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Abstract

We provide an explanation of the properties of the fundamental plane (FP) relation and its observed projections for
a sample of nearby early-type galaxies (ETGs) in terms of a fine-tuning between the time-averaged star formation
rate áYñ and their structural and dynamical characteristics. Their total V luminosity is linked with áYñ and the central
velocity dispersion σ through the relation =  áYñ +( ) ( ) ( )Llog 0.48 0.06 log 1.00 s + ( ) ( ) ( )0.13 log 7.81 0.26 ,
with an rms=0.215 (R=0.64 and < ´ -P 1.2 10 16). This fine-tuning permits us to obtain the FP in terms of
two distinct “virtual planes” in the sá ñ( )– ( )– ( )R Ilog log loge e space. The first one (the virial plane; VP) represents
the total galaxy mass derived from the scalar virial theorem and the mass-to-light ratioM/L, while the second plane
comes from the relation s= ¢ -L L0

2, where ¢L0 is a parameter connected with áYñ. This is a mathematically
convenient way for expressing the independence of the galaxy light from the virial equilibrium. Each galaxy in the

sá ñ( )– ( )– ( )R Ilog log loge e space is identified by the intersection of these two planes. A posteriori, we show that the
properties of the FP (tilt and scatter) and the zone of exclusion visible in the FP projections are consequences of
this fine-tuning. The link between the FP properties and the SFR of galaxies provides a new view of the star
formation phenomenon. The star formation history of an unperturbed galaxy seems to be driven by the initial
conditions in the protogalaxies and is regulated across cosmic epochs by the variation of the main galaxy
parameters (mass, luminosity, structural shape, and velocity dispersion).

Key words: galaxies: evolution – galaxies: formation – galaxies: fundamental parameters – galaxies: star formation
– galaxies: structure

1. Introduction

The origin of the fundamental plane (FP), i.e., the relation

s+ á ñ + + =( ) ( ) ( ) ( )a R b I c dlog log log 0, 1e e

between the effective surface brightness, the effective radius,
and the central velocity dispersion of early-type galaxies
(ETGs), is still unclear since the epoch of its discovery
(Djorgovski & Davis 1987; Dressler et al. 1987). The problem
is that the FP coefficients deviate from the virial expectation for
homologous galaxies ( ~a 1.2 instead of 2 and ~ -b 0.7
instead of −1) and the scatter around the plane is very small
along the whole FP extension. The observed coefficients are
found to depend on the filter band adopted (see, e.g., Scodeggio
et al. 1998; Hyde & Bernardi 2009), on the fitting procedure
(see e.g., Sheth & Bernardi 2012), and on the magnitude limit
of the selected galaxy sample (see e.g., D’Onofrio et al. 2008),
but in all cases they are significantly different from the virial
expectation.

The first interpretation of the tilt was related to the behavior
of the stellar populations of galaxies through their stellar mass-
to-light ratios, which were seen to vary with luminosity
( ~ aM L M , with a ~ 0.25 Faber et al. 1987). Subsequent,
independent measurements found similar values of α (see e.g.,
Pahre et al. 1998; Borriello et al. 2001; Gerhard et al. 2001;
Treu et al. 2005).

An alternative explanation was that galaxies are progressively
non-homologous systems along the FP (Capelato et al. 1995;
Hjorth & Madsen 1995; Busarello et al. 1997; Graham &
Colless 1997; Prugniel & Simien 1997; Pahre et al. 1998; Bertin
et al. 2002; Trujillo et al. 2004; Nipoti et al. 2006; La Barbera

et al. 2010). This scenario was supported by the observation that
the light profiles and dynamics of ETGs deviate systematically
from homology (Michard 1985; Schombert 1986; Capaccioli
1987; de Carvalho & da Costa 1988; Capaccioli 1989;
Burkert 1993; Caon et al. 1993; Young & Currie 1994; Prugniel
& Simien 1997). Ciotti et al. (1996), however, pointed out that a
strong fine-tuning between stellar mass-to-light ratio ( *M L)
and structure (Sérsic index n) is required to explain, using just
structural non-homology, both the tilt of the FP and the small
scatter around it (the so-called * -M L n conspiracy).
Cappellari et al. (2006, 2012) also excluded an important
contribution of non-homology to the tilt using integral models of
the ETGs’ mass distributions, based on 2D kinematic maps.
Along the same line, the galaxy-mass distribution estimated from
gravitational lensing by Bolton et al. (2008) did not seem to
support an important role for non-homology.
Subsequently, the interpretations of the tilt proposed a

number of possible mechanisms: metallicity effects (Gerhard
et al. 2001), dark matter (DM) distribution and amount (Secco
2001; Secco & Bindoni 2009; Tortora et al. 2009), dissipation
effects during galaxy collapse (see, e.g., Oñorbe et al. 2005;
Dekel & Cox 2006; Robertson et al. 2006; Hopkins et al.
2008), variable initial mass function (IMF; Chiosi et al. 1998),
star formation history (SFH), etc., but the contribution of DM
and IMF was also excluded by Ciotti et al. (1996) on the basis
of a required strong fine-tuning argument, and the observation
that the observed SFH of galaxies is hardly reconciled with the
widely accepted hierarchical paradigm of the ΛCDM
cosmology.
More recently, D’Onofrio et al. (2013) proposed the

existence of a fine-tuning mechanism capable of explaining
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the properties of the FP based on the observed mutual
correlation between galaxy mass, mass-to-light ratio, and
Sérsic index. Increasing evidence suggests that the main driver
of stellar population properties in ETGs is the velocity
dispersion, with a second-order effect due to galaxy environ-
ment (see, e.g., La Barbera et al. 2014). The slope of the IMF,
for example, has been found to correlate with σ (Cenarro
et al. 2001; van Dokkum & Conroy 2010; La Barbera et al.
2013). At the same time, merging events, gas accretion, and
feedback processes seem to have a significant role in the
evolution of ETGs, in particular in the center of groups and
clusters. The question therefore is, to what extent have all these
processes affected the FP properties of the nearby ETGs we see
today?

In addition to the tilt, the small observed scatter (∼20%–25%)
around the FP is also unexplained. Forbes et al. (1998) and
Terlevich & Forbes (2002) found a correlation between the
residuals of the FP and the age of the galaxies (ETGs with
higher/lower surface brightness have younger/older ages).
Gargiulo (2009) claimed that the FP residuals anti-correlate
with the mean stellar age, while a strong correlation exists with
a[ ]Fe . Graves et al. (2009) proposed that the stellar population
variations contribute at most 50% of the total thickness and that
correlated variations in the IMF or in the central DM fraction
make up the rest. Magoulas et al. (2012) found that the residuals
about the FP show significant trends with environment,
morphology, and stellar population, with the strongest trend
being with age. Unfortunately, even if the data are even better
today, the systematic errors in age, [Z/H], and a[ ]Fe are still
large and not well understood, as different packages for stellar
population synthesis provide very different results.

The above discussion clearly reveals that a general
consensus about the origin of the FP and its properties is still
lacking. We note that even the distribution of galaxies in the

á ñ( )– ( )I Rlog loge e plane, i.e., one of the projections of the FP,
is poorly understood. Kormendy (1977) showed that ETGs do
not follow the distribution expected for galaxies of the same
total luminosity, but are tilted with respect to this line, while
Bender et al. (1992) and Burstein et al. (1997) noted that in this
plane galaxies seem to avoid a region of space: the so-called
zone of exclusion (ZOE). They claimed that the slope of the
ZOE and the progressive displacement of the Hubble types
from this line are consistent with the hierarchical clustering
scenario with a =n 1.8 power-law density fluctuation
spectrum (plus dissipation).

The same considerations can be done for the Faber–Jackson
(FJ) relation connecting galaxy luminosity with velocity
dispersion ( sµ ~L ;4 Faber & Jackson 1976), whose slope
(and zero-point) changed progressively (today the measured
slope is ∼2.0). This relation is considered a projection of the
FP and as such was also related to the virial theorem, but
alternative explanations are possible.

In this paper we do not want to provide a new fitting
technique for getting the FP coefficients; our aim is to propose
a new possible interpretation for the origin of the FP and FJ
relations that can explain their observational properties. The
paper is organized as follows. In the first section we present the
main equations and assumptions that define the FP problem. In
Section 3 we describe our proposed solution, and in Section 4
we provide the observational evidence in favor of our
hypothesis. In Section 5 we investigate the connection between
the SFR and the galaxy dynamics. In Section 6 we discuss the

origin of the FJ and PFJ relations, and in Section 7 we discuss
the consequences of our solution for the problem of the star
formation activity in galaxies across cosmic history. Finally, in
Section 8 we draw our conclusions.

2. The FP Problem

We assume that ETGs are gravitationally bound stellar
systems that satisfy the virial theorem equation,

á ñ =
á ñ

( )V
GM

R
, 22 tot

where Mtot is the total galaxy mass, á ñR is a suitable mean
radius, and á ñV 2 is a mean kinetic energy per unit mass. By
definition every kind of virialized system must belong to the
virial plane (VP) in the space defined by the variables Mtot, á ñR ,
and á ñV 2 . Unfortunately, these are not observable quantities.
Therefore, in the case of ETGs, the virial Equation (2) is
usually written as follows:

s
= ( )M

K R

G
, 3V e

tot

2

where Re is the effective radius and = ( )K k k1V v r takes into
account projection effects, density distribution, and stellar orbit
distribution. The term KV parameterizes our ignorance about
the orientation, 3D structure, and dynamics of ETGs. The
formal expression of KV (which is a dimensionless quantity)
assumes sá ñ =V kv

2 2 and á ñ =R k Rr e.
Introducing the mean effective surface brightness

pá ñ =I L R2e e
2, one finds such an expression for the VP:

p
s= á ñ

-
-⎜ ⎟⎛

⎝
⎞
⎠ ( )R
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I

2
, 4e

V
e

tot
1

1 2

or, in logarithmic form:

s

p

= - á ñ +

- -⎜ ⎟⎛
⎝

⎞
⎠

( ) ( ) ( ) ( )

( ) ( )

R I K

M

L
G

log 2 log log log

log log 2 . 5

e e V

tot

This formulation of the virial theorem is directly comparable
with the FP of Equation (1), rewritten with ( )Rlog e as an
independent variable empirically derived from observations.
Note that for a given mass Mtot and zero-point there are

infinite values of sá ñ( )– ( )– ( )R Ilog log loge e that satisfy
Equation (5): all the points belonging to a plane obey such
an equation. We can therefore define the VP as the locus of
points of the sá ñ( )– ( )– ( )R Ilog log loge e space that reproduce a
constant mass Mtot for an assigned zero-point.
The zero-point of Equation (5) is given by the quantity

p= - -⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( )K

M

L
GZP log log log 2 , 6VFP

tot

so each galaxy has its own zero-point characterized by a
peculiar M/L (DM and stellar content) and KV (degree of non-
homology). If ETGs were perfectly homologous systems (same
KV) with similar M/L, the ZPFP would be a constant and all
galaxies would be distributed along one VP. In other words, the
virial theorem does not provide any constraints on the position
of a galaxy in the sá ñ( )– ( )– ( )R Ilog log loge e space. Two
galaxies with the same mass and zero-point, but with a different
combination of M/L and KV, may share the same VP. In

2
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general, Equation (5) defines a family of planes filling the
sá ñ( )– ( )– ( )R Ilog log loge e space for all galaxies.

In the sá ñ( )– ( )– ( )R Ilog log loge e space each VP is parallel to
the others, so in principle one should observe a cloud and not a
plane, unless a mechanism constrains all galaxies on the
observed FP.

The connection between the FP and the VP clearly links the
tilt of the plane to the properties of the stellar population, to the
DM content, and the galaxy structure and dynamics. It is
therefore not surprising that all the proposed solutions have
tried to demonstrate the link between the zero-point and these
galaxy properties. The existence of the FP, with its tilt and
small scatter, requires a connection between KV (structure) and
M/L (DM and stellar populations). This is the so-called fine-
tuning problem.

3. The New Proposed Solution

The new proposed solution comes from the observation that
a galaxy of a given mass Mtot does not have a defined position
in the sá ñ( )– ( )– ( )R Ilog log loge e space. Its virial equilibrium is
guaranteed by all possible combinations of the variables that fit
the virial equation. It would be nice to have at least another
constraint to better define the location of a galaxy in the

sá ñ( )– ( )– ( )R Ilog log loge e space.
In order to find such a constraint we consider that a galaxy of

a given mass Mtot has also a total luminosity Ltot. The
luminosity of a galaxy ultimately depends on the luminosities
of its stars, which in turn depend on the star radius and the
effective temperatures that each star reaches at its surface.

The common way of introducing the luminosity in the FP
problem was through the mass-to-light ratio, but we note that
luminosity is actually a quantity independent of the virial
equilibrium, being only the product of the SF history of
galaxies.

On the basis of such consideration we look for the various
expressions that can give the total luminosity of galaxies. We
know that the integrated bolometric luminosity L of a galaxy of
age TG can be expressed as

ò ò ò
t t l

=

´ ¢ ¢

l

¥
( ) ( ( ))

( ( )) ( )

L T S M t Z t f

M Z dMdtd

, ,

, , , 7

G
o

T

M

M

0

G

L

U

where ( ( ))S M t Z t, , is the stellar birthrate, t t¢ ¢l ( ( ))f M Z, , is
the monochromatic flux of a star of massM, metallicity Z(t), and
age t¢ = -T tG , and ML and MU are the minimum and
maximum star masses that are formed. The stellar birthrate

( ( ))S M t Z t, , can be expressed as the total mass converted into
stars per unit time (e.g., M yr−1) or the total number of stars
formed per unit time at the time t with the chemical composition
Z(t). We adopt the first definition for the sake of consistency with
the definition of other quantities in usage here that are related to
the star formation. Separating the ( ( ))S M t Z t, , into the product
of the SFR Y( ( ))t Z t, and the IMF F( ( ))M Z t, , and neglecting
here the dependence on the metallicity (it can be easily
introduced whenever necessary) the above integral becomes

ò ò t l= Y ¢l
¥

( ) ( ) ( )L t F dtd , 8
o

T

0

G

where

òt t¢ = F ¢l l( ) ( ) ( ) ( )F M f M dM, , 9
M

M

L

U

where t¢l ( )F M, is the integrated monochromatic luminosity at
each epoch provided by a single stellar population of age t¢ and

t¢l ( )f M, is the monochromatic luminosity emitted by a star of
mass M and age t¢ or t in general. Finally, we define the
luminosity per unit mass of a single stellar population (SSP) as

ò l= l
¥

( ) ( ) ( )L t F t d , 10sp
0

and finally

ò= Y( ) ( ) ( )L dt L t dt. 11
T

0
sp

G

We can rewrite Equation (11) for the total luminosity
considering the average values of the involved variables as

~ áY ´ ñ ~ áYñ( ) ( )L t L T
L

M
T , 12G Gsp

where áY ñ( )t is the time average of the current SFR, and TG is
the age of the galaxy. In the above average, á ñL M indicates the
mean stellar light-to-mass ratio representative of all the stellar
contents. The total emitted light today is the result of the whole
SFH, independent of the events that have contributed to the
increase of the SFR or its quenching. We further note that
within the time-averaged values of áY ´ ñ( )t Lsp are encrypted
the contributions of the IMF.
Recall that the luminosity of ETGs correlates with the

velocity dispersion of their stars through the FJ relation (Faber
& Jackson 1976). The best way to write this relation is

s
s

=
b⎛

⎝⎜
⎞
⎠⎟ ( )L L , 130

0

where s0 is a reference zero-point normalization in velocity
dispersion, β is the exponent derived through the fit of the data
(often written in log form) and L0 is a reference luminosity for
the galaxy with s s= 0. Measured values for β range from 2 to
5 depending on the width of the magnitude range and the
luminosity of the sampled galaxies within the magnitude range
(see, e.g., Nigoche-Netro et al. 2010).
The origin of this correlation is far from clear. Why in fact

should L and σ be correlated variables? The SF is a local
phenomenon originating from microphysical processes inside
clouds of gas and dust, while the velocity dispersion of a
galaxy is a direct consequence of the mass potential well. How
do the two things communicate? A priori, there are no reasons
at all for such a connection. Why should the galaxy dynamics
be aware of the stars that have been produced across cosmic
time? A posteriori, we understand the s–L relation on the basis
of the connection between mass and luminosity in each single
star and on the basis of the virial theorem. We will explore this
issue again later on.
In the following we will often prefer to write Equation (13)

in the form s= bL L0 , i.e., dropping the term s0. In this way
we can simplify the calculations as follows. For the moment we
emphasize that in this form the parameter L0 has units of
[gr s−1], i.e., they are consistent with a SFR if b = 2.

3
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A direct comparison of Equations (12) and (13) tells us that
the parameter L0 of the FJ relation is connected to the mean
SFR. We can in fact write

s= áY ´ ñ b( ) ( )L t L T . 14G0 sp

In this parameter L0 the complex relationship between the
galaxy dynamics and the SFH is therefore encrypted.

Now, remembering that p= á ñL I R2 e etot
2, and passing to the

logarithms, Equation (13) (in its simplified form) can be
rewritten as

b s
p

= - á ñ
+ -

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

R I

L

log 2 log 1 2 log

1 2 log 1 2 log 2 . 15
e e

0

At this point we can consider Equations ((1) the FP), ((5): the
VP) and ((15): the FJ) using σ as dependent variable:

s

s

p

s
b b

b b
p

= + á ñ +

= + á ñ +

- +

= + á ñ

- +

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

A R B I C

R I M L

K G
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L

log log log

log
1

2
log

1

2
log

1

2
log

1

2
log

1

2
log 2

log
2

log
1

log

1
log

1
log 2 , 16

e e

e e

V

e e

0

where the coefficients A, B and C are related to those of
Equation (1). Then we take the differences FP-VP and FP-FJ.
These differences must be equal on the intersecting lines. It
follows that:

b
b

á ñ =
-
-

+ P( ) ( ) ( )
( ) ( )

( ) ( )I Rlog
2 1 2

1 2 1
log , 17e e

where Π can be defined by:

p p

P = ¢ =
-

-

+
- - +

-

b

b b

b
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2
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2
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2

1

1
0

1

2

1

1

2

1

This also defines the dimensional constant ¢K .
Now we ask if Equation (13) could represent the plane we

are looking for in the sá ñ( )– ( )– ( )R Ilog log loge e space. First,
we observe that in the FJ relation L0 is nearly constant for
almost all ETGs (in the mass range – M10 109 12 ) of different σ.
The value of L0 valid for all our ETGs is ´1.6 1029 gr s−1. So
this relation is not the one we are looking for as a second virtual
plane representing the total luminosity of a galaxy in the

sá ñ( )– ( )– ( )R Ilog log loge e space. Furthermore, for b = 2,
which is a good possible fit for the FJ relation (see Figure 1),
in Equation (17) the slope of the –I Re e relation is undefined.

Looking at Figure 1 we note that there are alternative
mathematically correct values of β that could give the total
luminosity of a galaxy Ltot. In other words we should find the
correct value for β on the basis of the observed distribution of
galaxies in the FP projections that provides the total luminosity
of each single galaxy. We will see below that the best value for
β is −2.

Figure 1 shows with dashed lines the slope of the b = 2
lines in the s–L space. The dotted line marks the planes with
b = -2. We will therefore write hereafter the relation of
Equation (13) with b = -2 as s= ¢ -L L0

2, again dropping the
normalization constant but remembering that it is here. The
values of ¢L0 are in this case the intercepts with the s =( )log 0
axis and have the same unit of L0 (i.e., that of a characteristic
luminosity). With this equation we can assign to ¢L0, which is
very different from galaxy to galaxy, the primary role of
capturing the SFH of each object, leaving to σ the secondary
role of indicating how the velocity dispersion affects the SFR
(note that σ could only change in the limited interval provided
by the scatter of the FJ relation).
Since ¢L0 and L0 correlated for b = 2, s= ¢ -L L0 0

4. It
follows on the basis of Equation (12) that ¢L0 also is connected
to the SFR:

s¢ = áY ñ( ) ( )L t L T . 19G0 sp
2

Now, substituting ¢L0 to L0 in Equation (15) we obtain a
plane in the sá ñ( )– ( )– ( )R Ilog log loge e space, which is tilted in
the right direction with respect to the VP and has the notable
property of having a significantly different zero-point for each
galaxy.
This is the second virtual plane of the ( ) –Rlog e

sá ñ( )– ( )Ilog loge space that we are looking for. It represents
the total luminosity of a galaxy with a zero-point different for
each object, as is the case for the total mass in the VP (through
( )M L and KV as zero-points).

We call this plane the “PFJ plane” (pseudo-FJ) to keep in
mind its origin from the FJ relation, and we define it as follows:
the PFJ plane is the locus of points defined by the values of

sá ñ( )– ( )– ( )R Ilog log loge e , which reproduce a constant lumin-
osity Ltot for an assigned zero-point ¢L0. This plane contains,

Figure 1. Distribution of ETGs in the s–L plane. The dashed lines mark the
position of the VPs (b = 2) for galaxies with different effective radii and zero-
points. The dotted line marks one possible PFJ plane with ¢ =L constant0 , with
a slope equal to −2 (see the text). The classical FJ relation seems to result from
the intersection of the PFJ and the VP planes. The filled circles are normal
ETGs. The red squares are dwarf galaxies of the WINGS database with masses
around – M10 108 9 .
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like the VP, only one galaxy, and all PFJ planes are parallel to
each other in the sá ñ( )– ( )– ( )R Ilog log loge e space.

The different inclinations of the VP and PFJ planes suggest
that they intersect somewhere in the sá ñ( )– ( )– ( )R Ilog log loge e
space, forming a line in that space. Along this line resides only
one object, the one with mass Mtot, luminosity Ltot, and zero-
points ZFP and = ¢( )Z L1 2 logPFJ 0 . In other words, along this
line, the product ¢( )M L K LV 0 is constant.

It is clear that if the zero-points of the VP and PFJ planes
vary in a coordinated way, the result will be the formation of
several parallel lines in the sá ñ( )– ( )– ( )R Ilog log loge e space,
each one containing one galaxy. The plane best fitting this
distribution of parallel lines is the plane of real galaxies in the

sá ñ( )– ( )– ( )R Ilog log loge e space, i.e., the FP. We therefore
define the FP as follows: the FP is the plane in the

sá ñ( )– ( )– ( )R Ilog log loge e space that best fits all the parallel
lines formed by the intersections of the VP and PFJ planes. In
this plane the quantity ¢( )M L K LV 0 is constant. In this
framework, the existence of a FP for real galaxies implies that
a close connection must exist between ( )M L , KV, and ¢L0 (or in
other words between mass, luminosity, structure, and SFR).

A graphical sketch representing the mechanism at the origin
of the FP is given in Figure 2. The upper panel of the figure
shows two possible VPs for two galaxies (in black and gray)
and one PFJ plane for one galaxy. The intersecting lines formed
in the sá ñ( )– ( )– ( )R Ilog log loge e space by the VP and PFJ
planes for galaxies of masses Mtot and luminosities Ltot mark
the locus in which galaxies might reside.

Consequently, the FP plane is naturally tilted with respect to
both the VP and PFJ planes. Its tilt is now connected to the
global variation of the zero-points of the VP and PFJ planes
(ZFP and ZPFJ), and the small scatter observed around the plane
originates from the fine-tuning effect linking M/L, KV and ¢L0,
i.e., linking the galaxy mass, structure and dynamics with the
SFR of galaxies.

4. The Observed Projections of the FP

Could we demonstrate observationally that the FP originates
from the existence of the VP and PFJ planes?

Observations have shown that not only the FP of ETGs is
tilted with respect to the VP and that the scatter around the
plane is small (~20%), but also that the distribution of galaxies
in the FP projections is far from random. The best known
example is the á ñ( ) – ( )I Rlog loge e plane. Kormendy (1977) first
noted a correlation between these variables with a slope
different from that predicted on the basis of the total
luminosity. Capaccioli et al. (1992), Bender et al. (1992), and
Burstein et al. (1997) further noted that galaxies seem to avoid
a region of this space: the ZOE.

We will see here that the projections of the FP, in particular
the á ñ( )– ( )I Rlog loge e plane, the sá ñ( )– ( )Ilog loge plane, and
the s -( ) ( )Rlog log e plane can greatly help us to constrain the
value of β.

For this task we use the data of the WIde-field Nearby Galaxy-
cluster Survey (WINGS) database (Moretti et al. 2014). WINGS
(Fasano et al. 2006) is a spectrophotometric survey of 76 X-ray
selected galaxy clusters with redshifts  z0.04 0.07. The
photometry in the B- and V-bands is from Varela et al. (2009),
that for the J- and K-bands is from Valentinuzzi et al. (2009), and
that for the U-band is from Omizzolo et al. (2009). Spectroscopic
observations were performed by Cava et al. (2009) for a
subsample of galaxies. Effective radii and surface brightness for

normal ETGs and dwarfs were measured with GASPHOT by
D’Onofrio et al. (2014) and galaxy morphologies with
MORPHOT by Fasano et al. (2012). Central velocity dispersions
were taken from the literature (Bernardi et al. 2003; Smith et al.
2004). For a subsample of the WINGS galaxies stellar masses
and star formation rates were measured through the fitting of the
SED by Fritz et al. (2007). He provided the SFR in four different
cosmic epochs: (1) ¸2 20 Myr: stellar populations characterized
by lines in emission and the strongest ultraviolet emission; (2)

¸20 600 Myr: in this age range the Balmer lines reach their
maximum intensity in absorption, while the Cak line is almost
nondetectable; (3) ¸0.6 5.6 Gyr: Balmer absorption lines are, as

Figure 2. This figure aims to give a schematic idea of the mechanism
originating the FP. Panel (a): general view of the sá ñ( )– ( )– ( )R Ilog log loge e

space with two possible VPs and one PFJ plane. Panel (b): two possible VP and
PFJ planes seen edge-on for two ETGs of masses M1 and M2 and luminosities
L1 and L2, respectively, are shown with black (VP) and red lines (PFJ). The FP
results in this case from the connection of the two intersections of the VP and
PFJ planes. For many galaxies the FP is the plane best fitting all the intersecting
lines.
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the age increases, less intense in this age range, while the k line of
calcium reaches its maximum intensity in absorption; (4)

¸5.6 17.8 Gyr: the main features reach an asymptotic value
for these SSPs. With these data we define the time average áYñ as
the sum of the four SFRs obtained for the different cosmic
epochs.

In the previous section we obtained an equation for the
distribution of galaxies with similar M/L, KV, and ¢L0 in the

á ñ( )– ( )I Rlog loge e relation. The zero-point of Equation (17)
varies as M/L, KV, and ¢L0 vary in the FP space. Note that the
slope of this relation depends only on the value of β, i.e., on the
exponent of the PFJ plane.

The question therefore is, where are the projections of the
intersecting lines located, i.e., the lines of constant M/L, KV,
and ¢L0 in these 2D planes?

Figure 3 shows the á ñ( )– ( )I Rlog loge e plane where we have
adopted the solution of Equation (18) with b = -2. Note how
this value of β naturally reproduces the slope of the observed
distribution of galaxies. It follows that the so-called ZOE is in
this context a natural limit reached today by the values of M/L,
KV, and ¢L0 during the cosmic evolution. In the figure we
plotted with different colors different ranges for the stellar
*M L ratios available for the galaxies of the WINGS database

in the V-band (Moretti et al. 2014). Note that there is not a clear
trend of the galaxy distribution with the *M L ratios, even if
the higher mass-to-light ratios seem more frequently distributed
far from the ZOE. The dotted line is in fact the locus where the
product of M/L, KV, and ¢L0 is constant and not simply that
where =M L constant.

Figure 4 is instead a plot of the á ñ( )– ( )I Rlog loge e
distribution for objects of very different masses, covering a
range from ~ M1 to ~ M1014 , i.e., from stars to clusters of
galaxies. The data for the GC systems are taken from Pasquato
& Bertin (2008), while those for stars are taken from the

SIMBAD database.3 The data for the galaxy clusters, ranging
in mass from 1012 to 1014 solar masses, come from S. Cariddi
et al. (2017, in preparation). A similar plot was done by Dantas
et al. (2000) using the k-space over the range going from GCs
to galaxy clusters.
Note that the á ñ( )– ( )I Rlog loge e relation seems to be valid on

all scales. In this figure the region of the ZOE is visible in gray.
The various virialized systems are not randomly distributed.
Their position in the diagram depends on their structure and
luminosity. The plot demonstrates that for all kinds of virialized
systems there is a similar link between structure, dynamics, and
luminosity. All structures are distributed along the lines parallel
to that defining the ZOE with b = -2. The position of all
systems in the diagram should be determined in some way by
the fine-tuning relation linking the luminosity of the stellar
population and the dynamics of the system governed by the
total mass.
For stars, the *M L ratio increases as we move farther away

from the ZOE, going from the main sequence stars of A
spectral type to that of M type stars. If the dominating stellar
population inside a stellar system is made of late-type stars we
will therefore observe a higher ( *M L) that will likely place
the galaxy far from the ZOE.4

Note also that this diagram is done for the V-band, so there is
a natural selection effect at play, since the lower *( )M L (due
to bright stars that dominate the galaxy luminosity) progres-
sively moves the galaxies toward the ZOE.

Figure 3. The á ñ( )– ( )I Rlog loge e plane of the WINGS ETGs. Galaxies are
plotted with different colors according to their measured stellar *M L (blue
dots: * =M L 1; green: * =M L 3; yellow: * =M L 5; black: * =M L 7;
red: * >M L 8). The solid lines give the locus of constant galaxy luminosity.
The dotted lines mark the locus of constant M/L, KV, and ¢L0, i.e., the
projections of the intersecting lines originating the FP when b = -2.

Figure 4. The á ñ( )– ( )I Rlog loge e plane for objects of different masses that are
known to be close to the virial equilibrium: main sequence stars (blue dot = α
Cor B.; magenta = Sun; green = 70 Oph A, yellow = 61 Cyg A, gray = EZ
Aqu.), globular clusters (GCs; magenta dots), dwarf galaxies (red dots), normal
ETGs (black dots), and galaxy clusters (blue dots). The solid line gives the
locus of constant absolute magnitude ( = -M 22V ), while the dotted lines are
parallel to the ZOE and mark the positions of the different constant values of

¢( )M L K LV 0. The shaded area in gray is the ZOE.

3 The selected stars span the spectral types from A0 to M5. They are: α Cor
B., Sun, 70 Oph A, 61 Cyg A, EZ Aqu.
4 Assuming that the DM contribution is approximately the same for all
galaxies, which is not exactly the case.
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The galaxy clusters appear shifted with respect to the ZOE
because these systems contain several spiral galaxies with low
*M L and have a lot of DM, while globular clusters have a

high mass-to-light ratio because their stellar population is
dominated by stars with high *( )M L .

For the other FP projections we obtain

b s

s
b

á ñ = - +

=
-

+

( ) ( ) ( )

( ) ( ) ( )

I

R

log 1 log const,

log
1

2
log const, 20

e

e

where the constant zero-points also depend on the combination
of M/L, KV, and ¢L0. Again the b = -2 value determines the
distribution of galaxies and the position of the ZOE in the
respective diagrams (see Figure 5).

In conclusion, the observed distribution of ETGs in the FP
projections suggests that the fine-tuning between structure and
stellar population could indeed be the origin of the FP
properties. Each galaxy in the sá ñ( )– ( )– ( )R Ilog log loge e space
can be represented by two virtual planes that intersect each
other. The first plane is provided by the virial theorem and fixes
the mass of a galaxy once the M/L and KV are given. The other
plane represents the total luminosity and comes from the

s= ¢ -L L0
2 relation, where in the parameter ¢L0 the role played

by the SFH is encrypted.

In the next section we will further discuss the connection
between luminosity, star formation, and velocity dispersion
in ETGs.

5. The Connection between Luminosity, SFR, and Velocity
Dispersion

We have seen that the FP could originate from a fine-tuning
of the zero-points of two planes, the VP and the PFJ plane. This
link implies a close connection between the SF history of ETGs
and their structural and dynamical characteristics. The FP
projections seem to confirm such a link in the observed
nonrandom distribution of galaxies.
Here we will see that there exists a strong link between

luminosity, the time-averaged SFR, and the central velocity
dispersion. Equations (12) and (13) can in fact be combined as

s
s

= áYñ
⎛
⎝⎜

⎞
⎠⎟ ( )L L

L

M
T ; 21G

2
0

0

2

thus it is possible to predict the validity of the following
relation:

s= áYñ ( )L q , 22

where s= á ñq L TL

M G0 0 is a dimensional constant.

Figure 5. Different projections of the FP on the sá ñ( )– ( )– ( )R Ilog log loge e axes. The dotted lines mark a possible position for the ZOE. The color-coding follows
Figure 3.
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All these things tell us that we should look at the correlation
of three variables L, σ, and áYñ. These are mutually connected
because the mass M correlates with the velocity dispersion σ
through the virial relation and the light L correlates with the
time-averaged SFR áYñ. Consequently, σ and áYñ are
connected. Figure 6 provides the observed correlation among
these variables.

The 3D correlation between these variables derived with the
program R (https://www.r-project.org) gives

s
=  áYñ

+  + 
( ) ( ) ( )

( ) ( ) ( ) ( )
Llog 0.48 0.06 log

1.00 0.13 log 7.81 0.26 , 23

with an rms = 0.215 (R = 0.64 and p-value < ´ -1.2 10 16).
The partial correlation coefficients of ( )Llog with s( )log and

áYñ( )log are respectively 0.44 and 0.43, indicating a robust 3D
relation. This is in remarkable good agreement with the
theoretical expectation seen above, indicating that at the basis
of the zero-points variations of the VP and PFJ planes there is
such connection.

6. More on the FJ and PFJ Planes

We now consider in more detail the meaning of the s–L
plane. The FJ plane contains two measured quantities, the
galaxy luminosity and the stellar velocity dispersion. At
variance with the VP that is defined for one galaxy only in
the sá ñ( )– ( )– ( )R Ilog log loge e space assigning the mass and
zero-point, the FJ plane contains all real galaxies at the same
time. Along the fitted relation the zero-point L0 is nearly
constant for almost all galaxies (let us say between 109 and
1012 Me).

The first thing to note is that in the FJ plane the points of
constant M/L, KV, and ¢L0 are the galaxies themselves (see
again Figure 1). Note how the selected solution with b = -2
used for the á ñ( )– ( )I Rlog loge e relation gives here the series of
parallel zero-points that for each σ provide the luminosities of
all galaxies reproducing the observed FJ relation when they are
considered all together. The FJ relation seems to originate from
the intersections of the “projections” in the s–L space (having

collapsed Ie and Re in the variable L) of all the parallel virtual
planes that represent the total luminosity of galaxies with the
“projections” arising from the VPs (the dashed lines where
M/L, KV, and Re are constants). The intersections of the

s= ¢ -L L0
2 lines with the VP projections fix the exact position

of galaxies in the s–L space. This is the relation expected for
all virialized stellar systems having similar zero-points, L0.
In this context it is therefore possible to explain why the

residuals from the FJ relation correlate with the ( )M L ratio
(Cappellari et al. 2006) and with galaxy sizes (Desmond &
Wechsler 2016).
Figure 7 shows the FP derived here for the present ETG sample

(solid line). It has been obtained following D’Onofrio et al.
(2008), using the MIST fit kindly provided by F. La Barbera
(2008, private communication). The FP coefficients obtained for
this sample are: a=1.29, b=0.29 (note that here má ñe has been
used instead of á ñI e), and = -c 7.24.
Dwarf galaxies ( ~ ¸

M M108 9 ), GCs, and galaxy clusters
deviate from the main galaxy relation. This occurs because
these systems have a zero-point in their VP and PFJ planes that
systematically different, i.e., they have different M/L, KV, and
¢L0 values.
The left and right panels of Figure 7 clearly show that all

stellar systems behave in a similar way. All systems satisfy the
FP and FJ relations, but with zero-points slightly different from
that of typical galaxies. These ZP variations depend on the
different links between the virialized structure and its stellar
population.
The larger exponent observed in many cases for the FJ

relation (4 instead of 2) in this case could ultimately depend on
the heterogeneity of the galaxy sample, i.e., on the inclusion of
galaxies of very different masses and luminosities. An example
is seen in the right panel of Figure 7, where we get a slope of
3.26 for the FJ by fitting together all stellar systems.
In any case, the FJ law is a relation that provides a further

element to the virial relation, linking mass (and the virialized
system internal gravitational energy) to the production of
radiant energy, i.e., to the object luminosity. The mechanisms
of energy production can be very different and can yield to
widely different M/L, even among stellar systems, where the
mechanism is roughly the same, ultimately associated with
nuclear reactions in the star interior.
If we now take Equation (18) with b = -2, giving the zero-

point of the relationship between the effective surface bright-
ness Ie and the effective radius Re (the zero-point varies with
M/L, KV, and ¢L0 and hence with ZFP), after a few steps we get

p
¢ = ¢ ( )K

K

G

L

M
L

4
, 24V

2 0

where ¢L0 is s-L 2 and ¢K is a parameter different for each
cosmic epoch (with units of -[ ]gr cm s2 3 6 or [ ]L pc2 when the
normalization factor in ¢L0 is not taken into account), the
gravitational constant is given in cgs units or expressed as

= ´ - -
G M4.3 10 pc3 1 ( )km s 2 and the term KV is a function

of the Sérsic index n (see, Bertin et al. 2002). ¢K will follow the
evolution of the main galaxy parameters by changing the
position of a galaxy in the á ñ( )– ( )I Rlog loge e plane. As a
consequence the whole FP is expected to vary its tilt across the
cosmic epochs.
Figure 8 shows the relation between ¢L0 derived from

Equation (24) and the total galaxy luminosity L. Here we used

Figure 6. Mutual correlation between L, áYñ, and σ in log units.

8

The Astrophysical Journal, 838:163 (15pp), 2017 April 1 D’Onofrio et al.

https://www.r-project.org


the stellar *M L ,withM/L being unknown for our galaxies.
We observe that the link of ¢L0 and L is far from being trivial:
¢L0 is derived from a complex combination of M/L and KV. The

fit between these variables is done here with the classical
unweighted bisector linear regression analysis (Feigelson &
Babu 1992). We used this method because there is not an
a priori dependence of one variable on the other and the errors
for both are poorly determined. We note that the residuals of
this relation mildly depend on the central velocity dispersion σ.
The correlation coefficient is only 0.11, but the probability of a
correlation by chance is = ´ -P 6.5 10 2, indicative of a
possible dependence. This hidden correlation with σ provides
further support to the idea that ¢L0 is a proxy of áYñ and there is
a 3D dependence between luminosity, SFR, and velocity
dispersion.

Furthermore, Figure 9 gives a clear indication that both L
and ¢L0 are correlated with the time-averaged SFR of the

galaxies measured by Fritz et al. (2007). The residuals of these
correlations present again a significant dependence on σ. The
probability of correlation by chance between the residuals of
the áYñ( )– ( )Llog log relation and s( )log is = ´ -P 7.2 10 1.
For the residuals of the ¢ áYñ( )– ( )Llog log0 relation the
probability of correlation by chance with s( )log is instead
= ´ -P 2.4 10 2. In both cases these correlations reveal the

presence of a second hidden parameter, i.e., σ, which is
significant for the 261 ETGs of our sample. This is another
element in favor of the 3D relation sáYñ– –L .
In summary, we have considered two different correlations.

The first one is that between mass M and velocity dispersion σ
provided by the virial theorem. The second one is that between
luminosity L and mean SFR áYñ. Since mass and luminosity are
connected through the M/L ratio, the FJ relation can be derived
assuming that =L R L GMe0 . The residuals of the s–L
relation depend on áYñ (or proxy of it likes *M L), while the
residuals of the áYñ–L relation depend on σ. It follows that the
3D relation provided by s- - áYñL (in log units) originates
from such mutual correlations.
With this in mind we now better understand why we should

use the s= ¢ -L L0
2 relation for building the second virtual

plane in the sá ñ( )– ( )– ( )R Ilog log loge e space. In fact, in order
to build such a plane we need to use the direct correlation
between L and áYñ that is valid for each galaxy and not the one
between L and σ that is valid for all galaxies (this is in fact the
VP rewritten). What we want is to express the galaxy
luminosity in a way that is independent of its mass. The

áYñ–L relation has σ as a second hidden parameter, as we
have seen.
In the next section we will further explore the consequences

of our findings for the problem of the star formation activity in
galaxies.

7. The SF Activity in Galaxies

Equation (14) provides a link between L0 and the mean SFR
of galaxies. It does not give a direct link between the current
SFR, the velocity dispersion and L0. What we are looking for is
instead a more direct link between these quantities. How are
they connected? We will show in the Appendix that the FJ
relation can be interpreted as a possible translation of the
Stefan–Boltzmann law that is valid for stars in the case of

Figure 7. Left: an edge-on view of the FP for ETGs with the position of all other types of stellar systems overplotted. Right: the same systems for the FJ relation. The
color-coding is the same as Figure 4. The solid line with a slope of 3.26 is obtained from fitting all systems together.

Figure 8. Upper panel: plot of ¢L0 derived from Equation (24) vs. the measured
total galaxy luminosity L. Lower panel: plot of the residuals from the best fit of
the above relation vs. the measured velocity dispersion σ in log units.
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stellar systems, presenting evidence that it is always possible to
express the energy of a system with more convenient units (the
ones we can measure).

During this exercise we noted that the galaxy luminosity can
be expressed at any time t as:

a= á ñ á ñ ( )L N M v , 25G s s s s
2

where the quantities within <> are weighted time-averages
over the whole stellar population. Here Ns is the number of
stars in the galaxy, Ms is their mass, and v2s is their velocity
dispersion. The constant as is different for each galaxy and
represents the ratio between the total energy emitted in the form
of electromagnetic radiation and the total kinetic energy of a
galaxy. This relation is valid for any stellar system in virial
equilibrium.

In this context the quantity L0 can be expressed by the
relation

òa
= = Y( ) ( )L

M t dt, 26
s

g

t
0

0

where we have explicitly written the mass of the galaxy as the
integral of its star formation rate and we have highlighted the
dependence on time of this parameter.

We can now recast Equations (24) and (26) differently,
presenting evidence for the star formation rate of a galaxy.
From this expression we can argue that at any epoch t after
virialization the SFR could be given by:

p
a s

Y =
¢⎛

⎝⎜
⎞
⎠⎟( ) ( )

( ) ( )
( )
( ) ( )

( )t
d

dt

GK t

t K t

M t

L t t

4 1
. 27

s V

2

4

This theoretical relation is important because it allows the
derivation of the global SFR of a virialized galaxy at any time t,
taking into account the structure, the dynamics, and the light
produced by its stars. This relation explains why we have a
fine-tuning between structure and stellar population and
consequently why we observe the FP and the ZOE. The
existence of the sáYñ– –L relation should in other words be the
final output of such fine-tuning.

Equation (27) tells us that at each cosmic epoch t after
virialization the SFR in a galaxy is not free. An unperturbed
galaxy can form stars only at the rate permitted by
Equation (27) along the whole cosmic history. In other words,

once the mass and the potential well of a galaxy are given, the
star formation proceeds according to the galaxy dynamics and
the expected evolution of the stellar populations formed.
If a galaxy does not merge with others and does not experience
a significant infall of new gas, its SFR will not be
modified considerably, continuing its evolution according to
Equation (27). We know, however, that during their evolution
ETGs experience repeated merging events and infall of gas.
During big mergers galaxies are perturbed in their virial
equilibrium and the validity of Equation (27) is probably lost
for the time required to recover the virial equilibrium
(approximately the freefall time). At the same time, large infall
of gas, ram pressure events, and feedback forces could switch
on/off the SFR compressing or stripping the gas component.
These external influences should therefore in some way be
reflected in the properties of the FP (and its projections) and the
FJ relations. Variations are expected in the FP and FJ relations
of ETGs when they are subject to merging and infall/
quenching events perturbing the SFR. Observations of high-
redshift ETGs should therefore shed light on the mechanism
originating the FP.
In the case of our sample of nearby ETGs these events are

exceptions. Merging and large infall or quenching events are in
the far history of these objects. They had time to recover their
structure (virial equilibrium) and their SFR should therefore
follow the behavior expected from Equation (27). Note that for
these ETGs the central velocity dispersion is high and the SFR
is low. This is expected on the basis of Equation (27).
Could we test in some way the validity of Equation (27)

through observations? Unfortunately, this requires a database
of masses, luminosities, SFR, and velocity dispersions of
galaxies at different redshifts, while our WINGS database is
made up only of nearby ETGs. However, considering that at
t=0 the SFR was 0, we can predict that the mean SFR of
today galaxies will be approximately given by:

a
áYñ =

D
~ ( )L

t

M

T

1

2
, 28

s

G

G

0

where D =t TG is the luminosity-weighted age of the galaxies.
Figure 10 shows the mean SFR measured by Fritz et al.

(2007) in four distinct epochs from the direct fit of the galaxy
SEDs versus the mean SFR obtained by Equation (28). The
correlation ( =c.c. 0.6 and ~rms 2.8 but significant at a s~7

Figure 9. Left panel: plot of ( )Llog vs. the time-averaged SFR in log units. Right panel: plot of ¢( )Llog 0 vs. the time-averaged SFR in log units. Note that the residuals
of these relations depend in a mild way on s( )log .
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confidence level) appears consistent with the theoretical
expectation, taking into account the various sources of errors
affecting both quantities, even if the sample is biased and the
correlation may be driven by few points at high SFR values.
This test gives therefore a marginal indication for the validity
of Equation (27).

We believe that this equation is important to understand the
FP and the SFH in galaxies. Currently, simulations are the only
way to test the validity of Equation (27). To what extent could
merging/feedback events change the main stream of SF that
each galaxy has encrypted in it since the beginning of the virial
equilibrium? At which redshift are the FP and FJ relations of
ETGs in place? These are all questions for the upcoming JWST
telescope. A study of the FP and FJ relations for high-redshift
objects observed during the phases of their maximum activity
in SF will likely shed more light on the validity of
Equation (27).

8. Conclusions

We have shown that the origin of the FP can be traced back to
the validity of two basic physical relations: the virial dynamical
equilibrium and the sáYñ– –L relation linking the galaxy
luminosity, the time-averaged SFR, and the velocity dispersion.
When it is written as s= ¢ -L L0

2 this relation provides a second
virtual plane in the sá ñ( )– ( )– ( )R Ilog log loge e space, whose
zero-point varies in a coordinated way with the VP. This fine-
tuning is at the origin of the properties of the FP. The coupling of
these relations could also explain the existence of the downsizing
phenomenon and the nature of the ZOE in the FP projections.

Since, as demonstrated by Zaritsky (2012), a fundamental
manifold can be constructed for all stellar systems, the easy
prediction is that in general the FP and FJ relations are
different for each class of stellar system (GCs, dwarf galaxies,
late-type galaxies, normal ETGs, clusters of galaxies) that are
dominated by velocity dispersion. The diversity originates

from the different zero-points of the VP and PFJ planes, or in
other words from the different SFHs and the different
coupling between structure, dynamics, and stellar popula-
tions. The combination of the virial equilibrium, the

s= ¢ -L L0
2 relation, and the validity of the PFJ law for

galaxy systems constrains objects of similar characteristics to
the same FP, which is the locus of constant M/L ratio, KV, and
áYñ at each time epoch.

The projection of the intersecting lines connecting the VP
and s= ¢ -L L0

2 planes explains the properties observed for
ETGs in the á ñ( )– ( )I Rlog loge e plane, in particular the existence
of the ZOE that in this framework is the natural limit reached
by the stellar and dynamical evolution of a stellar system today.
The existence of the FP for nearby ETGs provides a natural

constraint on the possible SFR activities, and the dynamical
and structural transformations that these objects might
experience. Once formed and virialized in a given potential
well, the global SFR of an unperturbed ETG could not deviate
from the track imposed by Equation (27). In other words, the
evolution of the SFR depends on the transformations in mass,
luminosity, structure, and dynamics (unless new merging
phenomena occur at later epochs).
Equation (27) should be studied now through photometric

and dynamical simulations following the details of the mass
assembly in stars and their relative luminosities. Naively, we
can predict that since the stellar mass is generally increasing,
while luminosity and stellar velocity dispersions could vary
with the generations of stars, the resulting SFR will probably
see various peaks at different redshift epochs depending on the
galaxy dynamics.
It will be interesting to see if Equation (27) will help to

quantify the problem of the star formation across the cosmic
epochs and to constrain in some way the mass quenching
phenomenon. First, it will be important to verify if the two
principal types of galaxies in the color–magnitude (or stellar
mass), color–concentration, and color–morphology diagrams can
be reproduced (Strateva et al. 2001; Kauffmann et al. 2003;
Brinchmann et al. 2004; Baldry et al. 2004, 2006; Driver et al.
2006; Bamford et al. 2009). We know that in these plots there
are two main regions: the so-called blue cloud (or main
sequence), where galaxy mass correlates with the star formation
rate, and the red sequence where there is no such correlation and
galaxies are passive. The origin of this bimodality is commonly
attributed to the bulge and disk structure of galaxies. In general,
disks are bluer in color than bulges (e.g., Peletier &
Balcells 1996) and galaxies with lower stellar mass and lower
Sérsic index tend to be bluer (and hence have higher sSFRs) than
higher stellar mass and higher Sérsic index systems (Baldry et al.
2004, 2006; Driver et al. 2006; Bamford et al. 2009). Similar
trends are observed for luminosity and stellar light concentration
(Strateva et al. 2001; Driver et al. 2006). This idea fits with the
found dependence of the SFR on the Sérsic index and the
velocity dispersion found here. Unfortunately, all such relation-
ships are complicated by the effects of the environment, so
disentangling the various effects on the star formation efficiency
is quite difficult.

We would like to acknowledge the anonymous referee
whose comments and suggestions have greatly improved
this work.

Figure 10. Plot of the mean observed SFR measured by Fritz et al. (2007) for
the galaxies of the WINGS database using the fitted spectral energy
distributions vs. the mean áYñ calculated on the basis of the prediction of
Equation (27) (see the text). The thin line is the one-to-one relation, while the
thick line is the fitted distribution.
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Appendix
A Possible Origin for the FJ Relation

We try to demonstrate here that the FJ relation with b = 2
could be seen as a sort of translation of the blackbody Stefan–
Boltzmann law valid for individual stars for the case of a
galaxy made by an assembly of stars in which the temperature
is replaced by the velocity dispersion. From this analysis it will
appear again that the link connecting L0 and ¢L0 is the SFR of
galaxies.

It goes without saying that there is not an immediate straight
correlation between the physical situations in stars and
galaxies; however, we will convincingly see that such an
analogy is possible and also argue that dynamics (via the
velocity dispersion) and stellar populations in a galaxy (via the
light emitted by stars) are intimately related. To demonstrate
that this is possible we proceed as follows.

A.1. The Case of Single Stars

A star of mass Ms, radius Rs, luminosity Ls, and effective
temperature Ts e, is an assembly of N heavy particles (nuclei,
ions, and atoms, whereas electrons can be neglected) in thermal
motion with mean temperature á ñT and in virial equilibrium,
i.e., satisfying the condition

º º ( )M v
GM

R
E , 29s s

s

s
V

2
2

where vs is the mean particle velocity in a gram of matter,
= á ñM N ms p , with N as the number of heavy particles and mp

as their mean mass, and finally EV stands for the “virial
energy.”

Consider first the total bolometric luminosity of a star (i.e.,
the total energy emitted per second by the surface). This is
usually derived from the Stefan–Boltzmann law, since stars are
in good approximation blackbody systems.

In a star we can measure the luminosity Ls, the effective
temperature Tes, and the radius Rs, which are related by the well
known blackbody law ( p s=L R T4 2

SB
4), where sSB is the

Stefan–Boltzmann constant. The suffix SB is to distinguish it
from the velocity dispersion of stars in a galaxy, usually
indicated with the same symbol. When misunderstanding is
obviously avoided, the suffix is dropped.

It is worth recalling here that the luminosity can be derived
from the energy content of the blackbody according to

p p
=

W( ) ( ) ( )U T
h c

kT
8

15
, 30bb 3 3

4
4

where Ω is the total volume and Ubb(T) is the total energy
of the blackbody. From this we obtain the luminosity of the
star

p=
W

=
( ) ( ) ( )L

U T
R c

U T c

R
4

3
. 31s s

s

bb 2 bb

At this point we verify that the gravitational energy, the
mean kinetic energy of the particles, and the blackbody energy
content of the whole star with mean temperature á ñT are
comparable to each other. Taking the Sun as a typical star, for
which we assume =R 6.94 10s

10 cm, =M 1.99 10s
33 g, mean

internal temperature á ñ ´T 5 106 K, and central value5

T 107, we obtain:

(i) the mean density of kinetic energy of the N particles in
the star is

åá ñ =
W

=

´ - ( )

E
m v

nKT
1

2

3

2

3.47 10 erg cm , 32

k
i

N
p p

2

15 3

where mp and vp are the mass and velocity of each
particle and = Wn N is the number density of particles;

(ii) the mean density of gravitational energy is

p
á ñ = ´ - ( )E

GM

R

3

4
2.72 10 erg cm ; 33g

s

s

2

4
15 3

(iii) the mean energy density of the photons is

p
á ñ =

´ -

( ) ( )

( )

U T
h c

KT
8

15
1.15 10 erg cm ; 34

bb

5

3 3
4

15 3

for a mean temperature of 107 K. Within the numerical
approximation the three energies are of the same order.
Strictly speaking, one should have á ñ á ñ + á ñE E Ug k bb .
Within the approximation, our estimates fulfill this
constraint. Analogous estimates can be made for other
types of stars with similar conclusions. In other words,
there seems to be a relationship between the gravitational
energy density and the sum of the electromagnetic and
kinetic energy densities. Finally, using the virial condi-
tion we can also estimate the mean velocities of the
particles in a star (the Sun in this example), which are
about v 200s km s−1, depending on the exact value
adopted for the temperature.

Given these premises, the luminosity of a star can be derived
from

= ( )L
dE

dt
, 35s

i

where Ei is the total internal energy (sum of the nuclear and
gravothermal contributions). We may generalize the above
relation by supposing that the luminosity can be expressed as

a a a p= º á ñ º á ñ ( )L E M v U R
4

3
, 36s s V s s p s s

2
bb

3

where as is a suitable proportionality factor with the dimension
of an inverse of time. In other words, we link the luminosity Ls
to the internal properties of the star, in particular to the mean
velocity of the constituent heavy particles.
However, the same luminosity can be expressed by means of

the surface blackbody with a temperature equal to the effective

5 The elementary theory of stellar evolution by combining the equations for
hydrostatic equilibrium, mass conservation, and physical state of the plasma,
e.g., r=

m
P Tk

mH
, provides a simple relation for the mean temperature inside a

star

 m´


T̄
M

M

R

R
4.58 10 K,6

where M and R are the total mass and radius of the star and μ is the mean
molecular weight of the gas. For a solar-like star m  1, so ´T̄ 5 106. The
central temperature is higher than this and close to 107.
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temperature Te of the star (a few thousand degrees, about
´5.78 103 K for the Sun and ´3 103 for a RGB star).

p= á ¢ ñ ( )L U cR4 , 37sbb
2

where ¢Ubb is the energy of the blackbody at the surface
temperature. This implies that the ratio of the external to the
internal blackbody energies is ¢ -U U10bb

13
bb. The size of

the proportionality coefficient can be understood as being due to
the T4 dependence of the blackbody energy density and the natural
variation of the temperature from the surface to the inner regions of
a star. The typical temperature gradient of a Sun-like star is
D D - -  T R 10 K cm4 1, where D = - ¢ T T T T and
D = - ¢ ¢    R R R R if R and T refer to an inner region
(close to the center) and ¢R and ¢T to the surface.
Therefore,6 ¢ -T T 10 4.

It follows from all this that a - c R10s s
14 . Inserting the

value for the light velocity and the radius of a typical star (like
the Sun) one obtains a - - 10 ss

14 1.
The factor c Rs ensures that the energy density is translated

to energy lost per unit time (a power). What we have done so
far is a simple rephrasing of the classical expression for the
luminosity. The reason for writing the star luminosity in this
curious way will become clear as soon as we move to galaxies,
i.e., to systems hosting billions of stars.

The whole discussion above has been checked against stars
like the Sun, so it follows that changing the types of stars
should also change the value of as. This is shown in Figure 11.
As expected as spans a wide range passing from dwarfs to
massive stars, but this will not affect our final conclusions.

A.2. The Case of Galaxies

We now extend the above consideration and formalism to
the case of a galaxy with mass MG and radius RG, a large
assembly of stars, each of them shining with the luminosity Ls i, .
In brief, the luminosity of the galaxy is the sum of the
luminosity of all the stars inside; the luminosity of each star can
be expressed as being proportional to the total kinetic energy of
gas particles. Therefore we may write

å a=
=

( )L M v , 38G
i

N

s i s i s i
1

, , ,
2

s

where Ns is the total number of stars within the galaxy, and as i, ,
Ms i, , vs i, , and Rs i, are the basic quantities characterizing each
star. In analogy with Equation (36), the galaxy luminosity can
be rewritten as

a= á ñ á ñ ( )L N M v , 39G s s s s
2

where the quantities within<> are weighted averages over the
whole stellar population. Note that for galaxies of the same
“size” (mass and radius) these values will be very similar.

Now, thanks to the homologous nature of the gravitational
collapse at all scales, it is possible to note that the quantity á ñvs ,
i.e., the mean velocity of particles inside a star, turns out to be
comparable to the velocity dispersion of stars within a galaxy,

customarily named σ (in km s−1). It is then possible to write

s= ( )L L , 400
2

where

a a= á ñ á ñ º á ñ ( )L N M M . 41s s s s G0

It can be shown that even for a galaxy there is a relationship
between the total gravitational energy, the total kinetic energy
of the stars, and the total radiative energy emitted by stars that
allows the relation (41) to be replaced by

a= á ñ º ( )L M
c

R
M , 42G G

G
G0

where aG refers to the galaxy as a whole. Like in the case of
stars, aá ñG has the dimension of an inverse of time.
To demonstrate the validity of Equation (42) we consider a

generic mean stellar content of N 10s
12 objects, for simplicity

taken to be like the Sun ( = ´M 2 1033 g and radius
= ´R 6.94 1010 cm, surface temperature T 5780s K), total

mass = M M10G
12 , total radius R 100 kpcG . In this

example we ignore the contribution to the mass given by
DM. According to the current understanding of the presence of
DM in galaxies, the ratios of the dark to baryonic matter (BM)
both in mass and radii of the spatial distributions (supposed to
be spherical) are b ´M MDM BM and b= ´R RDM BM. This
means that within the volume occupied by the BM there is
about b ´ M1 2

DM (Bertin et al. 1992; Saglia et al. 1992;
Bertin et al. 2002). For current estimates of b  6 DM can be
neglected in the internal regions of a galaxy where stars are
located.
The energy density of the photons emitted by all the stars in

the galaxy evaluated at any arbitrary point inside the galaxy is

Figure 11. Upper panel: plot of as for the stars and its analog for the galaxies
aG (see the text for the definition) as a function of the mass of the virialized
system (star or galaxy as appropriate). Note the large range of values spanned
by as by varying the mass of the star from a dwarf to a massive object. Finally,
note that the values aG for the galaxies fall in a range typical of the low-mass
(old) stars. Lower panel: plot of a= *L Ms G0 (usingM

*

instead ofMG) vs. the
galaxy masses. The solid line gives the value observed for L0 in the FJ relation.

6 The values assumed for the central and surface temperature of the Sun
amply justify a ratio ¢ T T 0.0001 or lower and a proportionality factor 10−13

in the relationship between the energy densities Ubb and ¢Ubb.
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given by

ò p= ¢
W

( )U U
N

r dr
R

r
4 , 43G

R

s
s

G

s
bb,

0
bb,

2
2

2

G

where ¢U sbb, refers to the blackbody at the temperature of the
stellar sources7, WG is the volume of the whole galaxy, and the
factor ¢ ´ WU Ns s Gbb, is the mean blackbody radiation inside
the galaxy. Although the integrand of Equation (43) is not
strictly correct for evaluating the variation of the blackbody
energy as a function of the galactocentric distance, it is
adequate for our purposes. The quantity ¢U sbb, is given by

p p¢ = -( ) ( )U
h c

kT
8

15
8.02 erg cm , 44sbb, 3 3

4
4 3

so for U Gbb, of Equation (43) we estimate

´ - - ( )U 1.29 10 erg cm , 45Gbb,
12 3

where we assumed N 10s
12 stars, ´R 6.94 10s

10 cm
(roughly the solar radius),W ´ 1.13 10G

71 cm3 for a galactic
radius of about 100 kpc.

The mean density of kinetic energy of the stars turns out to
be of the order of ´ - -3.52 10 erg cm12 3 for a mean velocity
dispersion of about 200 km s−1.

The mean gravitational energy density for the galaxy
(limited to the volume occupied by the BM) is

p
= ´ - - ( )E G

M

R

3

4
7.79 10 erg cm . 46g G

G

G
,

2

4
12 3

The gravitational energy is surely underestimated because we
have neglected the presence of DM.

Therefore, also in this case there is an approximate
relationship between the gravitational energy and the sum of
electromagnetic and kinetic energy densities.

We can then write the equation

a s a= = á ñ ( )L M U R . 47G G G G G G
2 3

Thanks to the assumption of a uniform distribution of stars
and stellar types contributing to the light in our model galaxy,
the distribution of the photon energy inside is also uniform and
always equal to that of many blackbodies of similar
temperature. Furthermore, owing to the very large number of
stars in a galaxy, the light emitted by a certain region, e.g.,
within the effective radius, can be assimilated into that of a
blackbody at a certain mean temperature and very large surface.
Therefore we may write

p= á ñ ( )L U cR4 , 48G G Gbb,
2

so for solar-like stars a a- -  c R 10 sG G s
13 1 . It is worth

emphasizing here that aG is nearly identical to as and for each
galaxy there is a star with similar α.
In conclusion, the classical FJ relationship s=L L0

2 can be
understood as a sort of translation of the Stefan–Boltzmann law
for blackbodies (BBs) to the case of galaxies that can be
viewed as the sum of many BBs.
Figure 11 shows the range of values for the parameter aG of

galaxies and compares them with those for stars. Note that low-
mass galaxies have in general higher values of α (closer to the
values for intermediate-mass stars), whereas the larger galaxies
are preferentially populated by low-mass stars. What matters
here is that for every galaxy there exists a combination of L0
( a~ Ms G) and σ able to reproduce the total galaxy luminosity.
The lower panel of Figure 11 shows that a= *L Ms G0 is
approximately constant for a wide range of galaxy masses.
We have calculated U Gbb, and Eg for a small sample of

nearby early-type galaxies (Moretti et al. 2014) for which all
the basic data were available, and we have estimated the
parameter aG for all of them. The results are shown in the two
panels of Figure 12.
One can debate whether this is also true for spiral galaxies.

We believe that the origin of the Tully–Fisher relation (Tully
& Fisher 1977) for late-type systems can likely be reported to
the same context. Here the mean characteristic velocity of
the stellar system is no longer the velocity dispersion, but the
circular rotation. For more complex systems, where rotation
and velocity dispersion are significant, a combination of the

Figure 12. Left panel: the mean density of the gravitational energy vs. the mean density of the BB energy for a sample of early-type galaxies. Right panel: the quantity
aG as a function of the stellar galaxy mass in solar units for an object from the same sample.

7 In relation to this, we remind the reader that in most nearby galaxies the
detected light is due to stars from the main sequence turnoff (or slightly fainter
than) to the tip of the RGB. In sufficiently old galaxies the corresponding mass
range is rather small. In other words, the stellar population responsible for the
observed light can be reduced to a single population of a certain age and mean
chemical composition.
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two is required to characterize the total kinetic energy. That
issue, however, is left to a future investigation.
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