INAF

ISTITUTO MNAZIOMNALE

Ol ASTROFISICA

MATICHMAL INSTITLITE
FOR ASTROFHYSICS

Publication Year 2017

Acceptance in OA@INAF 12020-09-01T09:57:36Z

Title Taking Advantage of Cloud Solutions to Balance Requests in an Astrophysical
Data Center

Authors MOLINARO, Marco; CEPPARO, Francesco; Scagnetto, Ivan; SMAREGLIA,
Riccardo

Handle http://hdl.handle.net/20.500.12386/27024

Series ASTRONOMICAL SOCIETY OF THE PACIFIC CONFERENCE SERIES

Number 512

Astronomical Data Analysis Software and Systems XXV

ASP Conference Series, Vol. 512

Nuria P. F. Lorente, Keith Shortridge, and Randall Wayth, eds.
©2017 Astronomical Society of the Pacific

Taking Advantage of Cloud Solutions to Balance Requests in an
Astrophysical Data Center

Marco Molinaro,' Francesco Cepparo, !

Ivan Scagnetto,” and Riccardo Smareglia'

Vstituto Nazionale di Astrofisica - Osservatorio Astronomico di Trieste,
via G.B. Tiepolo 11, 34143 Trieste, Italy;

molinaro@oats.inaf.it

2Universita degli Studi di Udine, Dipartimento di Matematica e Informatica,
via delle Scienze 206, 33100 Udine, Italy;

Abstract. A complete astrophysical publishing environment, working as a helper
system for an astrophysical data center, requires various components, from custom data
back ends up to more or less standardized (e.g. Virtual Observatory driven) front end
solutions. Combining this environment into one framework can lead to a potentially
non scalable or hardly improvable system. In this contribution we describe what we
are planning and developing to take advantage of cloud computing infrastructures and
of a modular/distributed component architecture to provide a scalable and maintainable
publishing environment at the Italian center for Astronomical Archives (IA2) at the
INAF (Italian National Institute for Astrophysics) Astronomical Observatory of Trieste.
Using a set of modular services, connected by registered interfaces, we are planning to
use automated balancing at the front end to allocate services on demand in a cloud
environment and allow generic data access in the back end archive solution.

1. Introduction

The IA2 data center serves its data in the form of Virtual Observatory (VO) services
by means of a Java web application (named VODance, Molinaro et al. (2012)) capable
of publishing IVOA (International Virtual Observatory Alliance) standard based Cone
Search (Williams et al. 2011), SIA (Tody et al. 2011) and SSA (Tody et al. 2012) ser-
vices. Over the last couple of years, due to changes in the IVOA Data Access Layer
(DAL, see e.g. Bonnarel et al. (2016)) as well as in the available information tech-
nology solutions, this publishing system has been put under revision. The reasons for
this revision are various: less uniform interface definitions for the various IVOA access
protocols; monolithic web application approach; Java as the only available language for
coding both the interface and the data access; maintainability of the application code;
scalability of the publishing system; complex, RDB based, configuration of services.

Here we present the current status of the ongoing revision, from starting ideas to a
first skeleton implementation of the new publishing solution.

569

570 Molinaro et al.

2. Existing Architecture

Flexibility of protocol capability of the VO-Dance solution is based on the Java Re-
flection technology, allowing generic data access protocol classes to coexist in one web
application. While this flexibility allows protocol-type based access classes to work on
top of generic database back ends, the drawback sits in the overload of the reflection
system and in its effect on interface high availability. Fig. 1 shows, in a sketchy format,
the approach used within VO-Dance. It looks clear from the figure how the monolithic
approach and the use of a web container limits the horizontal scalability of the system.
Only independent implementations (and thus independent administrations and config-
urations) can allow for larger number of services when the load of the server becomes
critical. This means higher maintenance costs.

User

Java EE

]
|
S S o
web application container!

Interface

A
Y

Java Reflection
based
Data Access Engine

Y
e -
Data Base Data Base Data Base

Figure 1. VO-Dance Architecture, skeleton diagram. Actually the Inferface and
the Data Access modules are separated only because they live in different packages
with a dependency of the Interface on the Data Access. DBs can be generic ones,
once a suitable SQL implementation is provided in the code, but Java is set as the
only possible language for coding such differentiation.

3. Revisisted Architecture

A first idea for revisiting the publishing system was to take advantage of the Java EE
web containers services plus EJB and JNDI technologies to cover horizontal scalabil-
ity and modularity of the publishing solution (see e.g. Molinaro et al. (2014)). That
idea would also have left the ability to postpone until the actual implementation phase
the choice of the coding language for the real data access. However also this solution

Using Cloud Solutions to Balance Requests 571

would have left unsolved the issue related to a container with real horizontal scalability.
Thus a second approach was undertaken, resulting in the modular and distributed ar-
chitecture portrayed in Fig. 2, with no explicit container for the various modules of the
publishing framework and free choice of coding languages for every module. The log-
ical separation, already available in VO-Dance, between interface and access modules
has been enhanced using a message broker to collect user requests and dispatch them
to the correct access module. The addition of a reverse proxy allows a more flexible
configuration of the front end while allowing horizontal scalability if request loads were
to increase. Modularity for data access lets back end and coding choice be generic and
horizontal scalability be achievable simply by registering the modules in the broker.
All auxiliary modules (VOTable (Ochsenbein et al. 2011) serializers, logging system,
etc.) can live in this new architecture as standalone modules attached to the main ones
by means of message driven communication. Coding language will be a choice of the
developer depending on the requirements of the single module.

User

D I""'"""""'n'év'v“'&FEﬁ itecture]

Interface 1 Interface N

A y
-

Figure 2. Revisited Architecture, skeleton diagram.

4. First Implementation

To prove the feasibility of the conceived solution a simple use case has been taken into
account.

572 Molinaro et al.

Two Cone Search services with separate interfaces and independent back ends
have been implemented. While the interfaces in both cases have been realized using
Java Servlet implementations, the two back ends have been kept separated both in terms
of the database format and the coding language used to build the access module.

One of the two keeps a VO-Dance-like approach using Java together with a JDBC
connection on top of a MySQL database table (it actually inherits all the business logic
of the VO-Dance Cone Search classes and functions).

The other service is realized using an access module written in Python connected
to an ASCII file in JSON format. The business logic for this module is built wrapping
the needed code from the Simple Cone Search Creator!; also the generation of the JSON
database has been done using that package on a sample catalogue already available at
1A2.

The message broker uses RabbitMQ and the content of the exchanged messages,
is serialized in JSON to neatly hold all the needed structured information.

To provide horizontal scalability at the user interface, a reverse proxy solution has
been set up using HAProxy.

5. Next Steps

Apart from auxiliary modules (like dedicated VOTable response serialization, now built
inside the data access modules, or a general logging module) future steps will in-
volve porting into the new publisher the pre-existing IVOA protocol capabilities of
VO-Dance. That will allow substitution of the current service publishing environment.
In doing so service configuration would be added.

Acknowledgments. The technologies used for the implementation as well as for
the new architecture and the actual development phase for the first implementation have
been brought over by F. Cepparo as part of a degree thesis in informatics.

References

Bonnarel, F., et al. 2016, in ADASS XXV, edited by N. P. F. Lorente, K. Shortridge, & R. Wayth
(San Francisco: ASP), vol. 512 of ASP Conf. Ser., 547

Molinaro, M., Knapic, C., & Smareglia, R. 2012, in SPIE Conf. Ser., vol. 8451, 5

Molinaro, M., et al. 2014, in SPIE Conf. Ser., vol. 9152, 0

Ochsenbein, F., et al. 2011. 1110.0524

Tody, D., Plante, R., & Harrison, P. 2011. 1110.0499

Tody, D., et al. 2012. 1203.5725

Williams, R., et al. 2011. 1110.0498

'https://github.com/tboch/Simple-Cone-Search-Creator

