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ABSTRACT
The possible occurrence of dead zones in protoplanetary discs subject to the magneto-rotational
instability highlights the importance of disc ionization. We present a closed-form theory for the
deep-down ionization by X-rays at depths below the disc surface dominated by far-ultraviolet
radiation. Simple analytic solutions are given for the major ion classes, electrons, atomic ions,
molecular ions and negatively charged grains. In addition to the formation of molecular ions
by X-ray ionization of H2 and their destruction by dissociative recombination, several key
processes that operate in this region are included, e.g. charge exchange of molecular ions and
neutral atoms and destruction of ions by grains. Over much of the inner disc, the vertical
decrease in ionization with depth into the disc is described by simple power laws, which can
easily be included in more detailed modelling of magnetized discs. The new ionization theory
is used to illustrate the non-ideal magnetohydrodynamic effects of Ohmic, Hall and Ambipolar
diffusion for a magnetic model of a T Tauri star disc using the appropriate Elsasser numbers.

Key words: MHD – protoplanetary discs – ISM: abundances.

1 IN T RO D U C T I O N

Twenty-five years ago, Balbus & Hawley (1991) proposed a lit-
tle known instability in rotating magnetized discs, the magneto-
rotational instability (MRI), which might explain how accretion and
turbulence occur in protoplanetary discs (PPDs). Gammie (1996)
stressed how important the level of ionization is for the operation of
the MRI. Assuming that PPDs are permeated by interstellar cosmic
rays (CRs), he showed how too little ionization can lead to so-called
dead zones where the MRI does not occur, usually close to the mid-
plane. It was then argued that the CRs could easily be blocked by
the strong winds of young stellar objects, and that X-rays could
ionize PPDs (Glassgold, Najita & Igea 1997).

Our understanding of disc ionization is still incomplete for
a variety of technical and physical reasons. Although consid-
erable progress has been made in both theoretical and obser-
vational studies of the warm surface layers of PPDs irradiated
by stellar far-ultraviolet (FUV) radiation (reviewed by Najita &
Ádámkovics 2017), little is known about regions closer to the mid-
plane where no clear diagnostics have been identified so far. The
underlying physics of both X-ray and CR ionization of the inner
disc is also incomplete. The Monte Carlo calculations of X-ray ab-
sorption and scattering (e.g. Igea & Glassgold 1999; Ercolano &
Glassgold 2013) become inaccurate beyond a certain depth into the
disc, e.g. for vertical column densities NH with log NH > 25.25. In
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addition, there is the issue of the blocking of the CRs by a strong,
asymmetric stellar wind. Cleeves, Adams & Bergin (2013) first
approached this problem and obtained CR ionization rates 1000
smaller than the interstellar value due to the modulation of the CRs
by the T Tauri star wind.

Thermal–chemical models of the discs surface often involve
hundreds of species and thousands of reactions, and as such are
unsuitable for inclusion with 2D and 3D solutions of the non-
ideal magnetohydrodynamic (MHD) equations. This difficulty can
be overcome by resorting to the simplified treatment used by
Oppenheimer & Dalgarno (1974) for ionization in dark clouds, and
applied to PPDs by Ilgner & Nelson (2006a,b) and Bai & Goodman
(2009). In this approach, the ionization theory treats only a small set
of generic species, e.g. molecular ions like HCO+ and H3O+ (rep-
resented by m+), heavy atomic ions like Na+ and Mg+ (represented
by M+) and charged grains (g−). This formulation still allows for the
proper treatment of the destruction of molecular ions by including
charge transfer to heavy atoms as well as dissociative recombination
with electrons, with the subsequent destruction of the heavy atomic
ions by recombination on charged grains. We adopt this perspective
following Ilgner & Nelson and Bai & Goodman.

We focus on the ionization of the inner part of a PPD below
the surface layer dominated by FUV ionization, and assume that
the disc has experienced significant grain growth. The goal is to
track the ionization down to the mid-plane, which we refer to as
‘deep-down’ ionization. An important element of the theory is the
approximate power-law dependence of the X-ray ionization param-
eter, ζ̃ ≡ ζX/nH on vertical column density NH, where ζ X is the
ionization rate and nH is the number density of hydrogen nuclei.

C© 2017 The Authors
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This leads to simple power laws for the ion abundances, relations
that can be easily accommodated in MHD calculations of discs.
We illustrate these results by considering all three non-ideal MHD
effects (Ohmic, Hall and Ambipolar) for a weakly magnetized disc
model of Lizano et al. (2016) for the T Tauri star disc.

Although the theory presented in this paper provides a significant
simplification of PPD ionization, many unknowns remain. The exact
level of both X-ray and CR ionization approaching close to the mid-
plane is uncertain, and the role of mixing needs to be considered. In
addition, the choice of important physical parameters like the X-ray
luminosity, the grain surface area and the gaseous heavy-element
abundance can affect the character of the ionization. The importance
of disc ionization goes beyond considerations of the MRI because
in general it determines the coupling of the field to the disc ions and
the coupling of the ions to the neutral species, essential issues for
any theory of magnetized discs.

2 PH Y S I C A L P RO C E S S E S A N D S O L U T I O N

We apply the Oppenheimer & Dalgarno (1974) method to PPDs by
first writing balance equations for the number density of molecular
and atomic ions, n(m+) and n(M+),

ζXnH = (k nM + βne + kdnd) n(m+), (1)

kcenMn(m+) = (α ne + kdnd) n(M+). (2)

Equation (1) expresses the idea that the ionization is due to X-ray
ionization of H2 and that the proton in H+

2 is rapidly transferred
to high-abundance molecules that better bind the proton, espe-
cially CO and H2O. The right side of the equation states that the
molecular ions can be lost by charge exchange with neutral atoms,
dissociative recombination with electrons and recombination with
grains. In this equation, the rate coefficient, k = kce + kpt, is the
sum of charge-exchange and proton-transfer rate coefficients for
atomic ions reacting with molecular hydrogen; nM, ne and nd are the
number density of neutral atoms, electrons and dust, respectively.
Equation (2) describes how atomic ions are produced by charge
exchange of molecular ions with neutral atoms and how they can
be destroyed by either recombination with grains or electrons. The
rate coefficients α and β have their usual values (Spitzer 1978;
Anicich 1993),

α = 2 × 10−10 T −2/3 cm3 s−1, β = 1.2 × 10−7 T −3/4 cm3 s−1.

(3)

The information available on the reaction of molecular ions with
atoms is limited, and we estimate that the rate coefficient for charge
exchange and proton transfer is about the same and equal to

kce = kpt = 5 × 10−10 cm3 s−1. (4)

The grains are treated according to the collisional-charging theory
of Draine & Sutin (1987, hereafter DS87). For a typical grain size a
[e.g. the geometric mean of the minimum and maximum sizes in the
Mathis, Rumpl & Nordsieck (1977) a−3.5 power-law distribution1],
DS87 introduce an ‘effective temperature’

τ = a kBT

e2
= 59.9

(
a

10 μm

) (
T

100K

)
, (5)

1 We adopt 10 µm as representative grain size, but the formulae allow for
consideration of other sizes.

and an ‘effective atomic weight’ of the ions μi defined by their
equation (4.8b). Assuming an ‘electron sticking coefficient’ se = 1,
μi is given by

μi ≡
(

ne

ni

)2 (
mi

mH

)
, (6)

where the total ion density is

ni = n(M+) + n(m+), (7)

and the average ion mass mi is given by

ni

m
1/2
i

= n(M+)

m
1/2
M

+ n(m+)

m
1/2
m

. (8)

Assuming an ion mass, mk = AkmH, with k = M, m, the effective
atomic weight can be written as

μi = ne
2

[
n(M+)

A
1/2
M

+ n(m+)

A
1/2
m

]−2

. (9)

The grain charge depends only on τ and μi. While τ depends on
grain size and temperature, μi is bound by two limiting values:
if dust plays no role in the charge balance, ni ≈ ne and μi ≈
〈Ai〉, where 〈Ai〉 ≈ 25. Instead, if the grains carry free charge,
as a consequence of balance between negatively and positively
charged grains, ni/ne ≈ (〈Ai〉mH/me)1/2 and μi ≈ me/mH [see e.g.
equation (28) of Nakano, Nishi & Umebayashi 2002 ]. In the limit
of the big grains/high temperatures of interest here (τ � 1) the grain
charge is given by

〈Zd〉 ≈ −τψ, (10)

where ψ is the solution of the charge equation (Spitzer 1941)

(1 + ψ)eψ =
√

μimH

me
, (11)

and me is the mass of the electron. For electron and heavy atoms with
mM = 25 mH, ψ = 3.8, but if grains dominate the negative charge,
ψ will be much smaller. In the example treated below, ψ < 1 near
the mid-plane. In applying the DS87 theory to the present problem,
we assume that the grains and the temperature are large enough for
the effective temperature in equation (5) to satisfy τ � 1.

The contribution of the grains to the total charge fraction (g−) is
then

x(g−) = −xd〈Zd〉

= 1.12 × 10−16

(
ρg/ρd

0.01

) (
10 μm

a

)2 (
T

100 K

)
ψ,

(12)

where the dust abundance relative to the density of H nuclei is

xd = nd

nH
= 1.863 × 10−18

(
ρg/ρd

0.01

) (
a

10 μm

)−3

. (13)

DS87 also give approximate expressions for the recombination
rate coefficient kd for the reaction of heavy ions, both atomic and
molecular, with grains,

kd ≈ πa2〈vi〉 (1 + ψ) , (14)

where the mean thermal ion speed is 〈vi〉 = √
8kBT /π〈Ai〉mH. This

rate can be written as

kd = 9.11 × 10−2

(
a

10 μm

)2 (
T

100 K

)1/2

(1 + ψ) cm3 s−1.

(15)

MNRAS 472, 2447–2453 (2017)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/472/2/2447/4085216 by IN
AF Trieste (O

sservatorio Astronom
ico di Trieste) user on 31 August 2020



Deep-down ionization of protoplanetary discs 2449

The grain destruction term in equations (1) and (2) is then

kd xd = 1.70 × 10−19D cm3 s−1, (16)

with

D =
(

ρg/ρd

0.01

) (
10 μm

a

) (
T

100 K

)1/2

. (17)

The basics of the ionization theory can now be completed with the
equation for charge conservation,

n(m+) + n(M+) = ne + n(g−). (18)

It is then straightforward to obtain formulae for abundances of m+

and M+,

x(M+) = kce xM[xe + x(g−)]

kce xM + kd xd + α xe
, (19)

x(m+) = (kd xd + αxe)[xe + x(g−)]

kce xM + kd xd + αxe
, (20)

and then obtain a cubic equation for the electron fraction,

αβx3
e + [α(k xM + kd xd) + βxd(kd − α〈Zd〉)]x2

e

−{ζ̃ α − k xM xd(kd − α〈Zd〉) + x2
d [(α + β) 〈Zd〉 − k2

d ]}xe

− [ζ̃ (kce xM + kd xd) + kd x2
d k xM 〈Zd〉 + k2

d x3
d 〈Zd〉] = 0. (21)

In principle, equation (21) can be adapted to treat high and low
ionization regions of PPDs. The ionization rate ζ X would then
have to include a broader range of external radiation than just the
energetic X-rays considered here. In particular, the surface layers are
strongly affected by FUV radiation, including Lyman-α. As shown
in recent models of the inner surface layers, e.g. Ádámkovics, Najita,
Glassgold (2014, 2016), shielding by dust and molecules plays
an essential role in determining the effects of FUV irradiation.
In this report, we focus on that part of the PPD that lies below
the FUV layer where the ionization is many orders of magnitude
less than near the surface. In this deep-down region of a PPD, the
X-ray ionization rate plays a key role in determining the ionization.
It enters the cubic equation (equation 21) through the ionization
parameter, ζ̃ . As discussed in earlier work (Igea & Glassgold 1999;
Ercolano & Glassgold 2013), the penetration of the X-rays to large
depths depends on their scattering by electrons, both free and weakly
bound. These studies show that the X-ray ionization parameter in the
inner PPD (out to R ≈ 15–20 au) decreases rapidly with height and
relatively slowly with radius. For the MMSN, the decrease follows
the −8/3 power of the vertical column density NH (measured from
the top),

ζ̃ = ζX/nH = 10−33 (NH/ 1026 cm−2)−8/3 cm3 s−1. (22)

This behaviour is also expected to apply to other density
distributions.2 However, our understanding of X-ray ionization is
incomplete at the largest depths in PPDs (approaching the mid-
plane) because of the limitations in the Monte Carlo scattering
calculations. In practice, this means that the X-ray ionization rates
are uncertain for vertical columns greater than log NH = 25.25.

The ionization level in the regions of interest for this work is
small, <10−9, and even smaller approaching the mid-plane. Under

2 The slow decrease of ζ̃ with R may be understood from the fact that both
ζX and nH decrease as the inverse square of the radius. The deep-down
variation of ζ̃ with column density in equation (22) stems from the fact that
ζ X varies with NH slightly less strongly than R−2 and nH varies with NH

slightly less strongly than R−1.

these conditions, the quadratic and cubic terms in equation (21) can
be ignored, as can the quadratic and cubic terms in xd in the last two
terms of the equation. In addition, the terms involving the radiative
recombination coefficient α can be dropped, leading to a simple
expression for the electron fraction deep down in the inner part of a
PPD,

xe ≈ ζ̃
kce xM + kd xd

k xM kd xd
. (23)

The relative size of the two terms in the numerator depends
on the abundance of heavy atoms in the gas phase (kce xM) and
on the abundance and size of the grains (xd kd from equation 16). To
estimate the order of magnitude of these terms, equation (23) can
be rewritten using equation (16) with T = 100 K and ρg/ρd = 0.01
as

kce xM + kd xd

k xM kd xd
≈

[
2.9 × 1018

1 + ψ

(
a

10 μm

)
+109

xM

]
cm−3 s. (24)

The abundance of heavy atoms xM determines the size of the second
term of this equation. Other than several well-studied lines of sight
for diffuse clouds (e.g. Savage & Sembach 1996), little is known
about the abundance of gas phase heavy atoms in thicker clouds and
PPDs. In diffuse clouds, the volatile atoms Na and K are depleted
by about 1 dex, Mg and Si by 1.5 dex, the more refractory Fe by
∼230, and essentially no depletion for S. A study of abundances for
five thicker clouds by Joseph et al. (1986) yielded a larger depletion
for Si and a 1 dex depletion for S. More recently, Anderson et al.
(2013) measured the 25 μm S I fine-structure emission from three
Class 0 sources with outflows and shocks. They obtain lower and
upper limits for the depletion of atomic S, which they interpreted
as produced by shock-induced vaporization of sulphur-rich grain
mantles. There is no new information on the abundance of Na and K.
We adopt a conservative approach to this fragmentary observational
situation by adopting the largest depletion factors suggested for Na
(10), Mg (40), Si (75), S (100), K (12) and Fe (180). The average
abundance of these heavy atoms is then xM = 1.8 × 10−6, close
to the undepleted, solar Na abundance. This number might well be
smaller because it relies heavily on the uncertain depletions of Mg
and Si. Our best conservative guess is xM = 10−7, or 0.1 per cent of
the solar abundance. If we use this value in equation (24), we find
that the second term is between 1 and 2 dex smaller than the first,
unless the effective grain size (surface area) is very small, i.e. less
than 0.1μm. Where the second term can be ignored, equation (23)
becomes

xe ≈ ζ̃
kce/k

kd xd
= 0.5

ζ̃

kd xd
, (25)

directly expressing how the electron fraction is determined by the
ion production by X-rays and destruction by grains (see also equa-
tion 58 of Okuzumi & Inutsuka 2015). This equation should suffice
for a preliminary discussion of deep-down ionization.

3 R E S U LT S F O R IO N A BU N DA N C E S

We illustrate the theory presented in the previous section by apply-
ing it to the Minimum Mass Solar Nebula (MMSN; Hayashi 1981)3.
The reference case is defined by a grain size of a = 10 μm and a

3 The MMSN parameters at 1 au are: temperature, 280 K; scaleheight,
5 × 1011 cm; and mid-plane density, 1.15 × 1015 cm−3; the mass column
of H nuclei is then 1700 g cm−2; the mid-plane temperature and density
vary with radius as the −0.5 and −2.75 powers, respectively.

MNRAS 472, 2447–2453 (2017)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/472/2/2447/4085216 by IN
AF Trieste (O

sservatorio Astronom
ico di Trieste) user on 31 August 2020



2450 A. E. Glassgold, S. Lizano and D. Galli

Figure 1. Abundances as a function of vertical column density for an
MMSN disc at R = 1 au and 10 au, for grains with size a = 10 µm, and heavy
atom abundance xM = 10−7. The curves are for xe (red), x(M+) (blue), x(m+)
(green) and x(g−) (cyan). The dashed black curves correspond to the simple
analytic solution (equation 25). The thicker lines correspond to R = 1 au;
these lines reach the highest column density (NH = 7.2 × 1026 cm−2). The
curves shift slightly with R in accordance with the decline in the temperature
of the isothermal atmosphere of the MMSN.

heavy atom abundance xM = 10−7. Fig. 1 shows the solution of
the cubic equation (equation 21) for a disc radius R = 1 au with
abundances plotted against vertical column density in the range log
NH = 22–26. The main ions, e, M+, m+ and g−, all follow power
laws to a good approximation. The ionization is largely dominated
by the relation xe = x(M+). The molecular ions follow a parallel line
but down by 1.5 dex. The negative grain abundance in this case is
approximately constant at x(g−) ≈ 10−15. It plays no role until close
to the mid-plane of the disc where it becomes more abundant than
electrons. The simple analytic abundance formula (equation 25) is
represented by a dashed line. It agrees closely with the solution to
the cubic except at small columns where the straight line fit begins
to fail, and also at the largest columns where negatively charged
grains replace electrons as the major carrier of negative charge.
The relatively high electron abundance at small columns is due to
X-ray ionization producing high abundances of heavy atomic ions,
the basis for the present theory of ionization deep down. In a more
complete theory of disc ionization, xe will be even larger at small
columns due to FUV ionization. The electron fraction generally
follows the −8/3 power dependence of the ionization parameter
ζ̃ in equation (22). Fig. 1 also shows the ion abundances for the
disc radius R = 10 au. There is a small decrease in ionization with
increasing radius. This is due to the decline with radius of the
temperature of the isothermal atmospheres in the MMSN. The nu-
merator in the second factor of equation (25) is assumed to be fixed
at 0.5, and the denominator kd xd does not change with grain size
because grain size has been fixed in this figure. The term kd xd does
produce the small variation with radius via its temperature depen-
dence, according to equation (16). The grain charge also decreases
with decreasing temperature, according to equation (12).

Figure 2. Top panel: variation with grain size, a = 10 and 100 µm. Bottom
panel: variation with heavy atom abundances, xM = 10−6 and 10−7. The
curves have the same meaning as in Fig. 1.

The behaviour of the ions can be understood by examining equa-
tions (19) and (20) for M+ and m+. The denominators of both
equations are dominated by the first term, kce xM. Applying x(g−)

 xe in the numerator of equation (19) then leads to x(M+) = xe,
in agreement with the figure. Ignoring small terms in the numerator
of equation (20) then leads to

x(m+) = kd xd

kce xM
xe, (26)

so that x(m+) is both proportional to but much smaller than xe, as
shown in the figure.

Fig. 2 displays the dependence on grain size and heavy atom
abundance obtained with the cubic equation (21) at 1 au. The
general increase of xe = x(M+) in Fig. 2 is in accordance with the
simple ionization theory of the previous section, where xe ∝ a,

MNRAS 472, 2447–2453 (2017)
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Deep-down ionization of protoplanetary discs 2451

using equations (25) and (16). Likewise, x(g−) decreases because,
referring to equation (12), it is inversely proportional to a2. By
contrast, x(m+) is independent of grain size because according to
equation (20), the dependence on grain size of the two factors,
kd xd and xe, cancels. However, among all of the species under
discussion, m+ is the only one sensitive to the heavy-element
abundance, as shown in Fig. 2 and predicted by equation (20).

4 A PPLICATION TO MAG NETIC D ISCS

We calculate the non-ideal MHD diffusivities in the low-ionization
limit given in appendix B of Pinto, Galli & Bacciotti (2008), using
the rate coefficients in Pinto & Galli (2008a,b). The last equations of
this appendix for the case where the charged particles are electrons
and heavy ions lead to these familiar forms for the Ohmic (O), Hall
(H) and Ambipolar Diffusion (AD) diffusivities,

ηO = 1

4πre

〈σv〉e,n

xe
(27)

ηH = cB

4πene
(28)

ηAD = B2

4πγi,n ρi ρn
≈ v2

A

nH〈σv〉i,n xi
, (29)

where re = 2.818 × 10−13 cm is the classical electron radius, 〈σv〉e, n

and 〈σv〉i, n are average rate coefficients for electron- and ion-neutral
momentum transfer, c is the speed of light, ρn = nH mH, γ i, nρ i ≈
nH xi 〈σv〉e, n and vA is the Alfvén velocity,

vA = B√
4πρ

= 1.84 × 1011

(
B

G

) ( nH

cm−3

)−1/2
cm s−1. (30)

The temperature dependence of 〈σv〉e, H2 is obtained from table 1
of Pinto & Galli (2008b); typical values for this rate coefficient are
∼10−8 cm3 s−1. Now using equation (A.5) of Pinto & Galli (2008b),
〈σ v〉M+, H2 = 1.85 × 10−9 cm3 s−1, independent of temperature,
taking the heavy atom mass to be 25 mH.

We evaluate the diffusivities and related quantities for the verti-
cal structure of a weakly magnetized disc model around a T Tauri
star (Lizano et al. 2016). The disc is threaded by a poloidal mag-
netic field dragged in from the parent core during the phase of
gravitational collapse (Shu et al. 2007). This model has a viscos-
ity coefficient D = 10−2.5 and a dimensionless mass-to-flux ra-
tio λ = 2πG1/2(M∗ + Md)/
 = 12, where the stellar mass is
M∗ = 0.5 M
 and the disc mass is Md = 0.03 M
. The disc radius
is Rd = 39.3 au and the mass accretion rate is Ṁ = 10−8 M
 yr−1.
The radial surface density distribution is �R = 540.3(R/au)−3/4

g cm−2 (half above and half below the mid-plane). The aspect
ratio is A = 0.033(R/au)1/4. The vertical magnetic field com-
ponent is Bz = 6.1(R/au)−11/8 G, and the radial component is
BR = 2B+

R (�/�R) where B+
R = 1.742 Bz is the radial field at the

disc surface. The disc is internally heated by viscous and resistive
dissipation and its surface is irradiated by the central star.

The focus is on intermediate altitudes below the FUV zone
and extending down close to the mid-plane. Here the dominant
neutral is molecular hydrogen, and the ionization parameter ζ̃

varies approximately as N
−8/3
H . The dependence of the ioniza-

tion fractions on column density is obtained with the theory de-
scribed in Section 2. In order to better understand the numerical
values of the diffusivities, we also calculate the corresponding

Elsasser numbers using the Keplerian rotation frequency,
�(R) = 1.4 × 10−7(M∗/0.5 M
)1/2(R/au)−3/2 s−1,

AmO = c2
s

� ηO
AmH = v2

A

� ηH
AmAD = v2

A

� ηAD
, (31)

where cs is the isothermal sound speed for a molecular hydrogen
plus helium mixture, cs = 6.00 × 104 (T/100 K)1/2 cm s−1 and the
Alfvén velocity vA is given above in equation (30). For the Hall term,
we can also use a spatial scale closely related to the Elsasser number,
i.e. the so-called Hall length (e.g. Lesur, Kunz & Fromang 2014),

LH = ηH

vA
= vA

�

1

AmH
. (32)

Lesur et al. (2014) interpret LH as a measure of the spatial range
of the Hall effect. The unique characterizations of the non-ideal
MHD terms in equations (31) and (32) arise from the different
dependences of the original diffusivities, equations (27)–(29), on
ionization fraction and magnetic field.

Fig. 3 plots the three diffusivities and Elsasser numbers versus
vertical column density for two radii, 1 au and 10 au, and two grain
sizes, a = 10 (black lines) and 100 μm (red lines). Focusing on the
Elsasser numbers on the lower panels of Fig. 3, they all decrease
monotonically with NH. At high altitudes, their numerical values
satisfy the sequence: AmAD < AmH < AmO, but this can change
deeper down. The usual interpretation of the two Elsasser numbers,
AmO and AmAD, comes from shearing-box simulations with large
plasma β (weak fields). It is based on the idea that large AmO guar-
antees that the ionized disc plasma is well coupled to the magnetic
field, whereas large AmAD guarantees that the ions are well coupled
to the neutrals. Many authors found that the MRI is active if the
Elsasser numbers are >100, but others have advocated the condi-
tion >1 (e.g. Bai & Stone 2011 ; Bai 2015). If we were to adopt the
value of 1, then Fig. 3 suggests that AmO is probably large enough to
provide good field–plasma coupling over much of the disc between
1 and 10 au, but AmAD is not large enough to provide adequate cou-
pling of ions and neutrals over much of the disc. The steep slopes
of the Elsasser numbers in this figure suggest that such deductions
may depend on the choice of the critical number for the MRI.
However, there will still be dead zones in the present case. Further-
more, the size of the dead zone is smaller for larger grains. Flock,
Henning & Klahr (2012) carried out a global zero net-flux simu-
lation that indicates that the MRI can be sustained with Elsasser
numbers as low as 0.1. Even with this small value, however, dead
zones still arise at 1 au in the present model. In this context, it should
be noted that the weakly magnetized T Tauri disc model star consid-
ered here is fairly thick with a mid-plane thickness of 540 g cm−2;
thinner discs may well have no dead zones. The upper axis of the
diffusivity panels in the figure shows the number of scaleheights
at a given column density. As in the case of isothermal discs, we
chose the scaleheight H as the value of the height z that contains
68 per cent of the surface density, measured from the mid-plane.
For R = 1 au, H = 2.25 × 10−2 au, such that z/H = 3.55, 2.90,
2.42 and 1.67 for log NH = 22, 23, 24 and 25 cm−2. For R = 10 au,
H = 2.78 × 10−1 au, such that z/H = 4.00, 2.93, 1.98 and 0.68 for
log NH = 22, 23, 24 and 25 cm−2.

The present model considers a single ionization source, stellar
X-rays, for the region below the FUV zone. As noted in Sections 1
and 2, the X-ray ionization rate becomes uncertain beyond a certain
depth, e.g. log NH = 25.25 at 1 au. There has been much speculation
on the possibility of other ionization sources close to the mid-plane.
In addition to stellar and galactic CRs, locally generated energetic
particles may generate sufficient ionization to reduce the amount of
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Figure 3. Diffusivities and Elsasser numbers calculated for a weakly magnetized T Tauri disc with a mass-to-flux ratio λ = 12, at disc radii R = 1 au (left
panels) and R = 10 au (right panels), for grains with sizes a = 10 µm (black curves) and a = 100 µm (red curves). The solid lines correspond to the Ambipolar
diffusion terms AmAD and ηAD; the dashed lines correspond to the Hall terms AmH and ηH, and the dot–dashed lines correspond to the Ohm terms AmO and
ηO. Note that the mid-plane column density at 10 au is smaller than the mid-plane column density at 1 au. The top axis in the top panels corresponds to the
number of scaleheights, which is z/zH at each column density (see text). For these models, H(1 au) = 2.25 × 10−2 au and H(10 au) = 2.78 × 10−1 au.

MRI-dead material [e.g. Turner & Drake (2009); see also Gounelle
(2015) for the role of radioactive nuclides and Ilgner & Nelson
(2008) for the potential role of mixing]. MRI turbulence itself may
play a role here, as discussed recently by Inutsuka & Sano (2005)
and Okuzumi & Inutsuka (2015).

The Hall length LH as a function of vertical column density
is shown in Fig. 4 for R = 1 and 10 au and a = 10 and 100 μm.
Equation (32) for the Hall length indicates that it is inversely propor-
tional to AmH. The small values of AmH approaching the mid-plane
in Fig. 3 mean that LH is much larger than the disc scaleheight at
the disc mid-plane. This is consistent with the generally accepted
idea that the PPDs are significantly affected by the non-ideal MHD
Hall term. The Hall length in these models is larger than the values
obtained by Lesur et al. (2014) in their fig. 3 because of the different
disc models, and also because of their higher ionization fraction due
to the inclusion of CR ionization.

The discussion of Fig. 3 emphasizes the occurrence and size of
MRI-dead zones. A corollary to the conclusion that thicker discs

can have dead zones deep down is that the MRI may still be active
over a large volume of a T Tauri star disc. The turbulence asso-
ciated with the MRI has long been considered to play a key role
in angular momentum transport (e.g. Hawley & Stone 1998; Bai
& Goodman 2009; Mohanty, Ercolano & Turner 2013), where the
ionization is critical for the MRI. More recently, the transport of
angular momentum has focused on the important role of disc winds
(e.g. Bai et al. 2016; Bai 2016; Bai & Stone 2017). Although the
thermal–chemical properties of the upper part of the disc (including
the ionization) are important in this connection, the present theory
of deep-down ionization will not be relevant unless the base of the
wind extends well below the FUV layer.

5 SU M M A RY

By applying the methodology of Oppenheimer & Dalgarno (1974)
(see also Ilgner & Nelson 2006a,b; Bai & Goodman 2009), we have
obtained a simple description of the deep-down X-ray ionization
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Figure 4. Ratio of the Hall length to the disc scaleheight H as a function
of vertical column density at R = 1 au (solid curves) and 10 au (dashed
curves), for a = 10 µm (black curves) and 100 µm (red curves).

of PPDs. The key step is to treat a small set of generic species,
molecular ions like HCO+ and H3O+ (represented by m+), heavy
atomic ions like Na+ and Mg+ (represented by M+), and charged
grains (g−), as well as electrons (xe). Below the FUV irradiated
surface region, the ionization is described by a cubic equation in xe.
Over much of the inner disc, the vertical variation of the ionization
follows simple closed-form expressions that are essentially power
laws in vertical column density. We have illustrated the theory by
calculating the Elsasser numbers for the standard non-ideal MHD
effects for the weakly magnetized T Tauri star disc model of Lizano
et al. (2016). We foresee other applications of the theory to 2D and
3D MHD modelling of magnetic discs.

Another key aspect of the theory is the inclusion of the reactions
whereby atomic ions transfer their charge to grains. This process
has been ignored in some MRI simulations, with the result that
xe = (ζ X/βnH)1/2, where β is the dissociative recombination rate
coefficient for molecular ions. This expression produces too small
values of xe near the mid-plane of moderately thick discs (see instead
equation 25).

The present application would seem to suggest that fairly thick
discs, approaching the thickness of the MMSN, have dead zones
even with X-ray ionization. This raises an important limitation of
the theory in that the level of ionization deep down, e.g. beyond
log NH = 25, is uncertain. This is mainly due to the limitations
in the Monte Carlo propagation of the scattered X-rays and our
incomplete understanding of the blocking of galactic CRs by the

angular-dependent stellar wind. And beyond these major uncertain-
ties, there may be additional internal sources of ionization, such as
the MRI itself.
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