| Publication Year | 2017 | |-----------------------|--| | Acceptance in OA@INAF | 2020-09-15T15:21:42Z | | Title | VizieR Online Data Catalog: Lab measurements for C-cyanomethanimine (Melosso+, 2018) | | Authors | Melosso, M.; Melli, A.; Puzzarini, C.; CODELLA, CLAUDIO; Spada, L.; et al. | | DOI | 10.26093/cds/vizier.36090121 | | Handle | http://hdl.handle.net/20.500.12386/27387 | | Journal | VizieR Online Data Catalog | # Portal Simbad VizieR Aladin X-Match Other Help ### J/A+A/609/A121 Lab measurements for C-cyanomethanimine (Melosso+, 2018) Laboratory measurements and astronomical search for cyanomethanimine. Melosso M., Melli A., Puzzarini C., Codella C., Spada L., Dore L., Degli Esposti C., Lefloch B., Bachiller R., Ceccarelli C., Cernicharo J., Barone V. <Astron. Astrophys. 609, A121 (2018)> =2018A&A...609A.121M (SIMBAD/NED BibCode) ADC Keywords: Atomic physics; Interstellar medium Keywords: ISM: molecules - molecular data - methods: data analysis - methods: laboratory: molecular #### Abstract: C-cyanomethanimine (HNCHCN), existing in the two Z and E isomeric forms, is a key prebiotic molecule, but, so far, only the E isomer has been detected towards the massive star forming region Sagittarius B2(N) using transitions in the radio wavelength domain. With the aim of detecting HNCHCN in Sun-like star-forming regions, the laboratory investigation of its rotational spectrum has been extended to the milllimeter-/submillimeter-wave (mm-/submm-) spectral window where several unbiased spectral surveys have been already obtained. High-resolution laboratory measurements of the rotational spectrum of C-cyanomethanimine were carried out in the 100-420GHz range using a frequency-modulation absorption spectrometer. The C-cyanomethanimine spectral features were then searched for in the mm-wave range using the high-sensitivity and unbiased spectral surveys obtained with the IRAM 30-m antenna in the ASAI context, the earliest stages of star formation from starless to evolved Class I objects being sampled. For both the Z and E isomers, the spectroscopic work has led to an improved and extended knowledge of the spectroscopic parameters, thus providing accurate predictions of the rotational signatures up to $\sim\!700\,\mathrm{GHz}$. So far, no C-cyanomethanimine emission has been detected towards the ASAI targets, and upper limits on the column density of $10^{11}\text{--}10^{12}\mathrm{cm}^{-2}$ could only be derived. Consequently, the C-cyanomethanimine abundances have to be less than a few 10^{-10} for starless and hot-corinos. A less stringent constraint, $\leq\!10^{-9}$, is obtained for shocks sites. The combination of the upper limits on the abundances of C-cyanomethanimine together with accurate laboratory frequencies up to $\sim\!700\,\mathrm{GHz}$ poses the basis for future higher sensitivity searches around Sun-like star forming regions. For compact 1 di 3 15/09/2020, 17:21 (typically less than 1 arcsec) and chemically enriched sources such as hot-corinos, the use of interferometers as NOEMA and ALMA in their extended configurations are clearly needed. ## Description: Table 2 contains measured rotational transitions and residuals from the fit for the two isomers of C-cyanomethanimine in the ground state. ### File Summary: | FileName | Lr | recl Rec | cords Explanations | |------------|----|----------|--| | ReadMe | 80 | | This file Measured rotational transitions and residuals from the fit for the two isomers of C-cyanomethanimine in the ground state | | table2.dat | 80 | 1185 | | #### See also: J/A+A/562/A56 : Cyanomethyl anion & its deuterated derivatives (Majumdar+ 2014) ## Byte-by-byte Description of file: table2.dat | Bytes I | Format | Units | Label | Explanations | |---------|--------|-------|---------|---| | | | | | | | 1- 6 | A6 | | Species | Isomer | | 8- 9 | I2 | | N' | Upper N quantum number | | 11- 12 | I2 | | Ka' | Upper Ka quantum number | | 14- 15 | I2 | | Kc' | Upper Kc quantum number | | 17- 18 | I2 | | I' | ? Upper I quantum number (1) | | 20- 21 | I2 | | F' | ? Upper F quantum number $\overline{(1)}$ | | 23- 24 | I2 | | N | Lower N quantum number | | 26- 27 | I2 | | Ka | Lower Ka quantum number | | 29- 30 | I2 | | Kc | Lower Kc quantum number | | 32- 33 | I2 | | I | ? Lower I quantum number (1) | | 35- 36 | I2 | | F | ? Lower F quantum number (1) | | 39- 49 | F11.4 | MHz | Freq | Observed frequency | | 53- 57 | F5.3 | MHz | Unc | Experimental uncertainty | | 61- 67 | F7.4 | MHz | O-C | Observed minus calculated frequencies | | 71- 74 | F4.2 | | Weight | ? Relative weight (2) | | 78- 80 | A3 | | Ref | Reference (3) | 2 di 3 15/09/2020, 17:21 ``` Note (1): Omitted in cases of unresolved hyperfine components ``` Note (2): Given only for blended lines ### Note (3): References as follows: - (a) = Zaleski et al. (2013ApJ...765L..10Z) - (b) = Takeo et al. (1986, CPL, 123, 229) - (c) = Takano et al. (1990, J. Mol. Spectr., 141, 13) - (d) = This work ## Acknowledgements: Mattia Melosso, mattia.melosso2(at)unibo.it (End) Patricia Vannier [CDS] 17-Oct-2017 The document above follows the rules of the <u>Standard Description for Astronomical Catalogues</u>; from this documentation it is possible to generate **f**77 program to load files <u>into</u> arrays or line by line © Université de Strasbourg/CNRS f □ y () · Contact ⊠