only object with a polarization
detected in X-ray (Weisskopf et al. 1978).

In the past years, several models have been presented to simu-
late the X-ray emission map of PWNe (with a particular focus on
Crab), ranging from simplified toy-models (Ng & Romani 2004;
Schweizer et al. 2013) to more complex multidimensional time-
dependent simulations (Volpi et al. 2007; Porth et al. 2014; Olmi
et al. 2016). Starting from the early work of Bucciantini et al. (2005),
polarization has also been modelled using, in general, a magnetic
field geometry derived from numerical simulations (Del Zanna et al.
2006; Porth et al. 2014). However, the presence of small-scale tur-
bulence and its effects, both on the polarized fraction and on the
emissivity pattern, have never been taken into account before.

Here we present synthetic polarization maps of PWNe, taking
into account the presence of small-scale magnetic turbulence at a
subgrid level. In Section 2, we illustrate how the recipe for total
and polarized emission can be corrected to take into account mag-
netic turbulence. In Section 3, using a simple toy model, we show
how the effects of turbulence manifest in the intensity map and are
thus in principle already accessible from X-ray imaging. In Section
4, we present a semi-analytical model for a thin-ring that allows
us to derive simple formulae showing the typical degeneracy be-
tween Doppler boosting and turbulence. In Section 5, we apply our
results to the Crab and Vela PWNe, objects that have been consid-
ered as primary targets for future X-ray polarimetric observations
(Weisskopf et al. 2016).

2 PO L A R I Z AT I O N R E C I P E S A N D S U B G R I D
M O D E L

Let us begin by recalling the general recipe to compute the syn-
chrotron intensity and polarization properties, taking into account
relativistic Doppler boosting effects, in the case of a fully ordered
(at least on the scale of the fluid element under consideration) mag-
netic field. A complete derivation can be found in Del Zanna et al.
(2006). For electrons having a power-law distribution

n(ε) = Kε−(2α+1), (1)

where ε is the energy in units mec2 and belonging to a fluid ele-
ment with comoving magnetic field B′ and velocity with respect

to the observer v = βc (corresponding to a Lorentz factor γ ), the
emissivity towards the observer at frequency ν is:

j (ν, n) = C | B′ × n′ |α+1 Dα+2ν−α, (2)

where C is given by synchrotron theory

C =
√

3

4

α + 5/3

α + 1
�

(
α + 5/3

2

)
�

(
α + 1/3

2

)

× e3

mc2

(
3e

2πmc

)α

K, (3)

n′ is the direction of the observer measured in the comoving frame,
related to the one measured in the observer frame n by

n′ = D

[
n +

(
γ 2

γ + 1
β · n − γ

)
β

]
, (4)

D is the Doppler boosting factor

D = 1

γ (1 − β · n)
(5)

and the comoving magnetic field can be computed from the one
measured in the observer frame as

B′ = 1

γ

[
B + γ 2

γ + 1
(β · B)β

]
, (6)

giving

| B′ × n′ |= 1

γ

√
B2 − D2(B · n)2 + 2γD(B · n)(B · β). (7)

Let us consider a Cartesian observer’s reference frame in which X
lies along the line of sight n and Y and Z are in the plane of the
sky. At this point, it is possible to compute the maps of the various
Stokes parameters integrating the contribution of each fluid element
along the line of sight through the nebula, according to

I (ν, Y , Z) =
∫ ∞

−∞
j (ν,X, Y , Z) dX, (8)

Q(ν, Y , Z) = α + 1

α + 5/3

∫ ∞

−∞
j (ν, X, Y , Z) cos 2χ dX, (9)

U (ν, Y , Z) = α + 1

α + 5/3

∫ ∞

−∞
j (ν,X, Y , Z) sin 2χ dX, (10)

where the local polarization position angle χ is the angle of the
emitted electric field vector e in the plane of the sky. This electric
field is related to the one measured at emission in the comoving
frame e′ by

e = γ

[
e′ − γ

γ + 1
(β · e′)β − β × (n′ × e′)

]
. (11)

In an ideal MHD, it is possible to introduce an auxiliary vector q
defined as

qY = (1 − βX)BY + βY BX, qZ = (1 − βX)BZ + βZBX, (12)

such that

cos 2χ = q2
Y − q2

Z

q2
Y + q2

Z

, sin 2χ = − 2qY qZ

q2
Y + q2

Z

. (13)

In a recent paper, Bandiera & Petruk (2016) have shown that the
effect of the small-scale magnetic field fluctuations on the total
and the polarized emissivity can be computed analytically, consid-
ering a fluid element with a net average field and assuming that
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the small-scale fluctuations can be described by an isotropic ran-
dom Gaussian field with variance (B′σ )2 in each direction. The
emission is computed considering the electrons to be distributed in
the nebula with a power-law distribution function, as specified in
equation (1). The variance is just a measure of the ratio of the
energy δE in the small-scale fluctuating components over the en-
ergy E in the ordered component of the comoving magnetic field:
δE/E = 3σ 2. These small-scale fluctuations contribute to the total
emissivity, which rises linearly with the energy in the fluctuating
components (as long as this energy is smaller than the one associ-
ated with the net average magnetic field). They, however, contribute
much less to the polarized intensity because of the assumption that
they are randomly distributed in orientation. The net effect is to
reduce the polarized fraction. Interestingly, the depolarization is al-
most insensitive to the value of α. One can introduce two correction
coefficients defined as

ξ (α,B⊥, σ ) = �

(
3 + α

2

)
1F1

(
−1 + α

2
, 1, − B2

⊥
2B ′2σ 2

)

×
(

B⊥√
2B ′σ

)−(1+α)

(14)

ζ (α,B⊥, σ ) = 1

2
�

(
5 + α

2

)
1F1

(
1 − α

2
, 3, − B2

⊥
2B ′2σ 2

)

×
(

B⊥√
2B ′σ

)(1−α)

, (15)

where 1F1(a, b, x) is the Kummer confluent hypergeometric function
and B⊥ =| B′ × n′ | is the component of the average comoving
magnetic field perpendicular to the direction of emission that can
be taken from a large-scale simulation or a toy model, leaving only
σ as a free parameter.

Then one can compute maps corrected for small-scale fluctua-
tions as

I (ν, Y , Z) =
∫ ∞

−∞
ξ (α,B ′

⊥, σ )j (ν,X, Y , Z) dX (16)

Q(ν, Y , Z) = α + 1

α + 5/3

∫ ∞

−∞
ζ (α,B ′

⊥, σ )j (ν,X, Y , Z) cos 2χ dX

(17)

U (ν, Y , Z) = α + 1

α + 5/3

∫ ∞

−∞
ζ (α,B ′

⊥, σ )j (ν,X, Y , Z) sin 2χ dX.

(18)

It can be shown that it is not correct to model a fluctuating com-
ponent just by adding a constant unpolarized emission on top of
the one derived assuming a totally ordered field. A cautionary re-
mark is here in order: the corrections derived by Bandiera & Petruk
(2016) are formally valid only in the limit β → 0 when the isotropic
assumption in the comoving frame corresponds to the isotropic as-
sumption in the observer’s frame. In case of strongly relativistic mo-
tions this is in general not true. The correction coefficients in such
a case are defined properly in the comoving frame and one would
need to perform a Lorentz transformation of the polarization tensor
to get the correct result in the observer’s reference frame. How-
ever, the typical bulk flow in the body of PWNe (and in particular
in the torus region) has a speed of β � 0.5, leading to differences
between the comoving and observer’s magnetic field of the order of
few per cent at most, as can be seen from equation (6), well below

the level of the quantitative accuracy with which simulated maps
can reproduce observations.

3 EMI SSI ON MAPS

In order to show how the presence of small-scale fluctuations of the
magnetic field affects the emission pattern of rings and tori, we begin
using a simple toy model analogous to the one used in Bucciantini
et al. (2005), which serves as a reference for the case of purely
ordered magnetic field. Let us just recall here its key parameters.
The emission is concentrated in a homogeneously radiating torus
around the pulsar. In a spherical reference system (r, θ , φ) centred
on the pulsar position, this is equivalent to the assumption that

K|B ′|α+1 =
{

const for (r sin θ − R1)2 + (r cos θ )2 ≤ R2
2,

0 otherwise

(19)

where R1 is the torus principal radius and R2 is the radius of the
cross-section (in our model we have adopted the ratio R1/R2 = 2.5).
The magnetic field is taken to be purely toroidal, whereas the flow
velocity is constant and purely radial. To take into account Doppler
boosting effects, we assume a flow speed with β = 0.4, typical of
the values inferred in the torus of Crab nebula and other PWNe
(Del Zanna et al. 2004) and a spectral index α = 0.6 typical of the
brightest X-ray regions in Crab nebula (Mori et al. 2004).

In Fig. 1, we show the results for various values of the amplitude
of the fluctuating part σ , in the case of a torus with a symmetry
axis inclined by 30◦ on the plane of the sky (for reference to a
purely ordered case, consider the upper-right panel of fig. 1 in Buc-
ciantini et al. 2005). It is immediately evident that for σ > 1/

√
3,

corresponding to a case where the fluctuating components contain
the same magnetic energy of the ordered one, the intensity along
the torus changes appreciably with respect to the ordered case:
as the energy in the fluctuating components rises, the difference in
the intensity between the centre of the torus and the sides drops.
However, as shown by Bucciantini et al. (2005), the angular side-
ways trend of the luminosity along the torus is also strongly affected
by Doppler boosting, so in principle one can obtain similar trends
lowering the flow speed (see Section 4). Interestingly, it can be
shown that for a flow speed with β � 0.5, the two effects can be
disentangled looking also at the brightness difference between the
front and back sides of the torus. Such brightness difference is insen-
sitive to the value of σ and depends only on β (see the Appendix),
so it can be used to set a lower limit to the flow speed (see again
fig. 1 of Bucciantini et al. 2005). On the other hand, the presence of
a fluctuating component is very effective in raising the luminosity
at the sides of the torus, thus the brightness difference between the
front and sides can be used to get another constraint and set limits
on σ . Interestingly, as shown in Fig. 1, maps in polarized intensity
show little or no variation at all in their pattern for any value of
σ , what changes is the polarized intensity (the polarized fraction).
This can be easily understood recalling that in our subgrid model the
effect of small-scale fluctuations on the polarized intensity is much
smaller than that on the total one. The other important aspect is that,
being a mean-field model, it does not include possible variances in
the polarized properties. So the polarized direction (the polarized
angle) stays unchanged. The ratio of the maximum polarized inten-
sity over the maximum total intensity goes from 0.7 for σ = 0 to
0.08 for σ = √

10/3 (δE = 10E), while the total polarized fraction
goes from 38 per cent for σ = 0 to 3 per cent for σ = √

10/3. This
shows how important future X-ray polarimetric measures could be.
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Figure 1. Upper panels: from left to right the total intensity normalized to its maximum value, for σ = √
1/6,

√
1/3,

√
4/3,

√
10/3 (corresponding to ratios of

energy in the fluctuating components over the one in the ordered toroidal component of 0.5,1,4,10, respectively). Lower panels: the same but for the polarized
intensity, normalized to the maximum total intensity.

Figure 2. The upper hemisphere of the X-ray surface brightness map
(1 keV) at t = 950 yr, in linear scale, as in Fig. 2 of Olmi et al. (2015),
but for σ raising from 0.3 at r = 0.6 ly to 1 at r = 1.25 ly. Colour-scale
normalized to the maximum.

However, some constraints can be drawn even now just by using
available emission maps. The known polarized fraction of the Crab
nebula in X-ray is PF = 19.2 ± 1 (Weisskopf et al. 1978). Assum-
ing it is mostly associated with the emission of the bright torus, this
would suggest a value of σ in the range [0.6–0.8], corresponding
to a value of the energy in the fluctuating components of the same
order as the one in the ordered toroidal field.

As an example of application to more complex multidimensional
models based on relativistic MHD simulations, in Fig. 2 we show
how the simulated synchrotron map changes due to the inclusion
of a small-scale fluctuating magnetic field. The model is the one
described in Olmi et al. (2015) and targeted to the Crab nebula.
For reference to the fully ordered case (σ = 0), one should take
the map shown in fig. 2 of that same paper. Instead of just using a
uniform value of σ for the fluctuating components of the magnetic
field in the nebula, we have here opted to take a value increasing

with distance from σ = 0.3 at a radius from the centre r = 0.6 ly,
to a maximum value σ = 1 at r = 1.25 ly. With this choice the
inner wisp region is marginally affected, while fluctuations reach
their maximum in correspondence with the location of the torus
(see also the next section). The effects of this small-scale turbulent
component are twofold: they raise the brightness of the sides of the
various rings and arcs, as already discussed, and they also increase
the relative brightness of those regions having a higher value of σ

(the torus) with respect to the inner ones.

4 T H E ‘ T H I N TO RU S ’ SE M I - A NA LY T I C C A S E

An even simpler approach can be attained if we consider the case of
a very thin torus, i.e. R2/R1 → 0 (and, as before, constant magnetic
field and bulk velocity). In spite of its simplicity, the thin-torus
model maintains most of the features of the more general case, with
the advantage of allowing analytical formulae or series expansions
that are useful for preliminary surveys of the parameters space.
The points belonging to this torus are defined in the observer’s
coordinates system by

r = (R1 cos i cos φ + Z sin i, R1 sin φ, −R1 cos φ sin i + z cos i) ,

(20)

where i is the inclination angle of the symmetry axis with respect
to the plane of the sky and where we also allow for a vertical
displacement z of the plane of the torus along the symmetry axis.
The first coordinate is the longitudinal coordinate, positive towards
the observer, while the third one is aligned to the projection on the
sky of the symmetry axis. If the points in the annulus have velocities
with component (βRc, 0, βzc) (in cylindrical coordinates), then the
Doppler boosting factor (equation 5) reads

D(φ) =
√

1 − β2
R − β2

z

1 − βR cos i cos φ − βz sin i
, (21)

while the transverse field in the emitters reference system
(equation 7) is

|B′ × n′| = B ′√1 − D(φ)2 cos i2 sin φ2, (22)
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where

B ′ = B

√
1 − β2

R − β2
z . (23)

The emissivity, as from equation (2), then reads

j = (
Cν−αB ′α+1

) (
1 − D(φ)2 cos i2 sin φ2

)(α+1)/2
D(φ)α+2. (24)

The power emitted per unit length of the transverse coordinate y
(dI/dy) can be simply computed as j(y)�(y), where � is the cross-
section parallel to the symmetry axis and to the line of sight

� = (
πR2

2

)
/
√

1 − cos i2 sin φ2. (25)

The above quantities are expressed as explicit functions of φ, but
profiles with respect to the variable y are easily obtained by the use
of the relation y = R1sin φ in equation (20).

Finally, in order to also derive the other Stokes parameters, we
evaluate qY and qZ (equation 12) as

qY = B cos φ − B(βR cos i + βz sin i cos φ), (26)

qZ = B sin i sin φ − B βz sin φ, (27)

from which, using equation (13) the quantities cos 2χ and sin 2χ

can be derived.
The most relevant aspect to investigate for the present discus-

sion is how the intensity decreases moving away from the projected
axis of symmetry, for the brighter (front) region of the torus. In the
Appendix, we also discuss the intensity ratio between the two re-
gions of the torus crossing the projected axis (front-to-back side
brightness ratio), the geometry of the polarization swing (Buc-
ciantini et al. 2005) due to the velocities of the emitters and other
observables in the case of two symmetric rings (see also Section 5).

Let us expand the power per unit length to the second order in
y/R1, namely

dI (y)

dy
� dI (y)

dy

∣∣∣∣
y=0

(
1 + S

2

y2

R2
1

)
. (28)

The second derivative S is then evaluated as

S = cos i2 − (2 + α)βR cos i

1 − βR cos i − βz sin i

− (1 + α) cos i2(1 − β2
R − β2

z )

(1 + βR cos i − βz sin i)2
. (29)

In other terms, one can define a scalelength yS = R1
√−1/S for

this intensity decrease.
The presence of a random magnetic field component does not

affect the direction of polarization, but contributes both to the be-
haviour of the polarization fraction and to the pattern of the total
intensity, the last one due to the fact that in the presence of a random
magnetic field component synchrotron emission is less anisotropic.

We can derive a generalization of equation (29), valid for any
value of σ

S(σ ) =
(

cos i2 − (2 + α)βR cos i

1 − βR cos i − βz sin i

)
+

− (1 + α) cos i2
(
1 − β2

R − β2
z

)
(1 + βR cos i − βz sin i)2

G2,I (α, σ ), (30)

where

G2,I (α, σ ) = 1F1

(
1−α

2 , 2, − 1
2σ 2

)
2σ 2

1F1

(− 1+α
2 , 1, − 1

2σ 2

) . (31)

Figure 3. Value of the normalized yS/R1 = 1/
√−S brightness scale along

a thin-ring (with respect to the symmetry axis) given by equation (30), as a
function of βR and σ . Labels of the contours are the values of yS/R1. The
model is computed for βz = 0, i = 30◦ and α = 0.6.

G2, I(α, 0) = 1, so that equation (29) is easily recovered for vanishing
σ . The effect of fluctuations is to decrease the level of anisotropy
of the emission and therefore to increase the estimated yS scale, in
this sense, the presence of fluctuations mimics a case with a lower
value of vR. Fig. 3 shows this behaviour.

For small σ values we propose the following approximation:

G2,I (α, σ )−1 = 1 + (1 + α)σ 2 + (1 + α)(1 − α)σ 4

+ 2(1 + α)(1 − α)2σ 6

+ (1 + α)(1 − α)2(7 − 5α)σ 8 + O(σ 10). (32)

Its relative accuracy is, for instance, better than 1 per cent for
σ < 0.5, in the range 0.5 < α < 2.0. In particular, it is exact in
the case α = 1, since G2, I(1, σ ) = 1/(1 + 2σ 2).

5 A PPLI CATI ONS

We apply here our model to the Crab and Vela PWNe. Following an
approach similar to the one used by Ng & Romani (2004), we build
a simulated synchrotron map to fit the three main components seen
in X-rays: the torus, the inner ring and the jet. In order to obtain
a reference image of the Crab nebula as shown in Fig. 2, we have
aligned and combined 24 Chandra ACIS images of different epochs,
ranging from 2012 to 2015, as retrieved from the Chandra Archive.
Since each individual image presents a stripe corresponding to the
chip gap, as well as the bright line aligned with the saturated pulsar
image, before adding the images up we have masked these critical
areas in all of them. Due to the different roll angles of the ob-
servations, the stripes in each image show a different orientation:
therefore we successfully managed to add them up without leaving
blind areas. Finally, a pixel-by-pixel correction has been applied to
account for the difference in the effective exposure time due to the
superposition of masked images having different orientations and
offsets. In this way, the medium-large scale structure is very well
reproduced; only the smaller scales are partially washed out, since
the nebular structure is highly dynamical on those scales. Let us
remark here that given the simplicity of the model we have adopted,
we have not gone through a full-fledged data reduction. The data
are simply used to derive rough constraints and not to place severe
quantitative limits.

The torus and the inner ring are modelled as discussed in the pre-
vious section. The only difference is that now the volume emissivity
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Figure 4. Left-hand panel: Chandra X-ray image of the Crab nebula. Intensity normalized to the maximum. Middle panel: our model of the Crab nebula. In
the torus, we assume a flow velocity of 0.35c and σ = 0.7. Intensity normalized to the maximum with bars corresponding to the polarized direction. Right-hand
panel: residuals obtained by subtracting the model from the data, normalized to the intensity maximum of the data. The solid line represents the zero level. The
dashed lines represent the ±20 per cent level.

is assumed to fall in a Gaussian way, as was done by Ng & Romani
(2004), such that

K|B ′|α+1 ∝ exp
[− (

(r sin θ − R1)2 + (r cos θ )2)/2R2
2

)]
. (33)

The symmetry axis is inclined by 27◦ on the plane of the sky
and 55◦ with respect to the north (Weisskopf et al. 2000). The
main torus has R1/R2 = 3.45 while for the inner ring we took
R1/R2 = 10. The same spectral index α = 0.6 was used for both
(Mori et al. 2004). Optical polarization suggests that in the inner
ring the ordered component of the magnetic field is toroidal. There
is no information on the structure of the magnetic field in the torus
or jet, even if large-scale optical polarization maps are compatible
with a toroidal geometry. This is consistent with simulations (and
symmetry arguments) suggesting that the field should be mostly
azimuthal in the torus. On the other hand, the jet is seen to be
turbulent and time varying. A model for the X-ray luminosity of the
inner ring was already presented in Schweizer et al. (2013), where
it was shown that it is possible to reproduce it using a typical boost
speed of ∼0.6c ± 0.1c. No strong constraints can be placed on
the ratio of disordered versus ordered field in the inner ring mostly
because of the low photon counts and due to the presence of bright
time-varying non-axisymmetric features. Thus, in the toy model we
set for the inner ring σ = 0.3 in order to give a polarized fraction
for the ring alone of ∼40 per cent as seen in optical (suggesting
that already close to the termination shock about one-third of the
magnetic energy is in the small-scale fluctuating part). On the other
hand, the jet, being a faint feature, can be reproduced with a fully
turbulent field as well as a fully ordered one. Here we decide to
include it (by considering the case of a fully turbulent field) only to
reduce the residuals on the axis. Our best-fitting model for the Crab
torus requires a typical boosting speed of the order of �0.35c ±
0.05c and a level of fluctuating magnetic field σ � 0.6−0.9. With
these values we get a total polarized fraction of ∼(17 ± 2) per cent
in agreement with observations. The value of σ cannot be raised
above unity, otherwise the total polarized fraction becomes smaller
than 15 per cent, underestimating the data.

In Fig. 4, we show our reference image for the Crab nebula, our
best-fitting model, and the residuals between the data and the model.
In Fig. 5, we show the residuals in the fully ordered case σ = 0,
where in order to get brighter sides of the torus we had to lower the
boosting speed to the possible smallest value (0.25–0.3)c. We can-
not lower it further. However, looking carefully at the residuals, one
can see that even if we are able to get the correct front-to-back side

Figure 5. Upper panel: map of the residuals for the Crab nebula defined as
for Fig. 4, but with respect to a model with fully ordered toroidal magnetic
field. The flow velocity is set to 0.3c in order to match the front to back
brightens difference, while in the torus σ = 0. The solid line represents the
zero level. The dashed line represents the ±20 per cent level. Lower panel:
comparison of the surface brightness in the region defined by the red arc in
the upper panel (cyan line) to the model with σ = 0.7 (solid line) and to the
one with σ = 0 (dashed line). The curves have been re-scaled to match the
maximum of the intensity. The x-axis is in arcsec from the peak. The y-axis
is in arbitrary units normalized to the peak.
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brightness difference, this model tends to under-predict the front-
to-sides one, on both sides of the torus. To make this difference
clearer, in the bottom panel of Fig. 5, we compare the X-ray surface
brightness of the torus, sampled along the arc shown in the upper
panel of the same figure, to our two models: the one with a fluctuat-
ing small scale field with σ = 0.7 and the one with a fully ordered
field with σ = 0. It is evident that both models give a reasonable fit
in the central (on axis) part of the torus within ±10 arcsec from the
peak, where they can hardly be distinguished. However, the wings
of the torus beyond ±15 arcsec are slightly underpredicted by the
fully ordered case. On top of this the integrated polarized fraction
for the fully ordered case is estimated to be ∼30 per cent. This is
much higher than the measured value of 19 per cent and, given that
the torus is by far the brightest feature in X-ray, it is unlikely that
the low surface brightness diffuse X-ray emission could provide
enough unpolarized radiation to compensate.

As shown in Fig. 4, in the region of the ring and the torus,
our best-fitting model provides residuals below 15 per cent. Given,
however, the presence of a non-uniform and diffused X-ray nebular
emission, the fact that the torus itself is brighter on one side, the fact
that the ring is not exactly centred on the pulsar and that there are
non-axisymmetric features like the north-west spur, it is obvious
that our axisymmetric model cannot provide an accurate fit. But
in its simplicity it already indicates that the brightness profile of
the torus points towards a possibly large level of turbulence (about
half of the magnetic energy should be in the small-scale fluctuating
part).

We have repeated a similar analysis for the Vela PWN. To get
a reference image, we have followed a procedure similar to that
already described for the Crab nebula, combining 19 Chandra ACIS
images relative to the period from year 2001 to 2010. Since the
relevant areas in individual images now are not affected by the chip
gap, we have simplified the masking procedure with respect to the
previous case. As shown in Fig. 6, the X-ray nebula is characterized
by two tori and a small jet. Due to the presence of a large and diffuse
X-ray emission, and to the brightness of the pulsar, we have limited
our investigation to the brightness profile of the two tori, without
attempting a global fit of the emission map. In the upper panel of
Fig. 6, we show the regions of the tori where we have extracted
the brightness profiles shown in the bottom panel. We model the
tori, as was done for the Crab nebula, using the Gaussian profile of
equation (33), with R2/R1 = 5.9 and 5.3 for the outer and inner torus,
respectively. The symmetry axis is inclined by 33◦ on the plane of
the sky and 130◦ with respect to the north. A jet (and counter-jet)
was also introduced with radial velocity equal to 0.7c, in order to
reproduce the brightness peak observed on axis in the outer torus.
The spectral index is fixed at α = 0.3 (Kargaltsev & Pavlov 2004).
The brightness difference between the front side (on axis) of the tori
and the back side constrains the radial flow speed to be higher than
0.35c. In the bottom panel of Fig. 6, the brightness profile of the tori
is compared to a fully ordered case σ = 0 with radial velocity 0.35c
and to a case with σ = 1 and radial velocity ≈0.5c. Again it is evident
that the two models begin to differ substantially beyond 10 arcsec
from the axis. For the inner torus the difference between the two
cases is small. This happens because the sides of the inner torus are
superimposed along the line of sight to the back part of the outer
torus so that their brightness does not decline as fast. On the other
hand, the model with a fully ordered magnetic field underpredicts
the brightness of the sides of the outer torus. A better agreement is
achieved by the model with σ = 1. However, we remark here that
the presence of a large diffuse X-ray emission does not allow us
to perform a satisfactory global fitting of the emission map using

Figure 6. Upper panel: brightness map of the Vela PWN, normalized to
the maximum. Axes in arcsecs. The central region containing the pulsar has
been excised. The two arcs represent the region of the inner torus and outer
torus whence the brightness profile was extracted. Lower panel: comparison
of the surface brightness in the outer torus (above) and inner torus (below),
measured in the arcs shown in the upper panel, to the model with σ = 1
(solid line) and to the one with σ = 0 (dashed line). The x-axis is in arcsec
from the peak. The y-axis is in arbitrary units normalized to the peak.

a simple prescription as equation (33). We can use our models to
provide upper limits to the total integrated polarized fraction. For
σ = 0, we expect PF ≤ 23 per cent, while for σ = 1 we find that the
polarized fraction should be ≤6 per cent. Only future polarimetric
measures could help us to identify the correct regime.

6 C O N C L U S I O N S

Driven by the increasing evidence pointing towards the presence of
a possibly large magnetic turbulence in PWNe and the interest in
future X-ray polarimetric observations, we have developed here a
simple formalism to simulate the effect of a small-scale fluctuating
magnetic field on the emission properties of PWNe, and poten-
tially of other synchrotron emitting sources, and we have shown
how to build emission maps to be compared with observations. We
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find that in general there is a degeneracy between the effects of a
turbulent component and the Doppler boosting. Both regulate how
the brightness changes along rings and tori: the front-to-sides bright-
ness difference can be lowered assuming either a lower flow speed
or a higher level of turbulence. We showed however that this degen-
eracy can be partially broken looking at the front-to-back brightness
difference, which depends only on Doppler boosting. We have ap-
plied our analysis to the Crab and Vela PWNe, showing that models
with a sizable fraction of magnetic energy into a small-scale tur-
bulent component seem to provide a better fit for the tori. In the
case of the Crab nebula, where integrated polarimetric measures
are available, our turbulent model gives a consistent estimate of the
polarized fraction. For the Vela PWN we provide only rough esti-
mates of upper limits for future observations. Our results show that,
while evidence for a turbulent component can already be guessed
from emission maps, future X-ray polarimetric measures, even of
just integrated polarized fraction, will be crucial to set stronger
constraints. This could also help to clarify if the observed morpho-
logical difference in X-ray PWNe is possibly related to different
levels of turbulence.

AC K N OW L E D G E M E N T S

The authors acknowledge support from the PRIN-MIUR project
prot. 2015L5EE2Y Multi-scale simulations of high-energy astro-
physical plasmas.

R E F E R E N C E S

Aumont J. et al., 2010, A&A, 514, A70
Bandiera R., Petruk O., 2016, MNRAS, 459, 178
Bucciantini N., 2010, in Bellazzini R., Costa E., Matt G., Tagliaferri G.,

eds, Polarization of Pulsar Wind Nebulae. Cambridge Univ. Press,
Cambridge, p. 195

Bucciantini N., del Zanna L., Amato E., Volpi D., 2005, A&A, 443, 519
Bühler R., Blandford R., 2014, Rep. Prog. Phys., 77, 066901
Camus N. F., Komissarov S. S., Bucciantini N., Hughes P. A., 2009,

MNRAS, 400, 1241
Conway R. G., 1971, in Davies R. D., Graham-Smith F., eds, Proc. IAU

Symp. 46, The Crab Nebula. Reidel, Dordrecht, p. 292
Del Zanna L., Amato E., Bucciantini N., 2004, A&A, 421, 1063
Del Zanna L., Volpi D., Amato E., Bucciantini N., 2006, A&A, 453, 621
DeLaney T., Gaensler B. M., Arons J., Pivovaroff M. J., 2006, ApJ, 640,

929
Ferguson D. C., 1973, BAAS, 5, 425
Gaensler B. M., Slane P. O., 2006, ARA&A, 44, 17
Gaensler B. M., Arons J., Kaspi V. M., Pivovaroff M. J., Kawai N., Tamura

K., 2002, ApJ, 569, 878
Helfand D. J., Gotthelf E. V., Halpern J. P., 2001, ApJ, 556, 380
Hester J. J., 2008, ARA&A, 46, 127
Kargaltsev O., Pavlov G., 2004, in Camilo F., Gaensler B. M., eds, Proc.

IAU Symp. 218, Young Neutron Stars and Their Environments. Astron.
Soc. Pac., San Francisco p. 195

Komissarov S. S., Lyubarsky Y. E., 2003, MNRAS, 344, L93
Komissarov S. S., Lyubarsky Y. E., 2004, MNRAS, 349, 779
Marubini T. E., Sefako R. R., Venter C., de Jager O. C., 2015, in van

Rensburg J. J., ed, Proc. SAIP2012: the 57th Annual Conference of the
South African Institute of Physics, p. 340

Moran P., Shearer A., Mignani R. P., Słowikowska A., De Luca A., Gouiffès
C., Laurent P., 2013, MNRAS, 433, 2564

Moran P., Mignani R. P., Shearer A., 2014, MNRAS, 445, 835
Mori K., Burrows D. N., Hester J. J., Pavlov G. G., Shibata S., Tsunemi H.,

2004, ApJ, 609, 186
Ng C.-Y., Romani R. W., 2004, ApJ, 601, 479

Olmi B., Del Zanna L., Amato E., Bandiera R., Bucciantini N., 2014,
MNRAS, 438, 1518

Olmi B., Del Zanna L., Amato E., Bucciantini N., 2015, MNRAS, 449, 3149
Olmi B., Del Zanna L., Amato E., Bucciantini N., Mignone A., 2016,

J. Plasma Phys., 82, 635820601
Pavlov G. G., Kargaltsev O. Y., Sanwal D., Garmire G. P., 2001, ApJ, 554,

L189
Porth O., Komissarov S. S., Keppens R., 2014, MNRAS, 438, 278
Schweizer T., Bucciantini N., Idec W., Nilsson K., Tennant A., Weisskopf

M. C., Zanin R., 2013, MNRAS, 433, 3325
Soffitta P. et al., 2013, Exp. Astron., 36, 523
Tanaka S., Asano K., 2016, Supernova Remnants: An Odyssey in Space

after Stellar Death, p. 57
Tang X., Chevalier R. A., 2012, ApJ, 752, 83
Uzdensky D. A., Cerutti B., Begelman M. C., 2011, ApJ, 737, L40
Velusamy T., 1985, MNRAS, 212, 359
Volpi D., Del Zanna L., Amato E., Bucciantini N., 2007, Mem. Soc. Astron.

Ital., 78, 662
Weisskopf M. C., Silver E. H., Kestenbaum H. L., Long K. S., Novick R.,

1978, ApJ, 220, L117
Weisskopf M. C. et al., 2000, ApJ, 536, L81
Weisskopf M. C. et al., 2016, in den Herder J.-W. A., Takahashi T., Bautz

M., eds, Proc. SPIE Conf. Ser. Vol. 9905, Space Telescopes and In-
strumentation 2016: Ultraviolet to Gamma Ray. SPIE, Bellingham,
p. 990517

Zrake J., Arons J., 2016, preprint (arXiv:e-prints)

A P P E N D I X : T H I N - R I N G

We illustrate here how to derive other observable quantities of in-
terest for a thin-ring (or a pair of symmetric rings), as a function of
inclination, bulk velocity and level of turbulence.

Following what was done in Section 4, we begin with the ratio
of the intensity of the front side (φ = 0) to that on the back side
(φ = π), which is independent of the value σ

dI (y)

dy

∣∣∣∣
φ=0

/
dI (y)

dy

∣∣∣∣
φ=π

=
(

1 + βR cos i − βz sin i

1 − βR cos i − βz sin i

)2+α

.

(A1)

Another parameter accessible through polarization measures is the
direction of polarization angle χ (with respect to the horizontal
axis), that in the absence of motion is simply given by

sin χ = N sin i sin φ, cos χ = N cos φ, (A2)

with a normalization factor such that N2 = (sin 2φ sin 2i + cos 2φ)−1

(the quantity N can have either a positive or negative sign, corre-
sponding to the fact that the polarization angle is defined modulus
π). The above formulae simply reflect the geometrical effect of
the inclined view. Instead, in the presence of motions this orienta-
tion is distorted by relativistic effects (polarization swing) and the
equations give

sin χ = N (sin i − βz) sin φ, (A3)

cos χ = N (cos φ − βR cos i − βz sin i cos φ). (A4)

It is interesting to derive the quantity δχ , namely the deviation
of the polarization direction from the purely geometrical case (zero
velocities). Using the above relations and the formula for the tangent
of a sum of angles, one derives

tan(δχ ) = sin φ cos i (βR sin i − βz cos i cos φ)

(cos2φ + sin2φ sin2i) − (βR cos φ cos i + βz sin i)
,

(A5)
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Figure A1. Trend of the polarization angle swing δχ as definded in equation
(A5), for different values of the velocity βR in the case βz = 0, i = 30◦ and
α = 0.6.

Figure A2. Trend of the yS, +/yS, − ratio for two rings symmetric with
respect to the equator, as a function of βz and βR, for i = 30◦ and α = 0.6.

with a positive δχ meaning a wider angle, with respect to the purely
geometrical case, from the direction of the mid-point of the brighter
front side. At least in principle, following the behaviour of δχ , one
could fit independently βR and βz (which could be different from
zero for a ring with a vertical offset from the equator). In Fig. A1
we show this trend.

Non-vanishing values of βz are expected in the case of a pair of
rings, like for instance in the case of Vela. It is then possible to
estimate the value of βz by comparing the yS scalelength of the two
tori. To keep the system symmetric, let us assume equal values of
βz in the two rings, but with opposite signs; in this case, Fig. A2

shows that the ratio yS, +/yS, − is strongly dependent on βz while
it is almost independent of βR and therefore possibly represents a
good diagnostic for βz. It can be shown that this quantity is also
almost independent of σ .

Finally, let us discuss the effect of fluctuations on the polarization
fraction (PF). By adopting the same kind of procedure as before,
namely expanding to the second order in y and then approximating
the coefficients in the limit of small values of σ , we get:

PF (y) � α + 1

α + 5/3

(
G0,PF (α, σ ) + SP

2

y2

R2
1

)
, (A6)

where

G0,PF (α, σ ) = (3 + α) 1F1

(
1−α

2 , 3, − 1
2σ 2

)
8σ 2

1F1

(− 1−α
2 , 1, − 1

2σ 2

) , (A7)

whose inverse, for small σ values, is well approximated by

G0,PF (α, σ )−1 = 1 + 2σ 2 + 2(1 − α)σ 4 − 4α(1 − α)σ 6 +
− 2(1 − α)2(3 + 5α)σ 8 + O(σ 10). (A8)

Finally, the quantity SP evaluates

SP (σ ) = − 2 cos2i
(
1 − β2

R − β2
z

)
(1 − βR cos i − βz sin i)2

(
1 − G2,PF (α, σ )

)
, (A9)

where

G2,PF (α, σ ) = (1 + α) 1F1

(
1−α

2 , 2, − 1
4σ 2

)
4σ 2

1F1

(− 1+α
2 , 1, − 1

2σ 2

)
+ (1 − α) 1F1

(
3−α

2 , 4, − 1
2σ 2

)
12σ 2

1F1

(
1−α

2 , 3, − 1
2σ 2

) . (A10)

It can be shown that G2, PF(α, σ ) tends to 1 for vanishing σ , namely
the polarization fraction is a constant for a completely ordered field.
The power series approximation of this quantity with σ is

G2,PF (α, σ )−1 = 1 + 2σ 2 + 4(1 − α)σ 4 +
+ 4(1 − α)(1 − 3α)σ 6 +
− 8(1 − α)(2 + 5α − 5α2)σ 8 + O(σ 10). (A11)

Clearly this property depends strongly on the assumption of a thin-
ring. For thick tori (see the main text) depolarization effects due
to integration along the line of sight play, instead a more relevant
role.
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