
2017Publication Year

2020-08-27T14:28:35ZAcceptance in OA@INAF

INDIGO-DataCloud: A data and computing platform to facilitate seamless access to
e-infrastructures

Title

Salomoni, Davide; Campos, Isabel; Gaido, Luciano; de Lucas, Jesus Marco;
Solagna, Peter; et al.

Authors

http://hdl.handle.net/20.500.12386/26897Handle

INDIGO-DataCloud: a platform to facilitate

seamless access to e-infrastructures

by the INDIGO-DataCloud Collaboration
,

D. Salomoni1, I. Campos2, L. Gaido3, J. Marco de Lucas2, P. Solagna14, J. Gomes9,
L. Matyska15, P. Fuhrman5, M. Hardt8, G. Donvito4, L. Dutka13, M. Plociennik7, R.

Barbera11,21, I. Blanquer6, A. Ceccanti1, E. Cetinic18, M. David9, C. Duma1, A.
López-Garćıa2, G. Moltó6, P. Orviz2, Z. Sustr15, M. Viljoen14, F. Aguilar2, L.
Alves9, M. Antonacci4, L.A. Antonelli17, S. Bagnasco3, A.M.J.J. Bonvin16, R.

Bruno11, Y. Chen14, F. Chiarello22, A. Costa17, S. Dal Pra1, D. Davidovic18, A.
Dorigo22, B. Ertl8, F. Fanzago22, M. Fargetta11, S. Fiore10, S. Gallozzi17, Z.

Kurkcuoglu16, L. Lloret2, J. Martins9, A. Nuzzo10, P. Nassisi10, C. Palazzo10, J.
Pina9, E. Sciacca17, M. Segatta22, M. Sgaravatto22, D. Spiga12, S. Taneja1, M.
Tangaro19, M. Urbaniak7, S. Vallero3, M. Verlato22, B. Wegh8, V. Zaccolo3, F.

Zambelli19,20, L. Zangrando22, S. Zani1, and T. Zok7

1INFN - CNAF, Bologna, Italy
2IFCA, Consejo Superior de Investigaciones Cientificas-CSIC, Santander (Spain)

3INFN - Torino, Torino, Italy
4INFN - Bari, Bari, Italy

5Deutsches Elektronen Synchrotron (DESY), Germany
6Institute of Instrumentation for Molecular Imaging - Universitat Politècnica de

València, Spain
7PSNC IBCh PAS, Poland

8Karlsruhe Institute of Technology (KIT), Germany
9Laboratory of Instrumentation and Experimental Particle Physics (LIP), Portugal
10Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici , Lecce, Italy

11INFN - Catania, Catania, Italy
12INFN Division of Perugia, Italy
13Cyfronet AGH, Krakow, Poland

14EGI Foundation, Amsterdam (Netherlands)
15CESNET, Prague, Czech Republic

16University of Utrecht, The Netherlands
17Istituto Nazionale di Astrofisica, Italy

18Ruder Boskovic Institute, Zagreb (Kroatia)
19Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio

Nazionale delle Ricerche, Bari, Italy
20University of Milano, Dept. of Biosciences, Milan, Italy

21Department of Physics and Astronomy, Univ. of Catania, Italy
22INFN - Padova, Padova, Italy

February 6, 2019

1

ar
X

iv
:1

71
1.

01
98

1v
7

 [
cs

.D
C

]
 5

 F
eb

 2
01

9

Abstract

This paper describes the achievements of the H2020 project INDIGO-
DataCloud. The project has provided e-infrastructures with tools, ap-
plications and cloud framework enhancements to manage the demanding
requirements of scientific communities, either locally or through enhanced
interfaces. The middleware developed allows to federate hybrid resources,
to easily write, port and run scientific applications to the cloud. Our de-
velopments are freely downloadable as open source components, and are
already being integrated into many scientific applications.

2

Contents

1 Introduction 5
1.1 Context and state of the art . 5

2 Analysis of requirements coming from research communities 7
2.1 Computing Portal Service . 9
2.2 Data Analysis Service . 10

3 Developing for the Infrastructure as a Service (IaaS) Layer 10
3.1 Supporting Linux containers . 11
3.2 Development of advanced Scheduling Technologies 12

3.2.1 Preemptible Instances . 13
3.2.2 Implementing advanced scheduling in OpenStack and Open-

Nebula . 13
3.3 Development of Authorization and Authentication Infrastructures 14
3.4 Virtual Networks . 16

4 Architecture of the Platform as a Service 17
4.1 PaaS layer and microservices architecture 19

4.1.1 The Orchestrator Engine 19
4.1.2 High-level geographical applications/service deployment . 22
4.1.3 Data Management Services 22

5 Interfacing with the users 23

6 Software lifecycle management 26
6.1 DevOps approach in INDIGO . 27

6.1.1 Services for continuous integration and SQA 27
6.1.2 Continuous delivery . 28
6.1.3 DevOps adoption from user communities 28

6.2 INDIGO upstream software contributions 28

7 Examples of implementation towards research communities 29
7.1 Understanding the services of the Cloud Computing framework . 29
7.2 Building and executing applications using INDIGO solutions . . 30

7.2.1 Executing containers on HPC systems 30
7.2.2 Executing containers on the Cloud 31

7.3 Building advanced applications using INDIGO solutions 32
7.3.1 Deployment of a Digital Repository 32
7.3.2 Launching a Virtual Elastic Cluster for Data Intensive

Applications . 33

8 Conclusions 33

A Contribution to Open Source software projects 41

3

B Tools and services involved in the software lifecycle 42

C DevOps adoption from user communities 43

4

1 Introduction

INDIGO-DataCloud was an European project starting in April 2015, with the
purpose of developing a modular architecture and software components to im-
prove how scientific work is supported at the edge of computing services de-
velopment. Its main goal has been to deliver a Cloud platform addressing the
specific needs of scientists in a wide spectrum of disciplines, engaging public
institutions and private companies. It aimed at being as inclusive as possible,
developing open source software exploiting existing solutions, adopting and en-
hancing state of the art technologies, connecting with other initiatives and with
leading commercial providers.

Since its inception, the project roadmap has been user community driven.
Its main focus was on closing the existing technology gaps that hindered an
optimal exploitation of Cloud technologies by scientific users. In order to do
so, user requirements from several multidisciplinary scientific communities were
collected, and systematized into specific technical requirements. This process
was carried out across the entire lifetime of the project, which allowed the update
of existing requirements as well as the insertion of new ones, thus driving the
project architecture definition and the technological developments.

The project also made focus on delivering production-quality software, thus
it defined procedures and quality metrics, which were followed by, and auto-
matically checked for, all the INDIGO components. A comprehensive process
to package and issue the INDIGO software was also defined. As an outcome of
this, INDIGO delivered two main software releases (the first in August 2016, the
second in April 2017), each followed by several minor updates. The latest release
consists of about 40 open modular components, 50 Docker containers, 170 soft-
ware packages, all supporting up-to-date open operating systems. This result
was accomplished reusing and extending open source software and —whenever
applicable— contributing code to upstream projects.

The paper is structured as follows. Section 2 contains a description on how
the user requirements were collected and consolidated. From there, the INDIGO
architecture is further elaborated from the lower Infrastructure as a Service layer
(Section 3) moving towards the Platform layer (Section 4) in order to arrive to
the user interfaces (Section 5). The overall software development process is de-
scribed in Section 6. Section 7 contains a summary of some usage patterns on
how to leverage the INDIGO solutions to develop, deploy and support applica-
tions in a Cloud framework. The conclusions are laid out in Section 8. The list
of upstream contributed software can be found in the Appendix.

1.1 Context and state of the art

From the collection of user community requests, and its consolidation into
technical requirements (see section 2), we identified a number of technology
gaps that today hinder an optimal scientific exploitation of heterogeneous e-
infrastructures.

In this Section we will elaborate more on the general strategy to address

5

those requirements, linking our developments with the previous and existing
works. The specific enhancements and developments will be further elaborated
in the corresponding sections.

Lack of proper federated identity support across several e-Infrastructures
is a key issue for the researchers perspective. The provision of an effective
distributed authentication and authorization in heterogeneous platforms is fun-
damental to support access to distributed infrastructures. Several efforts have
been made in this context [1, 2, 3, 4, 5] but they were focused on specific in-
frastructures and services. However, although some of these approaches have
been used in production in specific e-Infrastructures [6] they are difficult to
implement in a broader environment.

In parallel to the development of INDIGO-Datacloud, the Authentication
and Authorisation for Research and Collaboration project (AARC) defined the
AARC Blueprint Architecture [7]. This document describes a set of interopera-
ble architecture building blocks for designing and implementing access manage-
ment solutions for international research collaborations. Following the AARC
recommendations we have developed several key components related with iden-
tity and access management, providing a framework compliant with the pro-
posed blueprint architecture, as will be described in Section 3.3.

Facilitating the transparent execution of user applications across different
computing infrastructures is also a key issue [8]. Advanced users have nowa-
days at their disposal tools to implement applications in Clouds provisioned in
Infrastructure as a Service (IaaS) mode. Examples of such solutions are virtual
appliances and contextualization [9] or container technologies [10]).

The situation for non-Cloud resources in scientific facilities is completely dif-
ferent. Here we are referring for instance to local clusters, Grid infrastructures
and HPC systems. Such infrastructures are tipically shared among many users
with different requirements, therefore it is managerially and technically impos-
sible offering tailored environments to all of them. As a consequence scientific
users often need to follow a troublesome process to package and execute their
applications.

To address this problem we have applied the technology of Docker containers
[11] to facilitate applications execution in multiuser environments. As a result
we have provided a flexible user-level solution to provide autonomy to users in
shared computing facilities [12]. Section 3.1 contains a thorough discussion on
the strategy and outcomes.

Adoption of true Platform as a Service (PaaS) Cloud solutions is a common
problem for scientific communities. The roots of this problem are on the one
hand the non-interoperability of the interfaces [13, 14], and second, the lack of
true orchestration mechanisms across federated heterogeneous infrastructures.
Both barriers made it difficult for users to adopt Cloud hybrid solutions.

In Section 4 we describe our approach, and how we have tackled this prob-
lem by leveraging the OCCI [15, 16, 17] and TOSCA [18] open standards. In
this regard we have not only supported those standards at the corresponding
architectural levels [19, 20], but also we made important contributions to both
the standards specifications and implementations. INDIGO has contributed to

6

the networking parts of the OCCI standard, as well as to the improvement of
the TOSCA support in the upstream OpenStack components: the Heat Trans-
lator and TOSCA parser [21]. Our solution makes the execution of dynamic
workflows [22, 23, 24] possible, in more consistent way across hybrid Clouds
[25].

In this interoperability context, hybrid Cloud deployments, although possible
[26, 27, 14], were complicated from a practical point of view and therefore user
adoption has been hindered. By adopting INDIGO solutions users can now
express their requirements and deploy them as applications over those hybrid
infrastructures [28].

Linked with the previous statements another outstanding gap was the lack
of advanced scheduling features in Cloud environments [29]. Common cloud
usage scenarios, being industry driven, do not take into account the unique
requirements of scientific applications [30], leading to an inefficient utilization
of the resources or to non optimal user experience.

Developments in this area can be found in the literature [31, 32, 33, 34],
where it becomes evident that there are many challenges to be addressed.
Within INDIGO we focused (see Section 3.2) in the efficient sharing of resources
between users following fair-share approaches (limiting the amount of resources
that can be consumed by a user group), proper quota partitioning across dif-
ferent computing frameworks (like HPC and Cloud resources) or new Cloud
computing execution models (like preemptible instances) as these are aspects
hat affect both users and resource providers.

Regarding storage support, INDIGO has performed substantial contribu-
tions to storage-related entities and standardization bodies, such as the Research
Data Alliance (RDA), where INDIGO has been highly involved the Quality of
Service, Data Life cycle and Data Management Plans working group (now re-
named to Storage Service Definitions). Moreover, INDIGO has also contributed
this work to the SNIA CDMI standard, providing several extensions that have
been included in SNIA reference implementations and documents.

2 Analysis of requirements coming from research
communities

In order to guide our developments we performed an analysis of a number of use
cases originating in several flagship research communities. In particular coming
from the areas of High Energy Physics, Environmental modelling, Bioinformat-
ics, Astrophysics and Social sciences. See Table 1 for the full list.

The deployment of customized computing back-ends, such as batch queues,
including automatic elasticity is among the features more demanded by re-
searchers. The automation of the deployment of user-specific software in VMs or
containers is also on the top of their wish list. Such automation is a must when
it is about simplifying the executing applications in heteregeneous infrastruc-
tures. For similar reasons, highly specialized applications require also support

7

Research community Application/Use Case

LIFEWATCH (Biodiversity) Monitoring and Modelling Algae Bloom in a Wa-
ter Reservoir: Support of hydrodynamic and water qual-
ity modelling including data input-output management and
visualization.

INSTRUCT (Bioinformatics) Molecular dynamics simulations: Support of Molecu-
lar dynamics simulations of macromolecules that need spe-
cific hardware (GP/GPUs) using a pipeline of software that
combines protocols that automate the step for setup and
execution of these simulations.

CTA (Astronomical Data) Astronomical Data Archives: Data analysis and man-
agement using different tools such as data discovery, com-
parison, cross matching, data mining and also workflows.
The use case could be described as follows: data produc-
tion, data reduction, data quality, data handling and work-
flows, data publication and data link to articles

Climate Modelling Intermodel comparison of data analysis for different cli-
mate models using the ENES platform (European Network
for Earth System modelling)

EuroBioImaging (Bioinformatics) Medical Imaging Biobanks: The virtual Biobank inte-
grates medical images from different sources and formats.
This case study includes all the steps needed to manage
the images, like analysis, storage, processing (pre, post).
Privacy is a constraint to take into account for user man-
agement

ELIXIR (Bioinformatics) Galaxy as a Cloud service: Deployment of Galaxy in-
stance that should support all the software/steps needed
by the pipeline over, for example, a virtual cluster or cloud
instances.

DARIAH (Social Sciences) Transparent access to data catalogues and on-demand data
management features.

Mastercode (HEP Pheno) Complex combination of codes including legacy
parts to perform combined analysis of data coming from
particle detectors, astrophysics experiments, and dark mat-
ter detectors. Installation of these codes is in general very
complex in multi-user farms. Providing a container based
solution would simplify installation across infrastructures.

Lattice QCD (HEP) Lattice simulations run on large HPC facilities using low
latency interconnects, producing large amounts of output.
Accessing such facilities in Cloud mode would require im-
plementing MPI parallel processing capabilities.

Table 1: Research Communities and use cases analyzed to extract general re-
quirements

8

Figure 1: User Community Computing Portal Service

to hardware accelerators and specialized hardware such as Infiniband, multicore
systems, or GP/GPUs.

Often user communities are asking about terminal access to resources, work-
flow management and data handling, in a way that such access is linked to a
common Authorization and Authentication Infrastructure.

In order to generalize the requirements, we have extracted two generic usage
scenarios, which can support a wide range of applications in these areas. The
first generic use case is computing oriented, while the second is data analysis
oriented. For full details regarding user communities description and detailed
usage patterns we refer to the users requirements deliverable of the project
available publicly in [35].

2.1 Computing Portal Service

The first generic user scenario is a computing portal service. In such scenario,
computing applications are stored by the application developers in repositories
as downloadable images (in the form of VMs or containers). Such images can
be accessed by users via a portal, and require a back-end for execution; in the
most common situation this is typically a batch queue. Support for parallel
processing using containers is a requeriment that comes up as well from the
users.

The application consists of two main parts: the portal / Scientific Gateway
and the processing working nodes. The number of nodes available for computing
should increase (scale out) and decrease (scale in), according to the workload.
The system should also be able to do Cloud-bursting to external infrastructures
when the workload demands it. Furthermore, users should be able to access
and reference data, and also to provide their local data for the runs. A solution
along these lines is shown in Figure 1.

9

Figure 2: Data Analysis Service

A solution along these lines has been requested in the user scenarios coming
from ELIXIR, WeNMR, INSTRUCT, DARIAH, Climate Change and LIFE-
WATCH.

2.2 Data Analysis Service

A second generic use case is described by scientific communities that have a
coordinated set of data repositories and software services to access, process and
inspect them.

Processing is typically interactive, requiring access to a console deployed on
the data premises. The application consists of a console / Scientific Gateway
that interacts with the data. In Figure 2 we show a schematic view of such a
use case. Examples of such include R, Python or Ophidia. It can be a comple-
mentary scenario to the previous one, and it could also expose programmatic
services.

The communities related to INSTRUCT, CTA, Climate Change, LIFE-
WATCH and Lattice QCD have requested related features.

3 Developing for the Infrastructure as a Service
(IaaS) Layer

INDIGO-DataCloud has provided e-infrastructures with tools, applications and
cloud framework enhancements to manage the demanding requirements of mod-
ern scientific communities, either locally or through enhanced interfaces enabling
those infrastructures to become part of a federation or to connect to federated
platform layers (PaaS).

In this section we will describe the highlights of this development work,

10

which was needed to properly interface with the resource centers. This work has
focussed on virtualizing local compute, storage and networking resources (IaaS)
and on providing those resources in a standardized, reliable and performing way
to remote customers or to higher level federated services, building virtualized
site independent platforms.

The IaaS resources are provided by large resource centers, typically engaged
in well-established European e-infrastructures. The e-infrastructure manage-
ment bodies, or the resource centers themselves will select the components they
operate, and INDIGO will have limited influence on that process.

Therefore, INDIGO has concentrated on a selection of the most prominent
existing components and has further developed the appropriate interfaces to
high-level services based on standards. We have also developed new components
where we felt a full functionality was completely missing.

The contribution of INDIGO to enhance the flexibility to access resources
in Cloud and HPC infrastructures will be of paramount importance to enable
transparent execution of applications across systems promoting the development
of the future European Open Science Cloud (EOSC) ecosystem [36].

As we describe below new components are provided, or already existing
components are improved in the areas of computing, storage, networking and
Authorization and Authentication Infrastructure (AAI). For almost all compo-
nents, we succeeded in committing modifications to the corresponding upstream
software providers and by that, significantly contributed to the sustainability
model of the software.

3.1 Supporting Linux containers

It is unquestionable that Docker is the most widely adopted Linux container
technology. Therefore, in order to facilitate application delivery across multiple
computational platforms, INDIGO has provided support for container execu-
tion, both interactively and through batch systems, in cloud and conventional
clusters. This was achieved by developing new tools and extending existing
ones.

The key middleware developed for this purpose is udocker [12]1. The
udocker novelty consists in enabling to pull and execute Docker containers [11]
without using or requiring the installation of the Docker software. By using
udocker it is possible to encapsulate applications in Docker containers and ex-
ecute them in batch or interactive systems where Docker is unavailable. It
provides several different execution engines based on PRoot[37], runC[38] and
Fakechroot[39]. None of the udocker engines requires root privileges for installa-
tion or execution being therefore adequate for deployment and use by end-users
without system administrator intervention. In addition, the PRoot and Fakech-
root engines execute containers via pathname translation and therefore do not
require the use of Linux namespaces.

Since udocker never requires privileges and executes as unprivileged user

1https://github.com/indigo-dc/udocker

11

many of the security concerns associate with the Docker software are avoided.
Udocker also supports GPGPU and MPI applications, making it adequate to
execute containers in batch systems and HPC clusters. The udocker software
suite is meant to be easily deployed by end-users. It only requires the download
and execution of a Python script to quickly setup udocker within the user home
directory. Udocker empowers end-users to execute Docker containers regardless
of the Linux host environment.

Since its first release in June 2016 udocker expanded quickly in the open
source community. It has been adopted by a number software projects as a
drop-in replacement for Docker. Among them openmole, bioconda, common-
work language (cwl) or SCAR - Serverless Container-aware ARchitectures [40].

As an example, udocker is being used with great success to execute code
produced by the MasterCode collaboration [41]. The MasterCode collaboration
is concerned with the investigation of Supersymmetric models that go beyond
the current status of the Standard Model of particle physics. It involves teams
from CERN, DESY, Fermilab, SLAC, CSIC, INFN, NIKHEF, Imperial College
London, King’s College London, the Universities of Amsterdam, Antwerpen,
Bristol, Minnesota and ETH Zurich. Examples and documentation can be found
at https://github.com/indigo-dc/udocker.

INDIGO has also developed bdocker2, which provides a front-end to execute
the Docker software in batch systems under restrictions and limits configurable
by the system administrator (resource consumption, access to host directories,
list of container images, etc). It has been implemented for the SoGE (Son
of Grid Engine) batch system but can be extended to other batch systems.
This integrates the benefits of application delivery provided by Docker with the
scheduling policies of the batch system. While udocker can be deployed directly
by the end-user, bdocker is installed and configured by the system administra-
tor to provide the users with the ability to run limited execution environments
provided by Docker. Finally, ONEDock3 was developed to introduce support
to the execution of containers as if they were Virtual Machines in OpenNebula-
based on-premises Clouds, by supporting Docker as a hypervisor in this Cloud
Management Platform. With this approach, applications and their execution
environment packaged as Docker images can be instantiated on-demand through
OpenNebula and provide SSH-based access for multiple users, with the advan-
tage for the administrators of reduced overhead (such as low memory footprint)
when compared to Virtual Machines.

3.2 Development of advanced Scheduling Technologies

The end goal of this activity in INDIGO is improving the performance of the
cloud management platforms by designing and implementing novel scheduling
mechanisms and policies at the IaaS level. Enabling advanced scheduling poli-
cies to optimize the usage of the data center will clearly improve the response
to the users.

2https://github.com/indigo-dc/bdocker
3https://github.com/indigo-dc/onedock

12

To this end cloud schedulers need to include support for postponing low
priority workloads (by killing, preempting or stopping running containers or
VMs) in order to allocate higher priority requests.

3.2.1 Preemptible Instances

INDIGO pushed the state of the art in scheduling technologies by implementing
preemptible instances on top of the OpenStack[42] cloud management frame-
work, opie4. Openstack preemptible instances is the materialisation of the
preemptible instances extension, serving as a reference implementation.

Preemptible instances differ from regular ones in that they are subject to be
terminated by a incoming request for provision of a normal instance. If bidding
is in place, this special type of instance could also be stopped by a higher
priority preemptible instance (higher bid). Not all the applications are suitable
for preemptible execution, only fault-tolerant ones can withstand this type of
execution. On the other side they are highly affordable VMs that allow providers
to optimize the usage of their available computing resources (i.e. backfilling).

The opie package provides a set of pluggable extensions for OpenStack Com-
pute (nova) making possible to execute preemptible instances using a modified
filter scheduler. This solution has gained great interest from the scientific com-
munity and commercial partners, and is under discussions to be introduced in
the upstream OpenStack scheduler.

3.2.2 Implementing advanced scheduling in OpenStack and Open-
Nebula

In IaaS private clouds the computing and storage resources are statically par-
titioned among projects. A user typically is member of one project, and each
project has its own fixed quota of resources defined by the cloud administrator.
A user request is rejected if the project quota has been already reached, even if
unused resources allocated to other projects would be available.

This rigid resource allocation model strongly limits the global efficiency of
the data centres, which aim to fully utilize their resources for optimizing costs.
In the traditional computing clusters the utilization efficiency is maximized
through the use of a batch system with sophisticated scheduling algorithms
plugged in. However this feature is missing in the most popular cloud mid-
dlewares. In the course of INDIGO we have developed support for advanced
scheduling policies such as intelligent job allocation based on fair-share algo-
rithms for both OpenStack and OpenNebula cloud frameworks.

• Synergy5 is an advanced service interoperable with the OpenStack com-
ponents, which implements a new resource provisioning model based on
pluggable scheduling algorithms. It allows to maximize the resource us-
age, at the same time guaranteeing a fair distribution of resources among
users and groups.

4https://github.com/indigo-dc/opie
5https://github.com/indigo-dc/synergy-service

13

The service also provides a persistent queuing mechanism for handling
those user requests exceeding the current overall resource capacity. These
requests are processed according to a priority defined by the scheduling
algorithm, when the required resources become available.

• The scheduling capabilities of OpenNebula have been enhanced with the
development of one-FaSS (FairShare Scheduler for OpenNebula)6. In
OpenNebula the scheduler is first-in-first-out (FIFO). One-FaSS grants
fair access to dynamic resources priorizing tasks assigned according to an
initial weight and to the historical resource usage.

The project has also developed tools to facilitate the management of hybrid
data centers, this is, where both batch system based and cloud based services
are provided. Physical computing resources can play both roles in a mutual
exclusive way. The Partition Director7 takes care of commuting the role of
one or more physical machines from Worker Node (member of the batch system
cluster) to Compute Node (member of a cloud instance) and vice versa.

The current release only works with the IBM/Platform LSF Batch sys-
tem (version 7.0x or higher) and Openstack Cloud manager instances (Kilo
or newer). The main functionalities are switch role of selected physical ma-
chines from the LSF cluster to the Openstack one and viceversa, and manage
intermediate transition status to ensure consistency.

3.3 Development of Authorization and Authentication In-
frastructures

INDIGO has provided the necessary components to offer a commonly agreed
Authentication and Authorization Infrastructure (AAI). The INDIGO IAM8

(Identity and Access Management service) provides user identity and policy
information to services so that consistent authorization decisions can be enforced
across distributed services.

IAM has a big impact on the end-user experience. It provides a layer where
identities, enrollment, group membership and other attributes and authoriza-
tion policies on distributed resources can be managed in a homogeneous way,
supporting the federated authentication mechanisms supported by the INDIGO
AAI.

The INDIGO AAI solution pioneers the usage of OpenID Connect (OIDC) on
the SP-IdP proxy. INDIGO has made contributions to the upstream components
whenever needed to enable OpenID Connect (namely in OpenStack Keystone
and Apache Libcloud).

INDIGO DataCloud provides a flexible Authentication and Authorization
Infrastructure (AAI) whose main components are depicted in Figure 3.

6https://github.com/indigo-dc/one-fass
7https://github.com/indigo-dc/dynpart
8https://github.com/indigo-dc/iam

14

Figure 3: Architecture of the INDIGO Identity and Access management Service

In order to do authentication and authorization in a consistent way, services
rely on the information provided by the central IAM service.

The Login Service component implements brokered authentication: users
can authenticate with any of the supported mechanisms (SAML, OpenID Con-
nect, X.509 certificates, local username/password). Identity and authorization
information is then exposed to services via standard OAuth/OpenID Connect
protocols. This approach simplifies integration with off-the-shelf components
and do not overload all services in the infrastructure with the complexity of
handling multiple credential types. This approach has a big impact on end-user
experience, as it allows users to centralize the management of their credentials
and provide a consistent login experience to all services in the system.

The Group Membership Service component provides the tools to manage reg-
istration and enrollment flows for the collaboration, organize users into groups
and manage user account life cycle.

The Authorization Service component, based on the Argus Authorization
Service [43], provides the ability to define fine-grained policies for the collabora-
tion leveraging the flexibility of a XACML policy engine [44]. This component
also provides a policy composition and distribution mechanism that is used to
ensure consistent authorization across the distributed infrastructure.

The Provisioning Service component exposes an SCIM API [45] to provision
information about the collaboration users to relying services. This mechanism
is useful, for instance, to manage the lifecycle of resources at a site (e.g., local
UNIX accounts) depending on the lifecycle of IAM user account information.
As an example, accounts could be provisioned automatically across the infras-
tructure and configured with user SSH public keys as registered in the central
IAM at user registration time, and disabled when the user membership at the

15

IAM expires or is suspended due to a security incident.
Finally, to integrate services that do not speak OpenID Connect natively,

IAM integrates with WaTTS, the INDIGO Token Translation Service9. WaTTS
can translate identity and authorization information about a user provided as
OpenID Connect tokens to various credential types. This allows the provision
of services that do not normally support federated identities to federated users.

IAM is used internally to the PaaS layer in order to deal with the authoriza-
tion of each user to the services, but also in handling group membership and
role management for each user. Users may present themselves with any of the
three supported token types (X.509, OpenID Connect, SAML) and are able to
access resources that support any of them.

3.4 Virtual Networks

The INDIGO PaaS layer has been developed to exploit a wide range of cloud
management frameworks (e.g. OpenStack, OpenNebula, Google Compute En-
gine, Microsoft Azure, Amazon EC2) and combine resources provided by these
frameworks to enable the deployment of complex distributed applications. Each
cloud management framework may exhibit a different native API and often
these APIs can be configured in different ways. This heterogeneity constitutes
a challenge when transparent instantiation of cloud resources across multiple
frameworks is required. The INDIGO PaaS layer supports both common na-
tive APIs as well as the Open Cloud Computing Interface10 (OCCI). The
OCCI specification is a standard from the Open Grid Forum11 that provides
a flexible and extensible API to access and manage cloud resources. Although
OCCI provides a convenient uniform API, its support to manage the network
environment is limited in what concerns the setup of public/private network ac-
cessibility. Depending on the actual cloud management framework being used
the target cloud may need manual network configuration prior to the use of
OCCI. To address these problems INDIGO has defined and implemented an
OCCI network extension that allows the network environment to be properly
setup via the OCCI API regardless of the underlying cloud management frame-
work.

For OpenNebula[46] sites the solution consists in a Network Orchestrator
Wrapper (NOW) 12 and a corresponding backend in the rOCCI-server13.
NOW enforces site-wide policy and network configuration by making sure that
only LANs designated by site administrators are made available to users, and
that users cannot reuse LANs assigned to others while they remain reserved.
NOW has been released with INDIGO, and the backend has been provided as
a contribution to upstream rOCCI-server distribution.

For OpenStack, the OpenStack OCCI Interface (OOI) has been extended

9https://github.com/indigo-dc/tts
10http://occi-wg.org/
11https://www.ogf.org
12https://github.com/indigo-dc/now
13https://github.com/the-rocci-project/rOCCI-server

16

with support for advanced networking functions provided by OpenStack’s Neu-
tron component such as router, network and subnet setup. The contribution
was accepted upstream and is distributed with the OOI implementation.

The networking features of the OCCI gateway for the Amazon’s EC2 API
were adjusted making sure that the model of setting up and using local virtual
networks is in accordance with the model used in the other cloud management
frameworks.

In addition a Virtual Router was implemented allowing networks to span
across cloud sites, potentially geographically distant, so that a custom network-
ing environment can be setup even if the resources are allocated in different cloud
sites. The virtual router is a virtual machine that can be started via OCCI and
makes use of OpenVPN14 to implement network tunnels. The Virtual Routers
can be instantiated by the PaaS layer to orchestrate the interconnection of vir-
tual machines across cloud providers.

4 Architecture of the Platform as a Service

Generally speaking, a Platform as a Service (PaaS) is a software suite, which
is able to receive programmatic resource requests from end users, and execute
these requests provisioning the resources on some e-infrastructures. We can
see already many examples in the industrial sector, in which open source PaaS
solutions (eg. OpenShift[47] or Cloud Foundry[48] are being deployed to support
the work of companies in different sectors.

The case of supporting scientific users is more complex in general than sup-
porting commercial activities, because of the heterogeneous nature of the in-
frastructures at the IaaS level (i.e. the resource centers) and of the inherent
complexity of the scientific work requirements. The key point is to find the
right agreement to unify interfaces between the PaaS and IaaS levels.

The Infrastructure Manager[49](IM) has been used to address the IaaS
level. The IM is able to deploy complex and customized virtual infrastructures
on IaaS Cloud deployment(such as AWS, OpenStack, etc.). It automates the
deployment, configuration, software installation, monitoring and update of the
virtual infrastructure on multiple Cloud back-ends.

In the framework of INDIGO the IM has extended its capabilities. In partic-
ular, in the PaaS it is used by the Orchestrator (see below) in order to provision
and configure the virtual infrastructure required to support the scientific appli-
cations involved in the project15.

In order to better adapt to the wide range of use cases provided by the
users communities we decided to take a different approach from many of the
more used PaaS: our solution is based on the concept of orchestrating complex
cluster of service and on the possibility to automatize the actions needed to
implement the use cases. This approach was really successful as it gave the

14https://openvpn.net
15https://github.com/indigo-dc/im

17

Figure 4: Interaction between the IaaS and PaaS layers

possibility to implement also legacy applications and did not depended on the
language in which the application is built.

In Figure 4 we show the general interaction between the IaaS and PaaS
layers. The Orchestrator provides the entry point to the PaaS layer with its
ability to decide the most appropriate site on which to deploy a certain appli-
cation architecture described in TOSCA Templates. INDIGO-DataCloud fos-
ters local-site orchestration and, therefore, depending on the underlying Cloud
Management Framework of the Cloud site, the TOSCA Template is translated
the specific orchestration component of OpenStack (Heat) or it is delegated on
the Infrastructure Manager (IM) to execute on OpenNebula-based Cloud sites.
Since both Virtual Machines and containers can be provisioned on the under-
lying Cloud site, Virtual Machine Images available in each are registered in the
Information System and container images are pre-staged to the Cloud sites to
reduce deployment times.

INDIGO has provided a working PaaS Layer orchestrating heterogeneous
computing and storage resources. Using the PaaS Orchestrator together with
the IM and TOSCA Templates, the end users are able to exploit computational
resources without knowledge about the IaaS details. In the following we describe
the main technologies employed to build the PaaS.

18

4.1 PaaS layer and microservices architecture

The Paas layer should be able to hide complexity and federate resources for
both Computing and Storage. For that we have applied the current technologies
based on lightweight containers and related virtualization developments using
microservices.

Kubernetes[50], an open source platform to orchestrate and manage Docker
containers is used to coordinate the microservices in the PaaS layer. Kubernetes
is extremely useful for the monitoring and scaling of services, and to ensure their
reliability. The PaaS manages the needed micro-services using Kubernetes, in
order, for example, to select the right end-point for the deployment of appli-
cations or services. The Kubernetes solution is used in the PaaS layer as is
provided by the community.

The microservices that compose the PaaS layer are very heterogeneous in
terms of development: some of them are developed ad hoc, some others were
already available and used as they are, few others are significantly modified in
order to implement new features within INDIGO.

The language in which the INDIGO PaaS receives end user requests is
TOSCA[18]. TOSCA stands for Topology and Orchestration Specification for
Cloud Applications. It is an OASIS specification for the interoperable descrip-
tion of applications and infrastructure cloud services, the relationships between
parts of these services, and their operational behaviour.

TOSCA has been selected as the language for describing applications, due
to the wide-ranging adoption of this standard, and since it can be used as the
orchestration language for both OpenNebula (through the IM) and OpenStack
(through Heat).

The released INDIGO PaaS layer (see Figure 5) is able to provide automatic
distribution of the application and/or services over a hybrid and heterogeneous
set of IaaS infrastructures, on both private and public clouds.

The PaaS layer is able to accept a description of a complex set, or cluster,
of services/applications by mean of TOSCA templates, and is able to provide
the needed brokering features in order to find the best fitting resources. During
this process, the PaaS layer is also able to evaluate data distribution, so that
the resources requested by the users are chosen by the closeness to the storage
services hosting the data requested by those specific applications/services.

4.1.1 The Orchestrator Engine

The INDIGO PaaS Orchestrator16 is a core component of the PaaS layer:
it orchestrates the provisioning of virtualized compute and storage resources
on Cloud Management Frameworks (like OpenStack and OpenNebula) and on
Mesos clusters.

It receives the deployment requests, expressed through templates written
in TOSCA, and deploys them on the best available cloud site. In order to
select the best site, the Orchestrator implements a complex workflow: it gathers

16https://github.com/indigo-dc/orchestrator

19

Figure 5: Architecture of the INDIGO Platform as a Service layer.

Figure 6: Architecture of the Orchestrator within the PaaS layer.

20

information about the SLAs signed by the providers and monitoring data about
the availability of the compute and storage resources. Finally the Orchestrator
asks the Cloud Provider Ranker17 to provide a ranked list of best cloud
providers according an algorithm described below. Therefore the Orchestrator
mission is to coordinate the deployment process over the IaaS platforms. See
Figure 6 for an overview of the Orchestrator architecture.

The Orchestrator is based on developments already done in other pub-
licly funded projects, such as the Italian PONs PRISMA[51], and Open City
Platform[52]. During the INDIGO project, this component has been extended
and enhanced to support the specific microservices building the INDIGO PaaS
Layer. It delegates the actual deployment of resources to IM, OpenStack Heat
or Mesos frameworks based on TOSCA templates and the ranked list of sites.

A very innovative component is the Cloud Provider Ranker. This is a stan-
dalone REST web service, which ranks cloud providers on the basis of rules
defined per user/group/use case, with the aim of fully decoupling the ranking
logic from the business logic of the Orchestrator.

It allows the consumers of the service (one or more orchestrators) to specify
preferences on cloud providers. If some preferences have been specified for some
providers, then they have absolute priority over any other provider information
(like monitoring data). On the other hand, when preferences are not specified,
for each provider the rank is calculated, by default, as the sum of SLA ranks
and a combination of monitoring data, conveniently normalized with weights
specified in the Ranker configuration file. Moreover, the ranking algorithm can
be customized to the specific needs.

This is a completely new service, fully implemented within the INDIGO
project; it is based on an open source tool, Drools18, in order to reduce the
needed development effort, and to simplify the long-term support.

As a summary, one of the main achievements of INDIGO in this respect
is the implementation of TOSCA Templates on IaaS that do not support na-
tively TOSCA, like Standard OpenStack, OpenNebula, or Public clouds (like
Microsoft Azure, AWS, OTC,...) using the Infrastructure Manager.

In particular, using the PaaS Orchestrator and the TOSCA templates, the
end user can exploit computational resources without knowledge about the IaaS
details: indeed the TOSCA standard language ensures that the same template
can be used to describe a virtual cluster on different cloud sites; then the Infras-
tructure Manager implements the TOSCA runtime for contacting the different
cloud sites through their native APIs. The provisioning and configuration of the
IaaS resources is therefore accomplished in a completely transparent way for the
end user. The same approach is used also for submitting dockerized applications
and services to a Mesos cluster (and its frameworks Marathon and Chronos):
the user can describe his request in a TOSCA template and the Orchestrator
provides the TOSCA runtime for contacting the Mesos master node, submitting
the request and monitoring its status on behalf of the user as detailed in the

17https://github.com/indigo-dc/cloudproviderranker
18https://www.drools.org

21

next section.

4.1.2 High-level geographical applications/service deployment

INDIGO has developed the tools and services to provide a solution for orches-
trating Docker containers for both applications (job-like execution) and long
running services. Mesos/Marathon/Chronos19 is used to manage the de-
ployment of services and applications (MSA service).

From a resource perspective Mesos is a cluster management tool: it pools
several resource centers to be centrally managed as single unit; from an appli-
cation perspective, Mesos is a scheduler: it dispatches workloads to consume
pooled resources, scaling up to thousands of nodes.

Mesos is fault tolerant, as it is possible to replicate the master process. The
INDIGO PaaS uses also Marathon and Chronos. Marathon is used to deploy,
monitor and scale Long-running services, ensuring that they are always up and
running. Chronos is used to run user applications (jobs) taking care of fetching
input data, handling dependencies among jobs or rescheduling failed jobs.

Therefore the submission of jobs uses an approach very similar to a batch
system, exploiting resources where there are, without even knowing about the
details. This includes deployment on multiple IaaS both private and public,
hiding to the end users the complexity of the distributed resources.

It is also possible using the service CLUES20 (Cluster Energy Saving) to
auto-scale (up & down) depending on the load, on several types of clusters:
Mesos, SLURM, PBS, HTCondor, etc. CLUES is an elasticity manager system
for HPC clusters and Cloud infrastructures that features the ability to power
on/deploy working nodes as needed (depending on the job workload of the
cluster) and to power off/terminate them when they are no longer needed.

The sustainability of our PaaS layer relies heavily on the fact that we have
used Open Source frameworks when already available.

4.1.3 Data Management Services

The goal of the data management developments in INDIGO has been push-
ing forward the state of the art concerning unified data access over hetero-
geneous infrastructures. Among he features demanded by the use cases are
High-performance data access, migration and replica management. Supporting
such features requires at the user level a flexible security framework based on
tokens and Access Control Lists (ACLs).

Data management services developed in INDIGO are based on three open
source components: Onedata[53], DynaFed[54] and FTS3[55].

INDIGO has invested a substantial effort in the development of Onedata21,
this is a global data management system aiming to provide easy access to dis-

19https://github.com/indigo-dc/mesos-cluster
20https://github.com/indigo-dc/clues-indigo
21https://github.com/indigo-dc/onedata

22

tributed storage resources. The final goal is supporting a wide range of use cases
from personal data management to data-intensive scientific computations.

Support for federation in Onedata can be achieved by the possibility of estab-
lishing a distributed provider registry, where various infrastructures can setup
their own provider registry and build trust relationship between these instances,
allowing users from various platforms to share their data transparently.

Onedata provides an easy to use Graphical User Interface for managing
storage Spaces, with customizable access control rights on entire data sets or
single files to particular users or groups.

The INDIGO PaaS Orchestrator integrates a plugin for interacting with
the Onedata services providing advanced capabilities of data location aware
scheduling. Combining the information about the distribution of the compute
resources and the data providers with the data requirements specified by the
user, the Orchestrator is able to schedule the processing jobs to the computing
center nearest to the data. A prototype based on Onedata has been implemented
and demonstrated for some use-cases, e.g. the LifeWatch AlgaeBloom (See Table
1).

Using Onedata is possible to integrate already available storage services in
the INDIGO Platform exploiting the data stored in external infrastructures.
This is the case of the data stored in WLCG by the CMS experiment from
LHC. In this case the INDIGO PaaS provided the services needed in order to
deal with authentication and autorization (Token Translation)

5 Interfacing with the users

Users typically do not access the PaaS core components directly. They instead
often use Graphical User Interfaces or simpler APIs. A user authenticated on
the INDIGO Platform can access and customize a rich set of TOSCA-compliant
templates through a GUI-based portlet.

The INDIGO repository provides a catalogue of pre-configured TOSCA tem-
plates to be used for the deployment of a wide range of applications and services,
customizable with different requirements of scalability, reliability and perfor-
mance. In these templates a user can choose between two different examples of
generic scenarios:

1. Deploy a customized virtual infrastructure starting from a TOSCA tem-
plate that has been imported, or built from scratch: The user will be able
to access the deployed customized virtual infrastructure and run, admin-
ister and manage applications running on it.

2. Deploy a service/application whose lifecycle will be directly managed by
the PaaS platform: in this case the user will be returned the list of end-
points to access the deployed services.

APIs for accessing the INDIGO PaaS layer are available, they allow for
an easy integration of the PaaS features inside Portals, Desktop Applications

23

and Mobile Apps. The final release of INDIGO-DataCloud software includes a
large set of components to facilitate the development of Science Gateways and
desktop/mobile applications, big data analytics and scientific workflows. The
components directly related to end-user interfaces are:

• The INDIGO FutureGateway (FG) framework, used to build powerful,
customized, easy to use, science gateway environment and front-ends, on
top of the INDIGO-DataCloud PaaS layer and integrated with data man-
agement services. The FG provides many capabilities, including:

• The FG API server, used to integrate third-party science gateways; the
FG Liferay Portal, containing base portlets for the authentication, autho-
rization and administration of running applications and deployments;

• Customizable Application Portlets, for user-friendly specification of the
parameters used by TOSCA templates;

• A workflows monitoring portlet, used for monitoring task execution via
integrated workflow systems, described below.

• An Open Mobile Toolkit as well as application templates for Android and
iOS, simplifying the creation of mobile apps making use of the FG API
Server.

• Support for scientific workflows, where the INDIGO components:

– Provide dynamic scalable services in a Workflows as a Service model;

– Implement modules and components enabling the usage of the PaaS
layer (via FG API Server) for the main scientific workflow engines de-
ployed by user communities (such as Kepler, Ophidia, Taverna,Pegasus);

– Support a two-level (coarse and fine grained) workflow orchestration,
essential for complex, distributed experiments involving (among oth-
ers) parallel data analysis tasks on large volumes of scientific data.

• Key extensions to the Ophidia big data analytics framework (allowing to
process, transform and manipulate array-based data in scientific contexts),
providing many new functionalities, including a set of new operators re-
lated to data import regarding heterogeneous data formats (e.g. SAC,
FITS), a new OpenIDConnect interface and new workflow interface ex-
tensions.

• Enhancements of the jSAGA library through a ”Resource Management
API”, complementing the standard Job/Data Management API. This al-
lows to acquire and manage resources (compute, storage, network) and
enables the wrapping of underlying technologies (cloud, pilot jobs, grid,
etc.) by means of a single API, supporting asynchronous mode (task),
timeout management, notification (metrics) and security context forward-
ing.

24

Figure 7: Task submission and visualization of results on the mobile platform
for ENES

• Command-line clients for the PaaS layer to provide an easy way for users
to interact with the Orchestrator or with WATTS:

– Orchent22: a command-line application to manage deployments and
their resources on the INDIGO-DataCloud Orchestrator;

– Wattson23: a command-line client for the INDIGO Token Transla-
tion Service.

INDIGO has provided the tools for a simple and effective end user experi-
ence, both for software developers and for researchers running the applications.
In Figure 7 we show how to launch an application using a mobile platform
developed in the project for the climate change application ENES.

The ENES end-user starts the app and needs to authenticate and authorize
using IAM service. The apps request to have an access to id, e-mail and offline
access, which will be required to refresh the existing tokens during the mobile
app lifecycle. After the user gives the permissions and logs in, the user will see
the list with scheduled analysis if available.

The mobile app is a handy interface for scheduling new tasks as well. The
submitting form requires that the user selects model, scenario, frequency, per-
centile and nodes to run the analysis. After the user provides the necessary
inputs, the app sends the request to the FutureGateway server using its API.
The user is then able to monitor the status of the analysis. If the task is done,

22https://github.com/indigo-dc/orchent
23https://github.com/indigo-dc/wattson

25

the user is able to see and download results as PNG files illustrates predicted
climate changes on Earth. Finally the user can remove useless or aborted tasks.

6 Software lifecycle management

The software lifecycle process in INDIGO has been supported by a continuous
improvement process that encompassed the software quality assurance (SQA),
the software release and maintenance, the deployment of pilot infrastructures
for software integration and testing, and, lastly, the exploitation activities and
support services. In Figure 8 we depict the interdependencies between the dif-
ferent processes, together with the services involved at each stage. Appendix
B describes the tools and services that were required for the implementation of
the software lifecycle process.

Figure 8: Software lifecycle, release, maintenance and exploitation interdepen-
dencies.

The quality requirements [56], that drive the software lifecycle process, de-
fine the minimum set of criteria that the software developed in INDIGO has to
comply with. The requirements are met for each change in the codebase, thus
the production version of a given software component is permanently in a work-
able status, protected from incoming changes that do not adhere to the SQA
criteria. The continuous evaluation of the SQA requirements is only possible
through the aid of automation, achieved in INDIGO through the progressive
adoption of DevOps practices.

In the next sections we will describe the DevOps approaches being adopted
and the upstream contributions included in the official distributions of external
open source projects.

26

Figure 9: Continuous Integration workflow followed by new feature additions in
the production codebase.

6.1 DevOps approach in INDIGO

Progressive levels of automation were being adopted throughout the different
phases of the INDIGO-DataCloud project software development and delivery
processes. This evolution was intentionally marked by the commitment to De-
vOps principles [57]. Starting with a continuous integration (CI) approach,
achieved already in the early stages of the project, the second part of the project
was devoted to the establishment of the next natural step in the DevOps prac-
tices: the continuous delivery (CD).

6.1.1 Services for continuous integration and SQA

The INDIGO-DataCloud CI process is schematically shown in Figure 9 is ex-
plained below. The process, in its different steps, reflects some of the main and
important achievements of the software integration team.

• New features are developed independently from the production version
in feature branches. In order to test and review the new change, a pull
request (PR) is created in GitHub. The PR creation marks the start of
the automated validation process through the execution of the SQA jobs
in the CI infrastructure (Jenkins).

• The SQA jobs perform the adherence of the code to a style standard and
calculate unit and functional test coverage. Other checks are executed at
this stage for security static analysis and metrics gathering.

27

• The results of the several SQA jobs automatically executed in Jenkins are
notified back to GitHub, updating the PR with the exit status and the
links to the output logs.

• On successful completion of the SQA tests, the code review is the last
step before the source code is merged in the production version. The
GitHub PR provides a place for discussion, open to collaboration, where
the developers and/or external experts analyze the results of the SQA jobs
and discuss any relevant aspect of the change (internal to the code or in
terms of the goals or applicability).

• Once peer-reviewed, the change is merged and becomes ready for integra-
tion and later release.

6.1.2 Continuous delivery

Continuous delivery adds, on top of the CI approach described above, a seamless
manufacturing of software packages ready to be deployed into production.

In the INDIGO-DataCloud scenario, the continuous delivery adoption trans-
lates into the definition of pipelines. A pipeline is a serial execution of tasks
that encompasses in the first place the SQA jobs (CI phase) and adds as the
second part (CD phase) the building and deployment testing of the software
packages created. The pipeline only succeeds if each task is run to completion,
otherwise the process is stopped and set as a build failure.

6.1.3 DevOps adoption from user communities

The experience gathered throughout the project with regards to the adoption of
different DevOps practices is not only useful and suitable for the software related
to the core services in the INDIGO-DataCloud solution, but also applicable
to the development and distribution of the applications coming from the user
communities.

The novelty introduced, showcased in Appendix C, is the validation of the
user application by comparing the execution results with a set of reference out-
puts. Thus this pipeline implementation goes a step forward, with respect to
the former DevOps approaches, as the application execution is tested before the
new version is released.

6.2 INDIGO upstream software contributions

The INDIGO software solution encompasses not only products implemented
from scratch within the project but also external services adopted from open
source initiatives. These latter set of products were actively developed to en-
hance their functionality to match the INDIGO project’s objectives, but at the
same time, aiming to be considered as upstream contributions. Thus, multiple
contributions developed by INDIGO have been pushed and accepted in the offi-
cial distributions of major open source projects such as OpenStack, OpenNebula

28

and OpenID Connect. Appendix A lists the software projects and products be-
ing contributed by INDIGO-DataCloud.

7 Examples of implementation towards research
communities

In what follows we try to provide some basic information that may be useful
for promoting the use of INDIGO solutions towards the Research Communities.
Based on the described architecture we will introduce the basic ideas on how
to develop, deploy and support applications in the Cloud framework, exploiting
the different service layers, and introducing generic examples that may make
easier the use of INDIGO solutions.

7.1 Understanding the services of the Cloud Computing
framework

Figure 10 provides the description of how an application can be built using a
service oriented architecture in the Cloud, using INDIGO solutions.

This layered scheme includes different elements, that are managed by differ-
ent actors, that must be minimally understood in order to design, develop, test,
deploy and put in production an application.

The lowest layer, Infrastructure as a Service, provides a way to access to
the basic resources that the application will use: computing, storage, network,
etc. These resources are physically in a site, typically a computing center,
either in a research centre, or in a cloud provider (for example commercial cloud
services), and are handled by the system managers at those sites, that install
a IaaS solution compatible with the INDIGO software stack (e.g. OpenStack,
OpenNebula, Google Compute Engine, Microsoft Azure, Amazon EC2).

By accessing through a web interface such as Horizon for OpenStack, a user
that is granted access to a pool of resources at a site can launch a virtual
machine, for example a server with 2 cores, 4GB RAM, 100GB of storage and
with a certain Linux flavour installed.

The user can then get access in console mode this machine, using for instance
ssh protocol. Once logged in, the user can execute a simple script, or can install
a web server, etc. When the work is finished the machine can be stopped by the
user, liberating so the resources. This is a very basic mode of accessing Cloud
services, which shares analogies with the usual access to classical computing
services, like for example any remote server or a cluster.

A different way to interact with IaaS services is to use the existing APIs
to manage the resources using the web services protocol. Such invocation of
services can be made from any program or application, for example from a
python script, and even through a web interface.

Many applications require the setup, launching and interconnection of sev-
eral (IaaS) services implemented in different virtual machines, and managed

29

Figure 10: Service composition in the Service Oriented Architecture

under a single control, as a Platform. The Platform as a Service (PaaS) layer
enables this orchestration of IaaS services, and in the case of a Federated Cloud
they might even be located in different sites.

For example, an Apache Web Server may be launched in site 1, with the
purpose of displaying the output of a simulation running in a cluster launched
on demand in site 2. The Apache Web server may be better supported with a
pool of resources using another cloud-oriented solution such as Marathon/Mesos.
Launching an application in this context requires identifying the available re-
sources and launching them via the IaaS services. INDIGO is supporting the
TOSCA standard to prepare a template that can be used to automatize this
selection and orchestration of services.

7.2 Building and executing applications using INDIGO
solutions

In what follows we present below several simple examples of basic, but generic,
applications exploiting INDIGO solutions.

7.2.1 Executing containers on HPC systems

The first generic example is how to build an application encapsulated as a
container and how to executed it in an HPC system. This basic example of
using INDIGO solutions is shown in Figure 11. A user can create a container
using a conventional Dockerfile which describes the steps required to create the
Docker image. The process can be fully automatized using GitHub and Docker
Hub in such a way that a change in the Dockerfile, immediately triggers a rebuilt

30

of the application container.
INDIGO provides the udocker tool to enable execution of application con-

tainers in batch systems. The end-user can download the udocker Python script
from GitHub or can send it with the batch job. Once executed for the first
time it setups itself in the user home directory. udocker provides a Docker like
command line interface with which the user can pull, import or load Docker
containers and then execute them using a chroot-like environment. The soft-
ware within the container must not require privileges during execution as it will
be executed under the user that invokes udocker.

This is also a good solution for research communities that want to migrate
towards a cloud-based framework using containers, but keep exploiting resources
like grid-enabled clusters or even supercomputers.

udocker is used by the Case Studies on Structural Biology (Powerfit and
Disvis) exploiting grid resources, on Phenomenology in Particle Physics, and re-
cently for Lattice QCD on supercomputers. Also, the TRUFA genomic pipeline
exploits this solution, and it is being extended to similar applications in the
area that require the integration of legacy libraries.

7.2.2 Executing containers on the Cloud

The second example is how to build an application encapsulated as a container
and launch it in the Cloud, from a web interface, using the INDIGO solutions
FutureGateway and PaaS Orchestrator

This second example, compared to the first one, shows the evolution required
to move an application to the Cloud arena: the application must be encapsulated
into a container, as before, but to launch this container the cloud resources must
be allocated, the user must authenticate and get the access granted. If different
services are required, they must be orchestrated.

The way to express these requirements, using an open standard, is a TOSCA
template. FutureGateway offers a user-friendly web-based interface to customize
the TOSCA template, authenticate the user, select the container to be exe-
cuted, interact with the Orchestrator to allocate the required cloud resources
and launch the application. As in the first example the container can be created
using a dockerfile. Automation in this step can be achieved using GitHub and
DockerHub.

Using the Future Gateway portal or the command line tool Orchent, the
user can submit a TOSCA template to the Orchestrator, which in turn will
request and allocate the resources at the IaaS level by asking the Infrastructure
Manager to do so.

The user may wish to connect to the container that has been launched via
the orchestrator using the ssh command. Once in the container it is posible
to mount remote data repositories or stage the output data using Onedata,
available at the IaaS layer.

31

Future	Gateway	
API	Server	

Orchestrator	

IM	

OneDock	 nova-docker	

Other	PaaS	
Core	Services	

Cloud
Site

Docker	
Container	Public	IP	

SSHd	

User
(1)
 Automated Build

(3)
 Deploy
TOSCA

(2)
Stage Data

(5) Mount (4)
Access App	

Figure 11: Basic execution of containers using INDIGO solutions

7.3 Building advanced applications using INDIGO solu-
tions

In this section we present several simplified schemes corresponding to different
applications already implemented, with the idea that they can be more easily
used as a guide to configure new applications.

The key, as stated before, is the composition of the template, written using
the TOSCA language. The template should specify the image of the application
to be used, as a container, using docker technology. We also need to specify
the resources (CPUs, storage, memory, network ports) required to support the
execution. The parameters required to configure INDIGO services used like, for
example, Onedata, Mesos/Marathon or other additional cloud services need to
be specified as well.

Examples of TOSCA templates can be found at https://github.com/indigo-
dc/tosca-templates. FutureGateway offers a friendly way to handle the TOSCA
templates to launch the applications.

7.3.1 Deployment of a Digital Repository

A first example is the deployment, as a SaaS solution, of a digital repository.
The scheme is presented in the Figure 12 below. The specific template for this
application is available for reuse in the github repository of the project.

The repository manager, controlling the application, uses the FutureGate-
way to configure the application, based on the ZENODO software, that can be
automatically scaled up and ensure its high availability using Cloud resources
as needed, and also enabling the authentication and authorization mechanism
for their research community, DARIAH, based on the INDIGO solution IAM.

All these details are transparent to the final user, who accesses the repository
directly through its web interface, and benefits of the enhanced scalability and
availability.

32

Figure 12: Deployment of a digital repository using INDIGO solutions

7.3.2 Launching a Virtual Elastic Cluster for Data Intensive Appli-
cations

A second example is the launch of a Virtual Elastic Cluster to support a data
intensive system.The scheme is presented in Figure 13 below.

The specific template for this advanced application is available for reuse in
the github repository of the project.

Galaxy is an open source, web-based platform for data intensive biomedical
research. This application deploys a Galaxy instance provider platform, allowing
to fully customize each virtual instance through a user-friendly web interface,
ready to be used by life scientists and bioinformaticians.

The front-end that will be in charge of managing the cluster elasticity can
use a specified LRMS (selected among torque, sge, slurm and condor) workload.

All these details are transparent to the final user, the researcher, who ac-
cesses the Galaxy instance directly through its web interface, and benefits of
the enhanced scalability and availability.

This complex template includes the configuration of the distributed storage
based in Onedata, the use of the encrypted files via LUKS, the deployment
of elastic clusters using another INDIGO solution, CLUES, and the integra-
tion of the Authentication and Authorization mechanism, very relevant for this
application area, using IAM.

8 Conclusions

Thanks to the new common solutions developed by the INDIGO project, teams
of first-line researchers in Europe are using public and private Cloud resources
to get new results in Physics, Biology, Astronomy, Medicine, Humanities and
other disciplines.

INDIGO-developed solutions that have for instance enabled new advances

33

Figure 13: Launching of a Virtual Elastic Cluster using INDIGO solutions

in understanding how the basic blocks of matter (quarks) interact, using su-
percomputers, how new molecules involved in life work, using GPUs, or how
complex new repositories to preserve and consult digital heritage can be eas-
ily built. The variety of the requirements coming from these so diverse user
communities proves that the modular INDIGO platform, consisting of several
state-of-the-art, production-level services, is flexible and general enough to be
applied to all of them with the same ease of use and efficiency.

These services allow to federate hybrid resources, to easily write, port and
run scientific applications to the cloud. They are all freely downloadable as
open source components, and are already being integrated into many scientific
applications, namely:

• High-energy physics: the creation of complex clusters deployed on several
Cloud infrastructures is automated, in order to perform simulation and
analysis of physics data for large experiments.

• Lifewatch: parameters from a water quality model in a reservoir are cali-
brated, using automated multiple simulations.

• Digital libraries: multiple libraries can easily access a cloud environment
under central coordination but uploading and managing their own collec-
tions of digital objects. This allows them to consistently keep control of
their collections and to certify their quality.

• Elixir: Galaxy, a tool often used in many life science research environ-
ments, is automatically configured, deployed on the Cloud and used to
process data through a user-friendly interface.

34

• Theoretical HEP physics: the MasterCode software, used in theoretical
physics, adopts INDIGO tools to run applications on Grids, Clouds and
on HPC systems with an efficient, simple-to-use, consistent interface.

• In DARIAH, a pan-european social and technical infrastructure for arts
and humanities, the deployment of a self-managed, auto-scalable Zenodo-
based repository in the cloud is automated.

• Climate change: distributed, parallel data analysis in the context of the
Earth System Grid Federation (ESGF) infrastructure is performed through
software deployed on HPC and cloud environments in Europe and in the
US.

• Image analysis: in the context of EuroBioImaging, a distributed infras-
tructure for microscopy, molecular and medical imaging, INDIGO compo-
nents are used to perform automatic and scalable analysis of bone density.

• Astronomical data archives: big data consisting of images collected by
telescopes are automatically distributed and accessed via INDIGO tools.

The same solutions are also being explored by industry, to provide innovative
services to EU companies: for example, modelling water reservoirs integrating
satellite information, improving security in cyberspace, or assisting doctors in
diagnostics through medical images. INDIGO solutions are also being inten-
sively tested in other projects, such as HelixNebula ScienceCloud.

INDIGO services are fundamental for the implementation of the EOSC. In
particular, many INDIGO components are included in the unified service cata-
logue provided by the project EOSC-hub [58], that will put in place the basic lay-
out for the European Open Science Cloud. Two additional Horizon 2020 projects
were also approved (DEEP Hybrid DataCloud and eXtreme DataCloud), that
will continue to develop and enhance INDIGO components.

The outcomes of INDIGO-DataCloud will persist, and also be extended, after
the end of the project in the framework of the INDIGO Software Collaboration
agreement. This Collaboration shall be continued without financial support
from the European Union. It is open to new initiatives and partners willing to
contribute, extend or maintain the INDIGO-DataCloud software components.

Acknowledgments

INDIGO-Datacloud has been funded by the European Commision H2020 re-
search and innovation program under grant agreement RIA 653549.

References

[1] Álvaro López Garćıa, Enol Fernandez-del Castillo, and Mattieu Puel. Iden-
tity Federation with VOMS in Cloud Infrastructures. In 2013 IEEE 5th In-

35

ternational Conference on Cloud Computing Technology and Science, pages
42–48, 2013.

[2] David W. Chadwick, Kristy Siu, Craig Lee, Yann Fouillat, and Damien Ger-
monville. Adding Federated Identity Management to OpenStack. Journal
of Grid Computing, 12(1):3–27, 2014.

[3] Craig A Lee. A design space review for general federation management
using keystone. In Proceedings of the 2014 IEEE/ACM 7th International
Conference on Utility and Cloud Computing, pages 720–725. IEEE Com-
puter Society, 2014.

[4] Navid Pustchi, Ram Krishnan, and Ravi Sandhu. Authorization federation
in iaas multi cloud. In Proceedings of the 3rd International Workshop on
Security in Cloud Computing, pages 63–71. ACM, 2015.

[5] Craig A Lee, Nehal Desai, and Andrew Brethorst. A keystone-based virtual
organization management system. In Cloud Computing Technology and
Science (CloudCom), 2014 IEEE 6th International Conference on, pages
727–730. IEEE, 2014.

[6] Enol Fernández-del Castillo, Diego Scardaci, and Álvaro López Garćıa.
The EGI Federated Cloud e-Infrastructure. Procedia Computer Science,
68:196–205, 2015.

[7] AARC project. AARC Blueprint Architecture, see https://aarc-
project.eu/architecture. Technical report, 2016.

[8] F. Oesterle, S. Ostermann, R. Prodan, and G. J. Mayr. Experiences with
distributed computing for meteorological applications: grid computing and
cloud computing. Geoscientific Model Development, 8(7):2067–2078, 2015.

[9] Isabel Campos Plasencia, Enol Fernández-del Castillo, S. Heinemeyer,
Álvaro López Garćıa, Federico Pahlen, and Gonçalo Borges. Phenomenol-
ogy tools on cloud infrastructures using OpenStack. The European Physical
Journal C, 73(4):2375, apr 2013.

[10] Carl Boettiger. An introduction to docker for reproducible research. ACM
SIGOPS Operating Systems Review, 49(1):71–79, 2015.

[11] Docker: http://www.docker.com.

[12] Jorge Gomes, Isabel Campos, Emanuele Bagnaschi, Mario David, Luis
Alves, Joao Martins, Joao Pina, Lopez-Garcia Alvaro, and Pablo
Orviz. Enabling rootless linux containers in multi-user environ-
ments: the udocker tool. Computing Physics Communications, (2018)
doi:10.1016/j.cpc.2018.05.021.

[13] Zhizhong Zhang, Chuan Wu, and David W L Cheung. A Survey on Cloud
Interoperability: Taxonomies, Standards, and Practice. SIGMETRICS
Perform. Eval. Rev., 40(4):13–22, 2013.

36

[14] Tania Lorido-Botran, Jose Miguel-Alonso, and Jose A. Lozano. A Review
of Auto-scaling Techniques for Elastic Applications in Cloud Environments.
Journal of Grid Computing, 12(4):559–592, 2014.

[15] R Nyrén, T Metsch, A Edmonds, and A Papaspyrou. Open cloud comput-
ing interface–core. Technical report, Open Grid Forum, 2010.

[16] Thijs Metsch and Andy Edmonds. Open cloud computing interface-
infrastructure. Technical report, Open Grid Forum, 2010.

[17] Thijs Metsch and Andy Edmonds. Open cloud computing interface-
RESTful HTTP rendering. Technical report, Open Grid Forum, 2011.

[18] Paul (Ca Technologies) Lipton, Simon (Ibm) Moser, Derek (Vnomic)
Palma, and Thomas (Ibm) Spatzier. Topology and Orchestration Speci-
fication for Cloud Applications. Technical report, OASIS Standard, 2013.

[19] Ralf Teckelmann, Christoph Reich, and Anthony Sulistio. Mapping of cloud
standards to the taxonomy of interoperability in IaaS. Proceedings - 2011
3rd IEEE International Conference on Cloud Computing Technology and
Science, CloudCom 2011, pages 522–526, 2011.

[20] Álvaro López Garćıa, Enol Fernández-del Castillo, and Pablo Orviz
Fernández. Standards for enabling heterogeneous IaaS cloud federations.
Computer Standards & Interfaces, 47:19–23, feb 2016.

[21] Miguel Caballer, Sahdev Zala, Álvaro López Garćıa, Germán Montó, Pablo
Orviz Fernández, and Mathieu Velten. Orchestrating complex application
architectures in heterogeneous clouds. Journal of Grid Computing, 16(1):3–
18, 2018.

[22] Marcus Hardt, Thomas Jejkal, Isabel Campos Plasencia, Enol Fernández-
del Castillo, Adrian Jackson, Michele Weiland, Bartek Palak, Marcin Ploci-
ennik, and Daniel Nielsson. Transparent Access to Scientific and Commer-
cial Clouds from the Kepler Workflow Engine. Computing and Informatics,
31(1):119, 2012.

[23] F Fakhfakh, H H Kacem, and A H Kacem. Workflow Scheduling in Cloud
Computing: A Survey. In IEEE 18th International Enterprise Distributed
Object Computing Conference Workshops and Demonstrations (EDOCW),
2014, volume 71, pages 372–378. Springer US, 2014.

[24] David B. Stockton and Fidel Santamaria. Automating NEURON Simula-
tion Deployment in Cloud Resources. Neuroinformatics, 15(1):51–70, 2017.

[25] Marcin Plóciennik, Sandro Fiore, Giacinto Donvito, Micha l Owsiak, Marco
Fargetta, Roberto Barbera, Riccardo Bruno, Emidio Giorgio, Dean N.
Williams, and Giovanni Aloisio. Two-level Dynamic Workflow Orches-
tration in the INDIGO DataCloud for Large-scale, Climate Change Data
Analytics Experiments. Procedia Computer Science, 80:722–733, 2016.

37

[26] Rafael Moreno-Vozmediano, Ruben S Montero, and Ignacio M Llorente.
Multicloud deployment of computing clusters for loosely coupled mtc appli-
cations. IEEE transactions on parallel and distributed systems, 22(6):924–
930, 2011.

[27] Gregory Katsaros, Michael Menzel, and Alexander Lenk. Cloud Service
Orchestration with TOSCA, Chef and Openstack. In Ic2E 2014.

[28] Alvaro Lopez Garcia, Lisa Zangrando, Massimo Sgaravatto, Vincent
Llorens, Sara Vallero, Valentina Zaccolo, Stefano Bagnasco, Sonia Taneja,
Stefano Dal Pra, Davide Salomoni, Giacinto Donvito, Alvaro Lopez Gar-
cia, Lisa Zangrando, Massimo Sgaravatto, Vincent Llorens, Sara Vallero,
Valentina Zaccolo, Stefano Bagnasco, Sonia Taneja, Stefano Dal Pra, Da-
vide Salomoni, and Giacinto Donvito. Improved Cloud resource allocation:
how INDIGO-DataCloud is overcoming the current limitations in Cloud
schedulers. Journal of Physics: Conference Series, 898(9):92010, jul 2017.

[29] Sukhpal Singh and Inderveer Chana. A Survey on Resource Scheduling
in Cloud Computing: Issues and Challenges. Journal of Grid Computing,
pages 1–48, 2016.

[30] Álvaro López Garćıa, Enol Fernández-del Castillo, Pablo Orviz Fernández,
Isabel Campos Plasencia, and Jesús Marco de Lucas. Resource provisioning
in Science Clouds: Requirements and challenges. Software: Practice and
Experience, 48(3):486–498, 2018.

[31] Muhammad Aufeef Chauhan, Muhammad Ali Babar, and Boualem Bena-
tallah. Architecting cloud-enabled systems: a systematic survey of chal-
lenges and solutions. Software - Practice and Experience, 47(4):599–644,
2017.

[32] Thamarai Selvi Somasundaram and Kannan Govindarajan. CLOUDRB:
A framework for scheduling and managing High-Performance Computing
(HPC) applications in science cloud. Future Generation Computer Systems,
34:47–65, 2014.

[33] Borja Sotomayor, Kate Keahey, and Ian Foster. Overhead Matters: A
Model for Virtual Resource Management. In Proceedings of the 2nd Inter-
national Workshop on Virtualization Technology in Distributed Computing
SE - VTDC ’06, page 5, Washington, DC, USA, 2006. IEEE Computer
Society.

[34] SS Sunilkumar S. SS Manvi, GK Shyam, and Gopal Krishna Shyam. Re-
source management for Infrastructure as a Service (IaaS) in cloud comput-
ing: A survey. Journal of Network and Computer Applications, 41:424–440,
May 2014.

[35] INDIGO-DataCloud consortium. Initial requirements from research com-
munities - d2.1, see https://www.indigo-datacloud.eu/documents/initial-
requirements-research-communities-d21. Technical report, 2015.

38

[36] Europen open science cloud: https://ec.europa.eu/research/openscience.

[37] Proot: https://proot-me.github.io/.

[38] Runc: https://github.com/opencontainers/runc.

[39] Fakechroot: https://github.com/dex4er/fakechroot.

[40] Alfonso Pérez, Germán Moltó, Miguel Caballer, and Amanda Calatrava.
Serverless computing for container-based architectures. Future Generation
Computer Systems, 2018.

[41] Kees Jan de Vries. Global fits of supersymmetric models after LHC run 1.
PhD thesis, Imperial College London, 2015.

[42] Openstack: https://www.openstack.org/.

[43] See http://argus-documentation.readthedocs.io/en/stable/argus introduction.html.

[44] See https://en.wikipedia.org/wiki/xacml.

[45] See http://www.simplecloud.info.

[46] Opennebula: http://opennebula.org/.

[47] Redhat openshift: http://www.opencityplatform.eu.

[48] The cloud foundry foundation: https://www.cloudfoundry.org/.

[49] Miguel Caballer, Ignacio Blanquer, Germán Moltó, and Carlos de Alfonso.
Dynamic management of virtual infrastructures. Journal of Grid Comput-
ing 13(1): 53–70 (2015).

[50] See http://www.infoq.com/articles/scaling-docker-with-kubernetes.

[51] Prisma project: http://www.ponsmartcities-prisma.it/.

[52] Opencitiy platform: http://www.opencityplatform.eu.

[53] Onedata: https://onedata.org/.

[54] Dynafed: http://lcgdm.web.cern.ch/dynafed-dynamic-federation-project.

[55] Fts3: https://svnweb.cern.ch/trac/fts3.

[56] Pablo Orviz Fernández, Álvaro López Garćıa, Doina Cristina Duma, Gi-
acinto Donvito, Mario David, and Jorge Gomes. A set of common
software quality assurance baseline criteria for research projects, see
http://hdl.handle.net/10261/160086. Technical report.

[57] Michael Httermann. DevOps for developers. Apress, 2012.

39

[58] EOSC-Hub: ”Integrating and managing services for the European Open
Science Cloud”
Funded by H2020 research and innovation pr ogramme under grant agree-
ment No. 777536. See http://eosc-hub.eu.

[59] Apache License: author = https://www.apache.org/licenses/LICENSE-
2.0.

[60] INDIGO Package Repo: http://repo.indigo-datacloud.eu/.

[61] INDIGO DockerHub: https://hub.docker.com/u/indigodatacloud/.

[62] Indigo gitbook: https://indigo-dc.gitbooks.io/indigo-datacloud-releases.

[63] G.C.P Van Zundert and A.M.J.J Bonvin. Disvis: quantifying and visu-
alizing the accessible interaction space of distance restrained biomolecular
complexes. Bioinformatics, 31(19):3222–3224, 2015.

[64] G.C.P Van Zundert and A.M.J.J Bonvin. Fast and sensitive rigid–body fit-
ting into cryo–em density maps with powerfit. AIMS Biophys., 2(0273):73–
87, 2015.

40

A Contribution to Open Source software projects

Here follows the list of software developed in the framework of INDIGO-Datacloud
that has been contributed upstream to the Open Source community.

• OpenStack (https://www.openstack.org)

– Changes/contribution done already merged upstream

∗ Nova Docker

∗ Heat Translator (INDIGO-DataCloud is 3rd overall contributor
and core developer)

∗ TOSCA parser (INDIGO-DataCloud is 2nd overall contributor
and core developer)

∗ OpenID Connect CLI support

∗ OOI: OCCI implementation for OpenStack

– Changes/contribution under discussion to be merged upstream Open-
Stack Preemptible Instances support (extensions)

• OpenNebula

– Changes/contribution done already merged upstream

∗ ONEDock

• Changes/contribution done already merged upstream for:

– Infrastructure Manager (http://www.grycap.upv.es/im/index.php)

– CLUES (http://www.grycap.upv.es/clues/eng/index.php)

– Onedata (https://onedata.org)

– Apache Libcloud (https://github.com/apache/libcloud)

– Kepler Workflow Manager (https://kepler-project.org/)

– TOSCA adaptor for JSAGA (http://software.in2p3.fr/jsaga/dev/)

– CDMI and QoS extensions for dCache (https://www.dcache.org)

– Workflow interface extensions for Ophidia (http://ophidia.cmcc.it)

– OpenID Connect Java implementation for dCache (https://www.dcache.org)

– MitreID (https://mitreid.org/) and OpenID Connect (http://openid.net/connect/)
libraries

– FutureGateway (https://www.catania-science-gateways.it/)

41

http://www.grycap.upv.es/im/index.php
http://www.grycap.upv.es/clues/eng/index.php
http://software.in2p3.fr/jsaga/dev/
http://ophidia.cmcc.it
http://openid.net/connect/

Figure 14: Tools and services used to support the software lifecycle process.

B Tools and services involved in the software
lifecycle

Figure 14 showcases the tools and services used for the development and distri-
bution of the INDIGO-DataCloud software:

• Project management service using openproject.org: It provides tools
such as an issue tracker, wiki, a placeholder for documents and a project
management timeline.

• Source code is publicly available, housed externally in GitHub repositories,
increasing so the visibility and simplifying the path to exploitation beyond
the project lifetime. The INDIGO-DataCloud software is released under
the Apache 2.0 software license [59].

• Continuous Integration service using Jenkins: Service to automate the
building, testing and packaging, where applicable. Testing includes the
style compliance and estimation of the unit and functional test coverage
of the software components.

• Artifact repositories for RedHat and Debian packages [60] and virtual –
Docker – images [61].

• Code review service using GitHub: Source code review is one integral
part of the SQA as it appears as the last step in the change verification
process. This service facilitates the code review process, recording the
comments and allowing the reviewer to verify the candidate change before
being merged into the production version.

42

• Issue tracking using GitHub Issues: Service to track issues, new features
and bugs of INDIGO-DataCloud software components.

• Release notes, installation and configuration guides, user and development
manuals are made available on GitBook [62].

• Code metrics services using Grimoire: To collect and visualize several
metrics about the software components.

• Integration infrastructure: this infrastructure is composed of computing
resources to support directly the CI service.

• Testing infrastructure: this infrastructure aims to provide a stable environ-
ment for users where they can preview the software and services developed
by INDIGO-DataCloud, prior to its public release.

• Preview infrastructure: where the released artifacts are deployed and made
available for testing and validation by the use-cases.

C DevOps adoption from user communities

DisVis [63] and PowerFit [64] applications were integrated into a CI/CD pipeline
described above. As it can be seen in the Figure 15, with this pipeline in place
the application developers were provided with both a means to validate the
source code before merging and the creation of a new versioned Docker image,
automatically available in the INDIGO-DataCloud???s catalogue for applica-
tions i.e. DockerHub???s indigodatacloudapps repository.

Once the application is deployed as a Docker container, and subsequently up-
loaded to indigodatacloudapps repository, it is instantiated in a new container
to be validated. The application is then executed and the results compared with
a set of reference outputs. Thus this pipeline implementation goes a step for-
ward by testing the application execution for the last available Docker image in
the catalogue.

43

Figure 15: DisVis development workflow using a CI/CD approach

44

