
2016Publication Year

2020-07-09T10:00:01ZAcceptance in OA@INAF

Challenges and strategies for the maintenance of the SKA Telescope ManagerTitle

DOLCI, Mauro; DI CARLO, Matteo; SMAREGLIA, RiccardoAuthors

10.1117/12.2231642DOI

http://hdl.handle.net/20.500.12386/26398Handle

PROCEEDINGS OF SPIESeries

9913Number

PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

Challenges and strategies for the
maintenance of the SKA Telescope
Manager

Dolci, Mauro, Di Carlo, Matteo, Smareglia, Riccardo

Mauro Dolci, Matteo Di Carlo, Riccardo Smareglia, "Challenges and
strategies for the maintenance of the SKA Telescope Manager," Proc. SPIE
9913, Software and Cyberinfrastructure for Astronomy IV, 99132J (8 August
2016); doi: 10.1117/12.2231642

Event: SPIE Astronomical Telescopes + Instrumentation, 2016, Edinburgh,
United Kingdom

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 06 Jun 2020 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Challenges and strategies for the
Maintenance of the SKA Telescope Manager

Mauro Dolci*a, Matteo Di Carloa, Riccardo Smaregliab

aINAF – Osservatorio Astronomico di Teramo, Via Maggini snc, I-64100 Teramo, Italy; bINAF –
Osservatorio Astronomico di Trieste, Via G. B. Tiepolo 11, I-34143 Trieste, Italy

ABSTRACT

The Square Kilometre Array (SKA) is an ambitious project aimed to build a radio telescope that will enable
breakthrough science not possible with current facilities over the next 50 years. Because of this long expected
operational period, the maintenance of Telescope Manager (TM), the SKA Element responsible for the coordination of
all Elements composing the Telescope (e.g. Dishes for mid-frequency or Low-Frequency Aperture Arrays), plays a
crucial role for the overall SKA operation. A challenge is represented by the technological evolution in hardware and
software, which is rather fast nowadays: only in the last 10 years, for instance, new operating systems were born, as well
as new technologies for data storage and for calculation. Dealing with such changing environment deserves therefore a
deep analysis in terms of maintenance. In spite of the importance of hardware maintenance for TM, its software
maintenance is actually the real challenge, given TM is a system almost entirely composed by software applications. In
computer science, indeed, it is almost impossible to build a software which does not need to be changed over time: new
requirements emerge, old requirements change during application lifetime, errors are discovered or performance must be
improved. For all these reasons the management of software changes is critical to maintain the value of the software
developed, especially for a complex system like SKA TM.
In this paper the maintenance for both SKA TM hardware and software is presented with respect to the Operational (i.e.
related to Maintenance Process) and Organizational (i.e. related to Logistic Support) aspects.

Keywords: SKA, Telescope Manager, software development and testing, maintenance processes

1. INTRODUCTION
The Square Kilometre Array (SKA) is an ambitious project to build a radio telescope that will enable breakthrough
science and discoveries not possible with the current facilities with a lifetime of around 50 years[1][1]. In the overall SKA
architecture, each of the two telescopes (SKA MID and SKA LOW) is composed by several Elements covering all
required functionalities: DISH and MFAA (Mid Frequency Aperture Array, for SKA MID) and LFAA (Low Frequency
Aperture Array, for SKA LOW) are the front-end Elements for direct radiation detection, while elements such as CSP
 (Central Signal Processor), SDP (Science Data Processor), SAT (Synchronization And Timing), INFRA (Infrastructure)
and SaDT (Signal and Data Transport) are devoted to all other operational and support functionalities. The global
orchestration of this huge system is performed by a central element called Telescope Manager (TM).
The TM has three core responsibilities[1]:

1. management of astronomical observations;
2. management of the telescope hardware and software subsystems in order to perform those astronomical

observations;
3. management of the engineering data to support operators, maintainers, engineers and science users in achieving

operational, maintenance and engineering goals. Note that TM core responsibilities do not include management
of science data products (visibilities, images, catalogues), which are the responsibility of Science Data
Processor (SDP) Element.

To meet these responsibilities, TM performs high-level functions, namely: proposal handling, observation management,
telescope management and engineering data management (including self-monitoring data).
To support proposal handling, the TM provides tools for proposal generation and submission by the science user, and for
the evaluation, assessment and approval of and time allocation for the proposals by the proposal evaluation committee.
While performing observation management, the TM allows scientists or Principal Investigators (PIs) to generate
Program Blocks, which consist of Scheduling Blocks (SBs). The SBs contain information needed to schedule and

Software and Cyberinfrastructure for Astronomy IV, edited by Gianluca Chiozzi,
Juan C. Guzman, Proc. of SPIE Vol. 9913, 99132J · © 2016 SPIE

CCC code: 0277-786X/16/$18 · doi: 10.1117/12.2231642

Proc. of SPIE Vol. 9913 99132J-1
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 06 Jun 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

execute observations for a Proposal. The SBs are then scheduled for execution. As observations are made, the TM
provides the current telescope configuration and dynamic status to the SDP element for annotating the matching
scientific data or visibilities.
While performing telescope management, the TM controls the appropriate elements, and collects monitor data that is
used to track the entire status of the Telescope including element status, site security, weather monitoring, site power
supply, etc. The TM manages engineering (monitoring and configuration) data as a system model that describes the
status of the telescope at any one time. The TM continually collects telescope configuration, telescope dynamic status
and environmental data. The data are time-stamped and stored. The TM provides the data to users as the current and
historic state of the system to support operations and maintenance.
TM is a complex (and distributed) system, mostly composed by software packages (TELMGT, OBSMGT[4][5], LMC[6]),
web applications (e.g. proposal submission tools designed in OBSMGT) and user interfaces running on a hardware &
virtualization software platform provided and managed by LINFRA[7]. Each TM sub-element will be composed in turn
by software (applications) and data (configuration data, initialization data, etc.).
Given the central role of TM, a proper and efficient maintenance of it plays a fundamental role for the overall SKA
operation. In this paper the maintenance of the both the hardware and software of SKA TM is discussed. Since TM is
composed mostly of software applications, special attention is devoted to software maintenance plan, from both the
operational and organizational aspects.

2. TM DEPLOYMENT AND ARCHITECTURE
The Deployment Concept for TM Equipment is based on the following defined locations:

1. Central Processing Facility (CPF). This is near the core of the telescope and will contain the CSP. It will be
located in the Karoo Central Astronomy Advantage Area (KCAAA, South Africa) for SKA1-Mid and in
Boolardy (Australia) for SKA1-Low.

2. Engineering Operations Centre (EOC). This is envisaged as a centre where engineering operations can be
coordinated. It will be located near (but outside) the RF restricted area of the telescope, i.e. in Klerefontein
(South Africa) for SKA1-Mid and in Geraldton (Australia) for SKA1-Low.

3. Science Operations Centre (SOC). This is where the operational control of the Telescope will take place. It
will be located inside the major city for each Telescope, i.e. Cape Town (South Africa) from SKA1-Mid and
Perth (Australia) for SKA1-Low.

4. SKA Global Headquarters (SKA-GHQ). This is where the general management of the Telescope Scheduling
and Operations will take place. The SKA GHQ are located in Jodrell Bank (UK).

The TM architecture concept is, in general, to have a central deployment in which the online equipment are all located at
the same location. This will be the CPF.
If the facility provides enough infrastructure then the offline and archiving equipment can also be located there but the
design can be flexible in that the archiving equipment can be remote from the CPF. Currently the proposal is to have the
option to deploy offline equipment at the EOC but this can also be located anywhere else or even implemented by means
of a cloud based storage service.
The display equipment that will contain the primary operator interfaces will be contained where the SOC is located.
Auxiliary display components (for example engineering UI components) and possibly the Engineering Data Archive and
Forensic Tool could be placed at the EOC.
The current physical architecture of TM can therefore be summarized into three deployment categories:
1. Online Systems: OBSMGT, LMC and TELMGT components that are directly involved in coordinating instrument

functioning. Online systems must be situated at the CPF, for system robustness, so that failures in the long distance
links to SOC and EOC do not leave the instrument in an uncontrolled state.

2. Offline Systems: OBSMGT, LMC and TELMGT components that provide offline support functions for SKA. This
includes the proposal submission, scheduling, observation preparation, forensics, simulation, development and test
environments, and any associated LMC components, as well as the data archives (EDA, proposal and project
databases). Several of these components will be located at SKA GHQs. As to the deployment location for these
systems in Australia and South Africa, instead, it is flexible: the current plan is to split them between the EOC and
CPF depending on power availability.

Proc. of SPIE Vol. 9913 99132J-2
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 06 Jun 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

3. Displays: containing all user interfacing functionality (may consist of a main part as well as an auxiliary part).
Although display functionalities will have to be put at SKA GHQs, the current plan is to put primary operator
displays at the SOC, while there may also be auxiliary displays at the EOC, so that the functionality is close to the
user base.

3. HARDWARE MAINTENANCE
Hardware Maintenance is not necessarily based upon alarms or problems detection only. It could also be performed on a
regular basis, related to the normal degradation of characteristics and performance of hardware devices, or on the basis
of a trend, monitoring data-based prediction.
However, it appears unlikely that ILM and DLM will really be required for TM hardware components, as they will all
be COTS such as computer desktop, servers and storage: in case of failure these COTS modules will be returned to the
supplier (under warranty) and/or replaced by a new module.
Three types of Hardware Maintenance are identified:
1) (Hardware) Corrective Maintenance (CoM) is the set of tasks aimed at Failure Detection, Isolation and Recovery
(FDIR) of a system. It corresponds to Operational State 3 in the SKA1 System Operational Model. CoM on TM
hardware shall be generally accomplished through the replacement of Line Replaceable Units (LRU’s) or Shop
Replaceable Units (SRU’s) at O-level. If planned, the replaced item shall undergo a repairing process at I-level. Such a
process shall not be performed in-site, but moving the item to be repaired to the planned ILM location.
According to the severity of the failure (critical or non-critical), immediate or deferred CoM shall be performed,
according to the response time and intervals defined in the SKA System Operational Model.
2) Preventive Maintenance (PrM) is the set of activities and procedures, including test, adjustments and parts
replacement, performed specifically to correct incipient failures before they occur or before they develop into major
defects, with the ultimate goal to prevent faults from occurring. It corresponds to Operational States 4 and 5 in the SKA1
System Operational Model. The importance of Preventive Maintenance even for TM hardware (which is expected to be
entirely made of COTS components) lies in the fact that is does not impact the observation activities at all, since it is
performed during devoted service periods, in comparison with the impact a Corrective Maintenance can definitely have
in case of unexpected failure and need of hardware LRU replacement in a remote site.
The detailed definition of the PrM tasks, including procedures, required personnel and supply, is based on the results of
RAM and FMECA analysis and shall be given at a later stage of the project.
PrM on TM hardware shall be generally accomplished through the replacement of Line Replaceable Units (LRU’s or
Shop Replaceable Units (SRU’s) at O-level, taking into account the recommendations about limited human presence at
sites (for RFI protection purposes).
3) Predictive Maintenance (PdM) represents a special sub-category of Preventive Maintenance, given the intrinsic nature
of TM as a continuously monitored element. An advantage of PdM, with respect to PrM, is represented by the
possibility to get up-to-date indications of the system behavior and performance trend and therefore to optimize the
maintenance process, e.g. by reducing the frequency of “preventive” replacement of LRUs. However, the impact of such
approach on supply support (spare availability, location, and so on) and operation schedule, will have to be analyzed in
detail. On one hand, the improvement introduced by PdM with respect to PrM is probably not so relevant (RAM data are
expected to comply with the observed failure occurrences so that trend indications from system monitoring will not
substantially differ from RAM expectations); on the other hand, PdM implies a much higher risk for unscheduled
interventions in remote locations (similar to CoM), which definitely impacts the operation schedule. PdM seems in
conclusion a very interesting task, but not recommended for TM Hardware.

It must be noticed that, although dependability analysis for hardware could appear to provide indications on pure
hardware failures, the consequences of hardware malfunctioning on software operations or performance have to be
seriously taken into account. In general, hardware defects (even temporary, like for example a wrong memory
addressing) are the source of many software stops or even crashes (Hardware-Software Interactions, HSI).
The importance of HSI has been addressed since much time[8] and led to the birth of Software Failure Modes Effect
Analysis (SFMEA), to be performed in conjunction with the more widespread hardware FMECA. TM is mostly a
software-based system and therefore SFMEA is expected to be as important as (or even more than) hardware FMECA.

Proc. of SPIE Vol. 9913 99132J-3
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 06 Jun 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Analysis

Trigger

Problem
identification,
classification,
prioritization

3.1 Hardware Maintenance process

The process for hardware changes is shown in Figure 1.

Figure 1 - Hardware Maintenance Process

The process starts with a trigger, usually composed by either a set of alarms (which will imply Corrective Maintenance)
or warnings (suggesting Predictive Maintenance actions) or scheduled calls (Preventive Maintenance), and includes the
following phases:

1) Problem identification, classification, and prioritization. The detected problem associated to the trigger is evaluated

to determine its classification in terms of Corrective, Preventive or Predictive Maintenance, to establish its handling
priority and to finally assign its solution to a maintainer. The result of this activity is stored into a repository which
contains at least the following items: identification number, statement of the problem, type of maintenance required,
initial priority, initial estimate of resources required to implement the change.

2) Analysis. The feasibility and scope of the modification is studied (feasibility analysis) and a plan for spare
provision, implementation, test and final restoring of the system operability is created (detailed analysis). The
feasibility analysis is aimed at generating a feasibility report that will contain the impact of the modification action
(e.g. in terms of human footprint at the site), alternate solutions, safety and security implications and costs. The
detailed analysis, on the other hand, generates an analysis report that will identify the faulty LRUs (if any) and the
spares needed, the Level of Maintenance required, the team(s) needed and the safety and security issues. An
implementation and test plan will also be made available at the end of this phase.

3) Spare provisioning. The spare LRUs are provisioned to the endorsed maintainers, according to the analysis report.

4) Implementation. Once the team(s) are defined, the spare are provisioned and the Level of Maintenance has been
identified, the changes are implemented according to general prescriptions concerning system maintenance mode,
possible operation stopping, RAM requirements and RFI protection of sites. It is important to notice that the
implementation of a computer hardware change usually requires even software operations, like firmware check,
software configuration, drivers loading, processes and service launching and so on.

5) Testing. At the same site where implementation takes place, final tests on the updated component operation have to
be made. These can imply physical measurements (e.g. in case of replacement of an electrical component) or
software-based interrogations of the system (for computer hardware changes). All testing equipment of electronic
nature (e.g. oscilloscopes) will have to be compliant with the sites RFI requirements. At the end of the

Proc. of SPIE Vol. 9913 99132J-4
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 06 Jun 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Hardware Maintenance Process (HMPr)

Process Input(s) Output(s)

Problem statement
Problem Evaluation
Maintenance Type
Initial priority
Verification Data
Estimate of resources

Feasibility report
Identification of faulty LRUs
Modifications list
Test strategy
Implementation plan

Spares availability
Updated spares record

Change implemented
Updated change record
Updated design documents
Updated test documents
Updated user documents
Updated training documents
Test -readiness review rep.

Tested and fully integrated sys.
Test report

Staff

Electronic engineer
Electrical engineer

Electronic engineer
Electrical engineer
Maint. Manager

Maint. Manager

Electronic Engineer
Electrical Engineer
RFI expert
Maint. Manager

Electronic Engineer
Electrical Engineer
RFI expert
Maint. Manager

Trigger

Problem ID/
classification

Hardware manuals
Repository info

Analysis report

Analysis report
Implementation plan
Test strategy

Updated system
Test plan
Updated design docs

Tested /accepted
system

Analysis

Spare

provisioning

Implementation

Test

System

operability
restoring

Restored system
Physical config. audit report
Version description document
Updated RS, DR, ICDs

Updated test documentation
Updated User documentation
Updated training material

Implementation and Testing phase, the reference documentation (hardware manuals, design, test and user
documentation, training material) is updated and one can proceed at 6) restoring the system to its full operability.

A schematic time development of a full hardware maintenance process is shown in Figure 2.

Figure 2 - Full Hardware Maintenance Process time development. Input and output data and
reports, as well as staff profiles, are reported in 2nd, 3rd and 4th column respectively.

4. SOFTWARE MAINTENANCE
Unlike Hardware Maintenance, Software Maintenance is generally triggered by a specific request, aimed at solving a
detected problem (e.g. bug-fixing) or at making a software package compliant with a changed (or changing)

Proc. of SPIE Vol. 9913 99132J-5
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 06 Jun 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

environment
performances
Three types
Corrective M
Software Em
1) (Softwar

performe
system. W
(see belo

2) Adaptive
keep a co

3) Perfectiv
improve

4) Software
the main
The natu

4.1 Software

The standard

It includes the

1) Problem/m
(MR). This is
(e.g. incident
evaluated to
software mai
assigned to a
maintenance
repository, to

(e.g. a chang
s (e.g. lowerin
of Software M

Maintenance, A
ergency Main

re) Corrective
ed after its de
When such a

ow).
e Maintenance
omputer progr
ve Maintenanc
its performan

e Emergency M
ntenance proce
ure of this type

e maintenanc

process[9] for

e following ph

modification id
s a generic te
t report, troub
determine its

intenance typ
maintainer an
required, init

o be used as in

ge of a softw
ng execution la
Maintenance,
Adaptive Ma

ntenance, must
e Maintenanc
elivery, to cor

catastrophic

e (AdM) is de
ram usable in
ce (PfM) is de
nce or maintain
Maintenance (
ess (see next
e of maintenan

ce process

changes in so

F

hases:

dentification,
erm that inclu
ble report) and
s classification
es: Correctiv
nd all the info
tial priority,

nput for the ne

ware platform
atencies).
all based on

intenance and
t be foreseen d
ce (SCoM) i
rrect discover
situation occu

efined as the m
a changed or

efined as the m
nability.
(SEM) is defin
sections), to

nce is very clo

oftware, called

Figure 3 - Sof

classification
des the forms
d the configur
n and handlin

ve, Adaptive, P
ormation prod
initial estima

ext phase.

m or an hardw

n scheduled o
d Perfective M
defined for un
s defined as
ed faults. Sin
urs, a Softwar

modification o
changing env
modification o

ned as a set o
be performed

ose to hardwar

d Software Ma

ftware Mainte

n, and prioritiz
s associated w
ration change
ng priority. A
Perfective an

duced (e.g. ide
ate of resourc

ware upgrade

operations, can
Maintenance.
nscheduled op

the reactive
nce it has to b
re Emergency

of a software
vironment.
of a software

f corrective ac
d immediately
re CoM.

aintenance Pro

enance Process

ization. The S
with the variou
e control docu
An MR can b
nd Emergency
entification nu
ces required t

e) or, finally,

n be identifie
 A forth type

perations.
e modification
be scheduled,
y Maintenance

product, perf

product, perf

ctions, put at t
y in order to

ocess (SMPr)

s

SMPr starts wi
us trouble/pro

uments. In thi
be classified i
y. At the end
umber, statem
to modify the

 at improvin

ed accordingl
e of mainten

n of a softw
the fault can

e process has

formed after it

formed after it

the highest pr
restore system

, is shown in F

ith a Modifica
oblem-reportin
s phase, each
into the alread

of this phas
ment of the pro

e system) is

ng the system

y: (Software)
ance, namely

ware product,
nnot block the
s to be started

ts delivery, to

ts delivery, to

riority level in
m operability.

Figure 3.

ation Request
ng documents

h MR shall be
dy-mentioned
e, the MR is

oblem, type of
stored into a

m

)
y

,
e
d

o

o

n
.

t
s
e
d
s
f
a

Proc. of SPIE Vol. 9913 99132J-6
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 06 Jun 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

2) Analysis. The main purpose of this step is to study the feasibility and scope of the modification and to create a
preliminary plan for design, implementation, test and delivery. Interaction with the user who created the request could
be needed. As for the hardware process, the software maintenance analysis phase is split into feasibility analysis, aimed
at evaluating impact of the modification, alternate solutions (including prototyping), safety and security implications,
costs, final benefit of the modification, and detailed analysis, whose goal is to define requirements for the modification,
identify the elements of modification, identify safety and security issues, devise a test strategy and develop an
implementation plan.

3) Design. In this step the software modules affected by the modification are identified, the software module
documentation is modified, test cases for the new design (including safety and security issues) are created, regression
tests are identified and documentation (system/user) requirements are updated. It is important to note that the possibility
of a major software change could arise in this phase (for example the need for re-engineering a component or something
even bigger). In these cases, an authorization request has to be submitted to an Authority Team (see Section…).

4) Implementation. Modification is implemented in this phase, basing upon the results of the previous ones and the
current source code. As the change is implemented into the code, unit testing and other software quality assurance
process have to be performed. The final result of this phase should include up-to-date software, design documentation,
test documentation, user documentation and training material.

5) Regression/system testing. The main goal of this phase is to ensure that software does not crash and that it meets the
documented requirements. System testing should be performed, already during this phase, on the fully integrated and
modified system. Typically tests are prepared by developers in conjunction with software analysts starting from the
input received by the MR. System functional test, Interface testing, Regression testing and Test-readiness review (to
assess preparedness for acceptance testing) are some of the basic tests that must be performed.

6) Acceptance testing. Its goal is to verify that the solution proposed for the specific MR is good for the final user, i.e. to
determine if the requirements are met. It must be performed on the fully integrated system, possibly by either the final
user (User Acceptance Testing, UAT), the specific user of the modification package, or a third party designated by the
stakeholder. Usually the tests are performed within test scenarios which reproduce the typical usage scenario for the
specific user. Another kind of acceptance test is the Operational Acceptance Test (OAT). It is a non-functional system
testing used to check the operational readiness of a software product, service or system. Examples of this test are
backup/restore, disaster recovery, maintenance tasks and periodic check of security vulnerabilities and so on. Typically
these tests are performed by system administrators.
Once the acceptance test is passed, the modification package can go to the final phase of 7) Delivery.

A schematic time development of a full software maintenance process is shown in Figure 4.

4.2 Software Maintenance Techniques

A software maintainer can use different techniques, like Re-engineering, Reverse engineering and Holistic reusing.
1) Re-engineering. During the lifetime of the maintenance of a software application, it is possible that some of the

modifications of the source code are treated as a minor part of the development process and delegated to less
experienced programmers. This happens because most of these changes are less important than others or because it
is assumed that they have a short life span. The mass of changings can become significant, however. When this
happens, the re-engineering technique can become an important part of the software maintenance. The re-
development of key systems can be very expensive not only economically but also in terms of development time
but, at the same time, can bring old systems up to current standards and supporting new technologies. When re-
engineering a software or a system, it is also important to think in terms of providing reusable material for future
systems. Generally the re-engineering technique is composed by a reverse engineering (see below) and forward
engineering which is the process of system building.

2) Reverse engineering. This is a technique for documenting a project which has source code as the only reliable
representation. This generally happens when dealing with a long-lifetime software application because often
changes occurred during this time did not bring to a documentation update. With this technique, it is possible to
retrieve an alternate view of the system with schematics, structure chart, flow diagrams, etc. to assist in

Proc. of SPIE Vol. 9913 99132J-7
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 06 Jun 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Software Maintenance Process (SMPr)

Process Input(s) Output(s)

Problem statement & eval.
Maintenance Type & priority
Verification Data
Estimate of resources

Feasibility reportfor MR
Detailed analysis report
Updated requirements
Preliminary modification list
Test strategy
Implementation plan

Revised modification list
Updated DBL and test plan
Revised detailed analysis
Verified requirements
Revised implementation plan

Updated 5w, RS, DR, ICDs
Updated test &user docs
Updated training material
Statement of risk
Test -readiness review plan

Tested and fully integrated sys.
Test report
Test -readiness review report

New system baseline
Functional configuration rep.
Acceptance test report

Staff & ENV

Help Desk

Development Team
Authority Team

Development Team
Authority Team

Development Team
DEV ENV

Test Team

TEST ENV

STAGE ENV

Test Team

Users

TEST ENV

STAGE ENV

Deployment Team
DEPLOYMENT ENV

Modification
Request (MR)

Problem ID/
classification

System documents
Repository info
Validated MR

System documents
Source code
Databases
Analysis report

Source code
System documents
Design Report

Updated system
Test -readiness report
Updated software doc

Fully integrated sys
Test -readiness report
Acceptance test doc

Tested /accepted
system

Analysis

Design

Implementation

System Test

Acceptance Test

Delivery

Deployed system
Physical configuration report
Version description document
Updated RS, DR, ICDs

Updated Test and User docs
Updated training docs

understanding the logic of the code. Additionally this process offers opportunities for measurement, problem
identification and formulation of corrective procedures.

3) Holistic reusing. It consists in delivering a new system from a functioning system. This can happen when a parent
system during its lifetime gives birth to a new stand-alone system that has its own individuality. One reason can be
the importance of not interrupting the online system so engineers think to separate the initial system into more
components that have their own life; in this sense updating a component does not need to stop the application as a
whole but only the component to be updated while the system continues its work.

Figure 4 - Full Software Maintenance Process time development. Inputs, outputs,

required teams and environments are reported for each stage.

Proc. of SPIE Vol. 9913 99132J-8
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 06 Jun 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

5. ORGANIZATIONAL ASPECTS
5.1 Maintenance Teams

The organization of both hardware and software maintenance must include devoted teams working at different levels of
maintenance and, in case, at different geographical locations. The teams should have nearly the same duties and
composition, being replicated and made available for each of the sites where O-level, I-level and D-level maintenance is
expected to be performed (S-level maintenance is outside this aspect of the organization).

Given the prescriptions for limited human footprint presence at observatory sites (primarily for RFI-related reasons),
each hardware maintenance team working at O-level should be composed by a minim number of people (at most three)
covering the following competences: 1) electronic engineering for LRUs treatment; 2) electronic/telecommunication
engineering for RFI treatment on site; 3) electrical engineering for electrical safety-aspects.
Maintainers should be experienced people with a good knowledge and understanding of the system hardware. This
means that when a trigger arrives they are prepared to understand the type of problem and to define quickly the
corrective actions to be adopted accordingly. To be able to do that, a regular training program will be adopted, making
extensive use of complete and exhaustive hardware documentation composed by manuals, schemes, photos, diagrams,
maps, and so on, as well as local simulators (e.g. to experience dismounting and mounting detailed operations).

The organization of software maintenance teams appears more complex (see Figure 5). The process must be based on
the following teams:
1) Help Desk Team. It is the first one to react to a MR as it is issued. It carries a very preliminary analysis of the MR

and provides a quick reply to whom has issued the MR.
2) Development Team. It carries out the activities foreseen for the phases of Analysis, Design and Implementation. In

every phase it will be possible to have interaction with the person who raised the MR.
3) Test Team. It works on tests coming from different MRs. At least two test levels will be foreseen (system test and

acceptance test), possibly carried by a different person of the team.
4) Authority Team. It must approve (or reject) the modification proposed after the analysis of the MR before being

done. Similarly, at the end of the process, system test results must be evaluated by the Authority Team before the
final acceptance test which should be performed by the same person who raised the MR.

These teams, not necessary geographically distributed, should work at different levels of knowledge. The maintainers
should be experienced people with a good understanding of the software architecture from every point of view: when a
request arrives they have to be prepared to understand the type of request and which are the corrective actions to be
adopted accordingly. The ability to identify the request, as well as a good analysis capacity, are of the utmost importance
because relate to the most time consuming activities for a SMPr – issue identification and analysis.
To own such a quality, usually a maintainer should have good experience with the development of the software being
maintained, or at least be in connection with the software developer. An history of the project maintenance plays
therefore a crucial role, and maintainers could be asked to know in details only the system versions starting from some
epoch (e.g. over the last 2 years).

In general, training of younger maintainers by senior ones will be of fundamental importance. Given the very long
lifetime expected for the project (50 years), risks associated with turnover (retirements and resigns) will have to be taken
into careful account.

5.2 Hardware Asset Management System

Every hardware change/modification/replacement performed during the project lifetime has to be tracked and controlled.
An Asset Management System (AMS) will be implemented for managing the logistics of maintenance, the spare
provisioning and related contracts, as well as for tracking the system documentation and supplying real-time
information (concerning installed parts, fault conditions and changes in system documentation) to the System Model.
In particular, a Change record will allow to keep up-to-date documentation about the hardware. It will essentially list the
technical and manufacturer data of the replaced components and the replacing ones: manufacturer name, product
number, serial number, date of supply, release notes, etc. for the hardware, as well as data (e.g. version number)
concerning the firmware installed on-board, and so on. The change record will list also the expected RAM data for the

Proc. of SPIE Vol. 9913 99132J-9
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 06 Jun 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

replaced component and the replacing one (typically Mean Time to Fail), as well as the recorded life time (from
installation to failure) and the fraction of usage, and a series of detailed information about the failure that has occurred.
The data will help to update both the maintenance plan and the RAM data for the system under examination.

5.3 Software Configuration Management System

Tracking and controlling changes in source code, configuration items, documentation, etc. as a consequence of not only
corrective maintenance (e.g. bug fixing) but also perfective maintenance (e.g. following a change in requirements) is of
fundamental importance in software maintenance. A Configuration Management System (CMS) will be implemented in
order to help the software administrators. It includes configuration identification (for instance identification of
baselines), configuration control (which is the ability to accept or reject a MR of a baseline), configuration reporting
(records all the information about the development process), Environment management (both software and hardware),
Build management (managing the tools to make a build of the application), Teamwork (tools and practices for the team
to work together) and defect tracking (every MR should be traceable back to the source). Examples of tools available for
this purpose are represented by the open source packages Puppet[10] or Chef [11].
Other fundamental tools that a CMS must include are the Issue Tracking System (ITS), which manages and maintains
lists of issues (or MRs) usually through a ticketing system (e.g. Jira[12]), and the Version Control System (VCS), used by
developers to keep track of all the modifications made in their source code (e.g. Apache subversion[13] or Git[14]).

5.4 Deployment Environment

In software deployment, an environment (or tier) is a hardware computer system where a computer program or software
component is deployed and executed. In industrial use, it is quite common to separate development environment (where
changes are originally made) from production environment (where computer programs are used by end-users), often
with different stages in between so that it is possible a phased deployment, testing and rollback in case of problems.
Common tiers are development, testing, staging, production (Figure 5).
Development Environment (DevEnv) is where changes are originally made by developers who receive the MRs and are
in the implementation phase of the SMPr. The most simple situation is when developers can make changes in their local
workstation. In this case, however, as soon as the need for a simulator (or other shared resources locally unavailable) is
raised, or if there are multiple developers, difficulties arise in keeping the latest version of the software in the
developer’s workstation. In a distributed software application, like SKA TM, it is recommended to avoid the
complications and risks of always keeping the latest version in a local computer.
Testing Environment (TestEnv) has the goal to replicate the condition that brought to the discovery of a specific bug or
anomaly. Test environments are continuously evolving and it is very important to own the test environment
configuration and its usage details, making it challenging for maintainers. New possibilities came up with the birth of
Cloud Computing and the Platform as a Service (PaaS): developers can ask for a specific test tier in the form of a virtual
machine and having always an up-to-date platform. Note that since the database configuration in a particular moment
can affect the test results, the maintenance of databases and configuration (database tables, stored procedures and
models that can change during the lifetime of the software) will have to be done in turn.
Quality Assurance (QA) is another type of environment especially suitable for the acceptance test phase of the
maintenance process.
Staging Environment (StagEnv) is an exact copy of the production environment (see below) used to test and review a
newer version of the software before moving it to the production environment. It can even connect to (but not modify)
the data stored in production environment and usually only a restricted number of users can use it.
Production Environment (ProdEnv) is the last one and allows the final users to use the software produced. Only
software compiled in release can be in this tier and usually it is associated with a production support. The delivery
phase of the SMPr is very sensitive in this environment because if hot swapping is not possible, deploying a new release
generally requires a restart and therefore an interruption in service. If there is a redundancy mechanism, it is possible to
start a new server and, when started, redirect all the traffic to the new server with the new software.

.

Proc. of SPIE Vol. 9913 99132J-10
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 06 Jun 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

l

1

Although it is
phases are no
phases, for ex
same test env
Defining a p
performance
metrics are re
For the a giv
maintenance.
closure, accep
the final budg
NA

(i) of iterat
on the mainte
Notice that th
(MTTR), eve
According to
close the issu
defined as

and will be a

6. PERF
s possible to d
ot completely
xample throug
vironment for
performance m
metrics that c

elated to the m
ven software a
 Once assigne
ptance by user
get of the time
tions/interactio
enance, but als
he time to sol
en if for Emerg

this descripti
ue τi

(exp) will h

scalar numbe

Figure

FORMANC
define a perfo

y separated ea
gh the output o
QA and Acce

metrics for th
can work alone
main working-
application/co
ed to a mainta
r and final dep
e contribution
ons between t
so on the com
lve the issue,
gency and Co
ion, and consi
ave to be prov

er ranging from

e 5: Software

CE METRI
ormance metri
ach other, and
of a phase tak

eptance.
he overall SM
e or be consid
quality factor

omponent, let
ainer, the i-th
ployment, tha
s by the vario
the analyst(s)

mponent proper
τi , is the eq

rrective Main
dering that am
vided, a merit

m 0 to 1.

Maintenance

ICS FOR S
ics for each p
d the performa
ken as input by

MPr could the
dered as factor
rs of the SMPr

us suppose t
h MR (MRi) w
at will occur af
us phases: am
and the user(
rties.

quivalent of th
ntenance only.
mong the outp
t figure for the

ܳ௜ = ߬௜(௘௫௣)߬௜

organization

OFTWAR
hase of the st
ance of each
y the next one

refore be a b
rs for an overa
r shown in Fig
that NMR mod

will undergo th
fter a time τi f

mong them, it i
(s) during the

he hardware-r

puts of the ana
e SMPr of the

model

RE MAINTE
tandard SMPr
phase is som

e, or because o

better practice
all, unique me
gure 6 and des
dification requ
he various ph
from the initia
is worth of no
analysis phas

elated concep

alysis phase a
e i-th MR of C

ENANCE
r, the different

mewhat depend
of the concurr

e. There are s
erit figure Q. T
scribed as foll
uests (MRs) a
hases of the S
al issuing. Thi
otice to mentio
se, which dep

pt of Mean Ti

minimum exp
C component c

t maintenance
ding on other
rent use of the

several SMPr
Three of these
lows.
are issued for
MPr up to its
is time will be
on the number
ends not only

ime to Repair

pected time to
can be simply

e
r
e

r
e

r
s
e
r
y

r

o
y

Proc. of SPIE Vol. 9913 99132J-11
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 06 Jun 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Component (C) subjected to maintenance
Maximum expected number of MRs: Ncfr"P)

Issued MR;
i = 1,..., Nr

IIssued MR,

Minimum expected
'L1 closure time

Z .(exp)

Closed MR;

Identification/
classification

11 Analysis

Analysis iterationsA/I

Design

Implementation

QA

Acceptance

Delivery

User

Figure 6: Example of working quality factors for SMPr

At overall component level, a merit figure for the SMPr of component C can be defined as the average of Qi over the
MRs globally issued for that component:
 ܳ஼ = 1ܰ஼෍ܳ௜ே಴

௜ୀଵ

This definition of QC , however, does not allow to compare the maintenance process performance for components that
differ as to software complexity and criticality (with respect to the rest of the system, a reliability-related concept), as
well as to usage statistics.
It can help however to generate a metrics for getting indications about the quality of the component. Let us suppose
indeed that during the design of component “C” a maximum number of MRs that can be issued, NC

(max) , can be defined
(for example, equal to the number of physical or logical code lines). The quality of the component C will then be
proportional to 1 − ஼ܰ஼ܰ(௠௔௫)

i.e. it will be 1 (highest level) in case there are indeed no MRs issued, and will be 0 (lowest level) if the number of MRs
issued is equal to the maximum (worst) expected number.
On the other hand, the number of MRs issued could depend on the fraction of usage time uC (which can be known
basing upon software monitoring data). Finally, the reliability of the component could be expressed by a weight function
wC describing the impact that component’s problems should have on the rest of the system (wC=1 for maximum impact
and 0 for no impact), computed basing on the criticality analysis process (SFMEA) performed on the overall system.

In conclusion, a possible merit figure for the quality level SQC of a software component “C” could be derived from the
maintenance performance figure, the monitoring data and the design aspects in the following way:

Proc. of SPIE Vol. 9913 99132J-12
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 06 Jun 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

ܵܳ஼ = ܳ஼ݑ஼(1 − (஼ݓ ൭1 − ஼ܰ஼ܰ(௠௔௫)൱

It is easy to verify that also SQC will have values in the range from 0 to 1.
The evaluation of the quality level of a software component, as a result of a Software Maintenance Process, can be of
great importance in case of software re-engineering.

7. CONCLUSIONS AND FUTURE WORK
In this paper the operational and organizational aspects of the hardware and software maintenance of the SKA Telescope
Manager have been described. From the operational point of view, the challenging aspects are related to the distributed
nature of TM, as well as to its mostly software-based nature, which has consequences on the maintenance process, the
maintenance time and the logistical support aspects (teams, environments, hardware spares availability and so on). On
the other hand, the challenging organizational aspects are related to the need to ensure an efficient and fast maintenance
process, so that the system possible downtimes are extremely reduced or, ideally, cancelled. This objective translates in
proper strategies that must be adopted for the final design of TM, in such a way both maintenance and deployment could
be performed without stopping the system operation. Currently the detailed design of TM is still ongoing and evolution
and refinements are expected to some extent. This paper should therefore be seen as an overview of the current status of
the maintenance strategy for TM, which will have to be refined, together with the TM design itself, in the future stages
of the project.

Acknowledgements. The authors are grateful to the Italian Ministero dell’Istruzione, dell’Università e della Ricerca
(MIUR) for the financial support to this work.

REFERENCES

[1] Alistair M. McPherson 2016: SKA Telescope update through re-baselining and preliminary design phase, Proc.
of the SPIE Astronomical Telescopes and Instrumentation 2016, paper no. 9906-75 (this conference)

[2] Gary R. Davis, Douglas C. Bock, Antonio C. Chrysostomou, Cornelius Taljaard 2016: Operations concept for
the Square Kilometre Array, Proc. of the SPIE Astronomical Telescopes and Instrumentation 2016, paper no.
9910-17 (this conference)

[3] Swaminathan Natarajan, Yashwant Gupta, Paul Swart, Gerhard LeRoux, Alan Bridger, Subhrojyoti Roy
Choudhuri, Mauro Dolci, Domingos Barbosa, Lize Van den Heever, Juan Guzman, Sonja Vrcic 2016: SKA
Telescope Manager (TM): Status and Architecture Overview, Proc. of the SPIE Astronomical Telescopes and
Instrumentation 2016, paper no. 9913-1 (this conference)

[4] Stewart J. Williams, Alan Bridger, Subhrojyoti R. Choudhury 2016: The SKA observation control system,
Proc. of the SPIE Astronomical Telescopes and Instrumentation 2016, paper no. 9913-98 (this conference)

[5] Alan Bridger, Stewart J. Williams, Mark Nicol, Pamela Klaassen, Roger S. Thompson, Cristina Knapic,
Giovanna Jerse, Andrea Orlati, Marco Messina, Snehal Valame 2016: Observation management challenges of
the Square Kilometre Array, Proc. of the SPIE Astronomical Telescopes and Instrumentation 2016, paper no.
9913-35 (this conference)

[6] Di Carlo, Matteo, Dolci, Mauro, Smareglia, Riccardo, Canzari, Matteo, Riggi, Simone: “Monitoring and
controlling the SKA telescope manager: a peculiar LMC system in the framework of the SKA LMCs”, Proc. of
the SPIE Astronomical Telescopes and Instrumentation 2016, paper no. 9913-117 (this conference)

[7] Domingos Barbosa, João Paulo Barraca, Dalmiro Maia, Antonio Cruz, Gerhard Le Roux, Swaminathan
Natarajan, Paul Swart, Yashwant Gupta 2016: A cyber infrastructure for the SKA Telescope Manager, Proc. of
the SPIE Astronomical Telescopes and Instrumentation 2016, paper no. 9913-20 (this conference)

[8] R. K. Iyer and P. Velardi 1985: Hardware-related software errors: measurement and analysis, IEEE
Transactions on Software Engineering, Vol. SE-11, issue 2, pp. 223 (1985)

Proc. of SPIE Vol. 9913 99132J-13
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 06 Jun 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

[9] IEEE Std 1219-1998 Standard for software maintenance
[10] Puppet Configuration management: https://puppetlabs.com/solutions/configuration-management
[11] Chef configuration management: https://www.chef.io/solutions/configuration-management/
[12] Jira ticketing system: www.atlassian.com/software/jira
[13] Apache subversion version control software: subversion.apache.org
[14] Git version control software: git-scm.com

Proc. of SPIE Vol. 9913 99132J-14
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 06 Jun 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

