

| Publication Year      | 2017                                                                                        |
|-----------------------|---------------------------------------------------------------------------------------------|
| Acceptance in OA@INAF | 2020-09-08T12:54:26Z                                                                        |
| Title                 | VizieR Online Data Catalog: An ALMA survey of ECDFS submillimeter galaxies (Simpson+, 2014) |
| Authors               | Simpson, J. M.; Swinbank, A. M.; Smail, I.; Alexander, D. M.; Brandt, W. N.; et al.         |
| DOI                   | 10.26093/cds/vizier.17880125                                                                |
| Handle                | http://hdl.handle.net/20.500.12386/27219                                                    |
| Journal               | VizieR Online Data Catalog                                                                  |

J/ApJ/788/125 An ALMA survey of ECDFS submillimeter galaxies (Simpson+, 2014) An ALMA survey of submillimeter galaxies in the extended Chandra Deep Field-South: the redshift distribution and evolution of submillimeter galaxies. Simpson J.M., Swinbank A.M., Smail I., Alexander D.M., Brandt W.N., Bertoldi F., de Breuck C., Chapman S.C., Coppin K.E.K., da Cunha E., Danielson A.L.R., Dannerbauer H., Greve T.R., Hodge J.A., Ivison R.J., Karim A., Knudsen K.K., Poggianti B.M., Schinnerer E., Thomson A.P., Walter F., Wardlow J.L., Weiss A., van der Werf P.P. <Astrophys. J., 788, 125 (2014)> =2014ApJ...788..125S (SIMBAD/NED BibCode) ADC\_Keywords: Galaxies, photometry ; Photometry, millimetric/submm ; Photometry, UBVRIJKLMNH ; Redshifts Keywords: galaxies: evolution - galaxies: high-redshift - galaxies: starburst Abstract: We present the first photometric redshift distribution for a large sample of 870  $\mu$ m submillimeter galaxies (SMGs) with robust identifications based on observations with ALMA. In our analysis we consider 96 SMGs in the Extended Chandra Deep Field South, 77 of which have 4-19 band photometry. We model the SEDs for these 77 SMGs, deriving a median photometric redshift of  $z_{phot}$ =2.3±0.1. The remaining 19 SMGs have insufficient photometry to derive photometric redshifts, but a stacking analysis of Herschel observations confirms they are not spurious. Assuming that these SMGs have an absolute

H-band magnitude distribution comparable to that of a complete sample of  $z \sim 1-2$  SMGs, we demonstrate that they lie at slightly higher redshifts, raising the median redshift for SMGs to  $z_{phot}=2.5\pm0.2$ . Critically we show that the proportion of galaxies undergoing an SMG-like phase at z≥3 is at most 35%±5% of the total population. We derive a median stellar mass of  $M_* = (8\pm1) \times 10^{10} M_{\odot}$ , although there are systematic uncertainties of up to 5x for individual sources. Assuming that the star formation activity in SMGs has a timescale of ~100 Myr, we show that their descendants at z~0 would have a space density and  $M_{\mu}$ distribution that are in good agreement with those of local ellipticals. In addition, the inferred mass-weighted ages of the local ellipticals broadly agree with the look-back times of the SMG events. Taken together, these results are consistent with a simple model that identifies SMGs as events that form most of the stars seen in the majority of luminous elliptical galaxies at the present day. **Description:** In this study we undertake a multi-wavelength analysis of the ALMA-detected submm galaxies from the catalog presented by Hodge et al. (2013, J/ApJ/768/91) (see also Karim et al. 2013MNRAS.432....2K). To briefly summarize the observations, we obtained 120 s integrations of 122 of the original 126 LESS submm sources, initially identified using the LABOCA camera on the APEX telescope (Weiss et al. 2009,

J/ApJ/707/1201). These Cycle 0 observations used the compact configuration, yielding a median synthesized beam of ~1.6"x1.2". The observing frequency was matched to the original LESS survey, 344 GHz (Band 7), and we reach a typical rms across our velocity-integrated maps of 0.4 mJy/beam.

#### File Summary:

|        | FileName |     | Lrecl | Re | cords | Expla   | anations   |
|--------|----------|-----|-------|----|-------|---------|------------|
| ReadMe |          | 80  |       |    | This  | file    |            |
| table1 | .dat     | 98  |       | 19 | Summa | ary of  | Photometry |
| table2 | .dat     | 214 |       | 96 | Phote | ometry  |            |
| table3 | .dat     | 84  |       | 77 | Deri  | ved Pro | operties   |
|        |          |     |       |    |       |         |            |

See also:

<u>J/ApJS/155/73</u> : Photometric redshifts of X-ray sources in CDF-S

```
(Zheng+, 2004)
<u>J/ApJ/622/772</u> : Redshift survey of submillimeter
galaxies (Chapman+, 2005)
<u>J/ApJ/699/1610</u> : Spitzer survey of submillimeter
galaxies (Hainline+, 2009)
<u>J/ApJ/707/1201</u> : LABOCA ECDFS Submillimeter Survey
(LESS) (Weiss+, 2009)
<u>J/ApJS/191/124</u> : Optical spectroscopy of ECDF-S X-ray
sources
```

(Silverman+, 2010) <u>J/ApJS/203/15</u> : Counterparts to 1.4GHz sources in ECDF-S (Bonzini+, 2012) <u>J/ApJ/768/91</u> : ALMA observations of LESS submm galaxies (Hodge+, 2013) <u>J/MNRAS/442/577</u> : Selected ALESS submm galaxies radio properties

```
(Thomson+, 2014)
```

# Byte-by-byte Description of file: table1.dat

| Bytes     | Format | Units | Label   | Explanations                 |
|-----------|--------|-------|---------|------------------------------|
| 1- 19     | A19    |       | Filter  | Filter used in the           |
| observati | on     |       |         |                              |
| 21- 24    | F4.2   | um    | lambda  | Effective wavelength         |
| 26- 29    | F4.1   |       | Limit   | $3\sigma$ detection limit in |
| AB mag    |        |       |         |                              |
| 31- 48    | A18    |       | r_Limit | Detection limit              |
| reference |        |       | _       |                              |
| 50- 68    | A19    |       | Bibcode | Reference bibcode            |
| 70- 83    | A14    |       | Cat     | Catalog reference in         |
| VizieR    |        |       |         |                              |
| 85- 98    | A14    |       | Com     | Comment on reference         |

## Byte-by-byte Description of file: table2.dat

| Bytes     | Format | Units | s Label     | Explanations                 |
|-----------|--------|-------|-------------|------------------------------|
| 1- 5      | A5     |       |             | [ALESS]                      |
| 7- 11     | A5     |       | ALESS       | SMG identifier (NN.NN;       |
| NNN.N) (1 | L)     |       |             |                              |
| 13        | A1     |       | $f_{ALESS}$ | [a] Flag on ALESS <u>(2)</u> |
| 15        | A1     |       | l_UMmag     | [>] The 3ơ upper limit       |
| on UMmag  |        |       |             |                              |
| 17- 21    | F5.2   | mag   | UMmag       | ? MUSYC U band magnitude     |
| 23- 26    | F4.2   | mag   | e_UMmag     | ? Uncertainty in UMmag       |
| 28        | A1     |       | l_U38mag    | [>] The 3ơ upper limit       |
| on U38mag | J      |       |             |                              |
| 30- 34    | F5.2   | mag   | U38mag      | ? MUSYC U38 band             |
| magnitude | 5      |       |             |                              |
| 36- 39    | F4.2   | mag   | e_U38mag    | ? Uncertainty in U38mag      |
| 41        | A1     |       | l_UVmag     | [>] The 3ơ upper limit       |
| on UVmag  |        |       |             |                              |
| 43- 47    | F5.2   | mag   | UVmag       | ? VIMOS U band magnitude     |
| 49- 52    | F4.2   | mag   | e_UVmag     | ? Uncertainty in UVmag       |
| 54        | A1     |       | l_Bmag      | [>] The 3ơ upper limit       |
| on Bmag   |        |       |             |                              |
| 56- 60    | F5.2   | mag   | Bmag        | ? MUSYC WFI B band           |
| magnitude | ē      |       |             |                              |
| 62- 65    | F4.2   | mag   | e_Bmag      | ? Uncertainty in Bmag        |
| 67        | A1     |       | l_Vmag      | [>] The 3ơ upper limit       |

on Vmaq 69- 73 F5.2 Vmaq ? MUSYC WFI V band mag magnitude 75- 78 F4.2 e Vmaq ? Uncertainty in Vmag maq 80 A1 l Rmag [>] The  $3\sigma$  upper limit \_\_\_ on Rmag ? MUSYC WFI R band 82- 86 F5.2 Rmaq mag magnitude F4.2 e Rmag ? Uncertainty in Rmag 88- 91 mag 93 A1 l Imaq [>] The  $3\sigma$  upper limit \_\_\_ on Imag 95-99 ? MUSYC WFI I band F5.2 Imaq mag magnitude 101-104 F4.2 e Imag ? Uncertainty in Imag maq 106 A1 l zmag [>] The 3σ upper limit \_\_\_ on zmag ? MUSYC Mosaic-II z band 108-112 F5.2 zmaq mag magnitude 114-117 F4.2 e zmag ? Uncertainty in zmag mag 119 A1 1 Jmag [>] The  $3\sigma$  upper limit \_\_\_ on Jmag ? J band magnitude 121-125 F5.2 maq Jmaq (TENIS if nothing in f Ksmag) (3) 127-130 F4.2 e Jmag ? Uncertainty in Jmag mag 132-133 A2 \_\_\_ f Jmag Flag on Jmag (4) 135 A1 1 Hmag [>] The  $3\sigma$  upper limit \_\_\_ on Hmag 137-141 F5.2 ? H band magnitude mag Hmaq 143-146 F4.2 ? Uncertainty in Hmag e Hmaq maq 148 A1 \_\_\_ 1 Ksmag [>] The  $3\sigma$  upper limit on Ksmaq ? K<sub>s</sub> band magnitude 150-154 F5.2 Ksmaq mag (TENIS if nothing in f\_Ksmag) (3) ? Uncertainty in Ksmag 156-159 F4.2 e Ksmaq maq 161-162 [\* \*\*] Flag on Ksmag and A2 f Ksmag \_\_\_ Jmag (4) 164 A1 1 3.6mag [>] The  $3\sigma$  upper limit \_\_\_ on 3.6mag 166-170 F5.2 3.6mag SIMPLE/IRAC 3.6 micron maq band magnitude 172-175 F4.2 e 3.6mag ? Uncertainty in 3.6mag maq 1 4.5mag [>] The  $3\sigma$  upper limit 177 A1 \_\_\_

on 4.5mag 179–183 F5.2 4.5mag SIMPLE/IRAC 4.5 micron mag band magnitude 185-188 F4.2 e 4.5mag ? Uncertainty in 4.5mag maq 1 5.8mag [>] The  $3\sigma$  upper limit 190 A1 \_\_\_ on 5.8mag 5.8mag ? SIMPLE/IRAC 5.8 micron 192-196 F5.2 maq band magnitude e 5.8mag ? Uncertainty in 5.8mag 198–201 F4.2 mag 203 A1 \_\_\_ 1 8.0mag [>] The  $3\sigma$  upper limit on 8.0mag 205-209 8.0mag ? SIMPLE/IRAC 8.0 micron F5.2 maq band magnitude 211-214 F4.2 e 8.0mag ? Uncertainty in 8.0mag mag Note (1): All photometry is left blank where a source is not covered by available imaging. Note (2): Flag as follows: a = Source is within 4" of a 3.6 micron source of comparable, or greater, flux. **Note (3):** We measure J and K<sub>s</sub> photometry from three imaging surveys, but quote a single value, in order of  $3\sigma$  detection limit (see Table 1). Note (4): Flag as follows: \* = Photometry measured from HAWK-I imaging; \*\* = Photometry measured from MUSYC imaging, otherwise photometry measured from TENIS imaging.

#### Byte-by-byte Description of file: table3.dat

| Bytes         | Format   | Units | Label     | Explanations              |
|---------------|----------|-------|-----------|---------------------------|
| 1- 5<br>7- 12 | A5<br>A6 |       | <br>ALESS | [ALESS]<br>SMG identifier |
| (NNN.NN)      | 110      |       | 111100    |                           |
| 14            | A1       |       | f_ALESS   | [a] Flag on ALESS         |
| (1)           |          |       |           |                           |
| 16- 17        | I2       | h     | RAh       | Hour of Right             |
| Ascensior     | n (J2000 | 0)    |           |                           |

19- 20 12 RAm Minute of Right min Ascension (J2000) 22- 26 F5.2 RAs Second of Right S Ascension (J2000) Sign of the 28 A1 DE-\_\_\_ Declination (J2000) 29- 30 Ι2 deq DEd Degree of Declination (J2000) Arcminute of 32- 33 I2 arcmin DEm Declination (J2000) 35- 38 F4.1 DEs Arcsecond of arcsec Declination (J2000) 40-43 F4.2 zphot Photometric \_\_\_ redshift F4.2 E zphot Upper limit 45-48 \_\_\_ uncertainty in zphot 50- 53 F4.2 e zphot Lower limit \_\_\_ uncertainty in zphot 55-58 F4.2 zspec ? Spectroscopic \_\_\_ redshift 60 A1 r zspec zspec reference (2) 62- 66 Reduced  $X^2$ F5.2 Chi2 68- 69 Number of detection 12 Detec 71- 72 Number of 12 Obs \_\_\_ observation 74-79 F6.2 Absolute H band AB HMag mag magnitude Msun/Lsun M/L H band mass-to-81- 84 F4.2 light ratio Note (1): Flag as follows: a = As discussed in Section 3.2.1 these SMGs are potential gravitational lenses, or have significantly contaminated photometry. We advise that the photometric redshifts for these SMGs are treated with extreme caution. Note (2): Reference as follows: b = Casey et al. (2011MNRAS.411.2739C); c = Zheng et al. (2004, J/ApJS/155/73); d = Swinbank et al. (2012MNRAS.427.1066S); e = Silverman et al. (2010, J/ApJS/191/124); f = Kriek et al. (2008ApJ...677..219K); g = Coppin et al. (2009MNRAS.395.1905C); h = Coppin et al. (2012MNRAS.427..520C); Danielson et

## al. in prep; i = Bonzini et al. (2012, J/ApJS/203/15).

### History:

From electronic version of the journal

(End) Prepared by [AAS], Tiphaine Pouvreau
[CDS] 17-Jul-2017