
2016Publication Year

2020-07-09T09:18:59ZAcceptance in OA@INAF

UAV-aided calibration for commissioning of phased array radio telescopesTitle

Wijnholds, Stefan J.; PUPILLO, Giuseppe; BOLLI, Pietro; Virone, GiuseppeAuthors

10.1109/URSIAP-RASC.2016.7601375DOI

http://hdl.handle.net/20.500.12386/26394Handle



UAV-Aided Calibration for Commissioning of
Phased Array Radio Telescopes

Stefan J. Wijnholds
R&D Department

ASTRON
Dwingeloo, The Netherlands

wijnholds@astron.nl

Giuseppe Pupillo
Instituto di Radioastronomia

INAF
Bologna, Italy

g.pupillo@ira.inaf.it

Pietro Bolli
Arcetri Astrophysical Observatory

INAF
Florence, Italy

pbolli@arcetri.inaf.it

Giuseppe Virone
IEIIT
CNR

Turin, Italy
giuseppe.virone@ieiit.cnr.it

Abstract—Calibration of antenna positions and instrumental
response is a crucial step in the commissioning of a phased array
radio telescope. The Low Frequency Aperture Array system of
the Square Kilometre Array (SKA) is envisaged to consist of
about 131,000 antennas. In this paper, we propose a strategy
to efficiently conduct commissioning calibration of such a large
phased array radio telescope using a near-field probe mounted
on an Unmanned Aerial Vehicle (UAV). We demonstrate the
effectiveness of the proposed method using simulations. This in-
dicates that potentially cost-saving relaxation of requirements on
placement accuracy is possible. We also propose to validate this
method in practice using the Low Frequency Array (LOFAR).

I. INTRODUCTION

The radio astronomical community is currently making
detailed plans for the Square Kilometre Array (SKA) [1]. The
low frequency receiving system of the SKA (SKA-low) will
be a phased array instrument operating in the 50 – 350 MHz
frequency range consisting of 512 stations with 256 antennas
each [2]. Due to the large fractional bandwidth, the antennas
in a station will be placed in an irregular configuration. Such a
configuration has the additional advantage that some additional
randomisation of the antenna positions by a fast but inaccurate
antenna installation procedure will not fundamentally change
the performance of the instrument. A fast and simple installa-
tion procedure is attractive in view of the large number of an-
tennas to be rolled out and the harsh working conditions in the
Western Australian Desert. The downside of such an approach
is, that the antenna positions are not accurately known at the
start of the commissioning phase, which will put the SKA-low
system at a more challenging starting position than current
low frequency instruments such as the Low Frequency Array
(LOFAR) [3] and the Murchison Widefield Array (MWA) [4],
whose positions were very accurately known from the start.

Another issue is, that the element radiation patterns will be
different for each element in an irregular array. This effect is
hitherto ignored in LOFAR. Its effect on calibration solutions
is so far remedied by averaging over time, but it was recently
concluded that an improved beam model is required.

In this paper, we show how both issues (inaccurately known
antenna positions and inaccurately known element radiation
patterns) can be addressed using a probe mounted on an
Unmanned Aerial Vehicle (UAV). Such an UAV system has
been developed by a collaboration between CNR and INAF

in Italy [5] and successfully demonstrated on a small testbed
in Medicina [6]. With the methods proposed in this paper,
such a system can aid the commissioning of future phased
array radio telescopes, in particular the SKA-low system.
We are currently making detailed plans to demonstrate the
combination of the UAV measurement techniques described
in [6] with the calibration scheme presented in this paper on
LOFAR.

Notation Upper case bold symbols denote matrices, lower
case bold symbols denote vectors and italic symbols denote
scalars. Complex conjugation is denoted by · (overbar), the
inner product by ·, the transpose by T , the norm of a vector
by ‖ · ‖ and the phase of a complex number by 6 ·.

II. DATA MODEL

For simplicity of presentation, we consider an array in which
all antennas measure only a single polarisation. It will become
apparent later that it is straightforward to extend our method
to antenna systems measuring both polarisations. The UAV
transmits a signal s (t) that is assumed to be strong enough
to ignore the presence of the astronomical sources inside the
field of view of the antennas in the frequency channel in which
the measurement is done. When the UAV is at position xUAV,
this signal arrives at the pth antenna at position xp with phase
2π ‖xUAV − xp‖ /λ and an amplitude that depends on path
loss, polarisation mismatch factor and gain of the probe on
the UAV in the direction of the antenna. For convenience of
notation we combine the latter three terms, which are usually
described individually, in a single gain factor γp. The gain of
the pth antenna, Gp depends on the positions of the antenna
and the UAV, since the element radiation pattern is direction
dependent. The voltage that we measure is further modified
by the LNA and analog receiver path, which we describe by
gp. The voltage measured on the pth receiver path can thus be
described by the Friis equation

vp (xUAV, t) = gpGp (xUAV) γp (xUAV)

× exp

{
2πj

λ
‖xUAV − xp‖

}
s (t) + np (t) , (1)

where np (t) represents the noise on the measurements.
The signal transmitted by the UAV is usually not locked

with the frequency reference of the device measuring the



signal at the output of the antenna. This precludes direct
measurement of the transfer function between the probe and
the AUT. We therefore need to determine the amplitude and
phase differences between signal paths by correlating these
signals, which provides a measure of the expected value

Rp1,p2
(xUAV) = E {vp1

(xUAV, t) vp2
(xUAV, t)} . (2)

For ergodic signals, this permits us to simplify our description
to a frequency domain only description. Based on the data
model given in (1), we find

Rp1,p2
(xUAV) = gp1

gp2
Gp1

(xUAV)Gp2
(xUAV)

×γp1
(xUAV) γp2

(xUAV)σ

× exp

{
2πj

λ
(‖xUAV − xp1

‖ − ‖xUAV − xp2
‖)
}
, (3)

where σ is the power transmitted by the probe.

III. PROPOSED CALIBRATION PROCEDURE

A. Antenna position estimation

Our proposed method is an adaptation of (part of) the array
calibration method described in [7], [8], which we modify to
work with a near field source. Before we can calculate the path
loss to the pth antenna γp and determine its radiation pattern
Gp, we need to know its position. Based on experience from
LOFAR, we may conclude that phase effects introduced by
differences between element radiation patterns are reasonably
small and can be averaged out over measurements in multiple
directions. If we probe a sufficient number of directions, we
can therefore ignore the effect of Gp and γp on the phase of
Rp1,p2

, which can therefore be described as

6 Rp1,p2
= ϕp1

−ϕp2
+
2π

λ
(‖xUAV − xp1

‖ − ‖xUAV − xp2
‖) ,
(4)

where ϕp = 6 gp.
Since the antennas are positioned according to a designed

configuration, we can describe the position of the pth antenna
xp as the sum of its nominal position x0

p according to the
designed configuration and an error introduced by the roll-out
process εp. For convenience of notation, we introduce δp =
xUAV − x0

p. We can now write Eq. (4) as

6 Rp1,p2
= ϕp1

− ϕp2
+

2π

λ
(‖δp1

− εp1
‖ − ‖δp2

− εp2
‖) .

(5)
Assuming that εp << δp, we can use the approximation

‖δp − εp‖ =

√
‖δp‖2 + ‖εp‖2 − 2δp · εp

≈
√
‖δp‖2 − 2δp · εp

= ‖δp‖
√
1− 2

δp · εp
‖δp‖2

≈ ‖δp‖ −
δp · εp
‖δp‖

.

Hence

6 Rp1,p2 =
2π

λ
(‖δp1‖ − ‖δp2‖) + (ϕp1 − ϕp2) +

2π

λ

(
−δp1

· εp1

‖δp1
‖

+
δp2
· εp2

‖δp2
‖

)
. (6)

Since δp only depends on the known position of the UAV
and the known nominal position of the pth antenna, the first
term can, in principle, be computed and subtracted. However,
it is better to modify Rp1,p2

using appropriate phasors to avoid
issues with 2π phase ambiguities. We therefore introduce the
modified array covariance matrix element

R̃p1,p2
= exp

{
−2πj

λ
(‖δp1

‖ − ‖δp2
‖)
}
Rp1,p2

. (7)

Assuming that the antennas are positioned in the (x, y)-plane
such that their z-position is already known (just for conve-
nience of notation, our method can easily be generalized to
three dimensions), we have εp = [εx,p, εy,p, 0]

T . Similarly, we
have δp = [δx,p, δy,p, δz,p]

T . Defining εx = [εx,1, · · · εx,P ]T ,
εy = [εy,1, · · · εy,P ]T and ϕ = [ϕ1, · · · , ϕP ]

T , we can write

6 R̃p1,p2 =
2π

λ

(
−δx,p1

ep1

‖δp1‖
+
δx,p2

ep2

‖δp2‖

)
εx +

2π

λ

(
−δy,p1

ep1

‖δp1‖
+
δy,p2

ep2

‖δp2‖

)
εy +

(ep1 − ep2)ϕ

= mT
p1,p2

[
ϕT , εTx , ε

T
y

]T
, (8)

where ep denotes the unit vector with all elements equal to
zero except for its pth element, which is equal to unity. The
unit vector ep has length P , where P is the number of antennas
in the array.

By stacking all measured phases 6 R̃p1,p2
in a vector φ for

all UAV positions and all antenna pairs and by stacking the
corresponding row vectors mT

p1,p2
in a measurement matrix

M, we can build the system of equations

φ = M
[
ϕT , εTx , ε

T
y

]T
. (9)

For K different UAV positions and an array of P antennas, φ
is a real valued vector with length P 2K and the measurement
matrix M has size P 2K × 3P . Since our measurements
are insensitive to a common phase offset (phase referencing
problem), the measurement matrix will always have a rank
deficiency of 1, so it cannot be inverted. This can be solved
by setting ϕ1 = 0, making the first element in the array the
phase reference. Mathematically, this means that we define the
parameter vector θ as

θ =
[
ϕ2, · · · , ϕP , ε

T
x , ε

T
y

]T
(10)

and use the modified measurement matrix M̃, which is equal
to M with its first column removed (and therefore has size
P 2K × (3P − 1)). Our antenna position and receiver path



West ← x (m) → East
-40 -20 0 20 40

So
ut

h 
←

 y
 (m

) →
 N

or
th

-40

-30

-20

-10

0

10

20

30

Fig. 1: Nominal antenna positions.

phase calibration problem can thus be formulated as the least
squares problem

θ̂ = argmin
θ

∥∥∥φ− M̃θ
∥∥∥2 , (11)

which is readily solved using the Moore-Penrose pseudo-
inverse, giving

θ̂ =
(
M̃HM̃

)−1
M̃Hφ. (12)

B. Radiation pattern measurement

Once the antenna positions have been estimated, we can
calculate ‖xUAV − xp‖ and therefore the phase of the signal
from the probe received at each antenna as well as the path loss
towards each antenna. This only leaves the complex receiver
path gains gp1

and gp2
and the element radiation patterns

Gp1 and Gp2 as the only unknowns in Eq. (3). Since the
amplitude of the receiver path gains (their phases are already
obtained in the process described in the previous section)
can be absorbed in the gain of the element radiation pattern,
our system characterization problem has now been reduced
to an element radiation pattern measurement problem. Such a
problem can be effectively solved with UAV measurements as
demonstrated in [5], [6].

IV. SIMULATIONS

To assess the method for position estimation outlined in
the previous section, we simulated measurements on a 48-
antenna LOFAR station. The nominal antenna positions are
shown in Fig. 1. The UAV was assumed to follow a circular
path with a radius of 25 m centred above the centre of
the array at an altitude of 100 m. Measurements were done
at 10 equally spaced points along this path at 50 MHz.
Since we are primarily interested in the robustness of the
proposed method and we may assume that the SNR of practical
measurements is sufficiently high to ignore the effect of noise
on the measurements, we generated noise free data.

To explore the performance of the proposed method for a
range of phase and position errors, we did a series of Monte

Fig. 2: Probability of successful reconstruction for different
magnitudes of the rms phase and position errors.

Carlo simulations, each consisting of 1000 runs. For each
simulation, antenna gain phases and antenna position errors
were randomly generated. The magnitude of these errors were
varied from 0◦ to 90◦ in steps of 10◦ for the rms phase errors
and 0 m to 1 m in steps of 0.1 m for the rms errors on the x-
as well as the y-positions.

The procedure outlined in the previous section may still be
sensitive to 2π phase ambiguities between the predicted and
the measured phases. This may cause problems when the phase
and position errors are large. Fig. 2 shows the probability of
successful reconstruction for different combinations of phase
and position errors. Given the fact that 1 m rms position error
is a very significant deviation from the planned configuration,
we can conclude that up to rms phase errors of about 40◦ the
method works very well. Fig. 2 was created by comparison of
the true position errors with the estimated position errors. In
reality, we do not know the true position errors. Fortunately,
the position error estimates degrade very quickly, leading to
very large values that are easily recognised as being erroneous
even if the ground truth is not known.

These 2π phase ambiguities emerge when we determine the
angle from the measured value. The phase model described
by Eq. (8) provides phases on a continuous scale, i.e., without
2π jumps. This problem can be circumvented by tracking the
phases continuously during the flight of the UAV, such that
the measured phases can be unwrapped. This can easily be
achieved in practice as demonstrated by the measurements
described in [6], which were taken at a 50 ms cadence while
the UAV was flying at a speed of 1.5 m/s, which translates to
a movement of 7.5 cm. Taking a conservative approach, this
would allow us to phase unwrap for all measurements with
λ > 30 cm, i.e., at frequencies lower than 1 GHz.

We have verified this conjecture by modifying our simula-
tions such that the phases were tracked and unwrapped. In
this modified simulation, the UAV was assumed to follow
a circular path with a radius of 50 m centred above the
centre of the array at an altitude of 100 m. Measurements
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were done continuously to allow phase unwrapping at 50
MHz. For estimation, 10 equally spaces points along the path
were taken after phase unwrapping. With this setup, we did
a series of Monte Carlo simulations consisting of 100 runs
each. Antenna gain phases and antenna position errors were
generated randomly as before, but their magnitude now varied
from 0◦ to 360◦ in steps of 20◦ for the rms phase errors and
0 m to 3 m in steps of 0.3 m for the rms errors on the x-
as well as the y-positions. We found that the proposed phase
unwrapping procedure for the measured values allows 100%
successful reconstruction for at least the indicated range of
position and phase errors.

The proposed measurement linearises the phase model by
assuming that εp << δp. This assumption introduces system-
atic deviations of the linearised phase model from the actually
measured phases, so we need to verify that this does not lead
to large estimation errors or biased estimates. Fig. 3 therefore

shows the estimation accuracy obtained from the modified
simulation (with phase unwrapping) for the parameter vec-
tor

[
εTx , ε

T
y

]T
as function of rms variation of the antenna

positions, while Fig. 4 shows the bias in the corresponding
estimates. We see that the position estimation errors are more
than a factor 10 smaller than the deviations from their nominal
positions. This indicates that, if more accuracy is needed,
we can start an iterative process to improve the accuracy of
the position estimates to the required level. In Fig. 4 we see
systematic variations, but these features are smaller than the
estimation accuracy. We therefore conclude that, within the
accuracy provided by the proposed method, it is unbiased.

V. CONCLUSIONS

In this paper, we proposed a method to calibrate the posi-
tions and element radiation patterns of the antennas in a low
frequency aperture array station using a probe mounted on an
UAV flying in the near field for the array. We validated this
procedure using simulations demonstrating that the proposed
method gives accurate and unbiased results if the measured
phases can be unwrapped. Based on the measurements de-
scribed in [6], this is feasible below frequencies of about 1
GHz. This makes the proposed method very suitable for SKA-
low. This provides room to relax the requirements on antenna
placement accuracy, which could potentially lead to large cost
savings during the roll out of the SKA-low system.

In future work, we will also investigate optimum scanning
strategies to maximise the probability of successful reconstruc-
tion with larger phase and position errors and robustness to
measurement noise. We will also plan to validate our method
by in-situ measurements on a LOFAR station.
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