

Publication Year	2016
Acceptance in OA@INAF	2020-06-12T13:56:37Z
Title	Explorer of Enceladus and Titan (E2T): Investigating Ocean Worlds' Evolution and Habitability in the Saturn System
Authors	Mitri, G.; Postberg, F.; Soderblom, J. M.; Tobie, G.; Tortora, P.; et al.
Handle	http://hdl.handle.net/20.500.12386/26040

P33A-2129: Explorer of Enceladus and Titan (E²T): Investigating Ocean Worlds' Evolution and Habitability in the Saturn System

The NASA-ESA-ASI Cassini-Huygens mission has revealed Titan and Enceladus to be two of the most enigmatic worlds in the Solar System. Titan, with its organically rich and dynamic atmosphere and geology, and Enceladus, with its active plume of water vapor and ice including trace amounts of organics, salts, and silica nano-particles, both harboring subsurface oceans, are prime environments to investigate the conditions for the emergence of life and the habitability potential of ocean worlds, as well as the origin and evolution of complex planetary systems. The Explorer of Enceladus and Titan (E²T) is a space mission concept dedicated to investigating the evolution and habitability of these Saturnian satellites and is proposed in response to ESA's M5 Cosmic Vision Call, as a medium-class mission led by ESA in collaboration with NASA. E²T has a focused state-of-the-art payload that will provide in-situ chemical analysis, and high-resolution imaging from multiple flybys of Enceladus and Titan using a solar-electric powered spacecraft in orbit around Saturn. With significant improvements in mass range and resolution, as compared with Cassini instrumentation, the lon and Neutral Gas Mass Spectrometer (INMS) and the Enceladus lcy Jet Analyzer (ENIJA) time-of-flight mass spectrometers will provide the data needed to decipher the subtle details of the aqueous environment of Enceladus from plume sampling and of the complex pre-biotic chemistry occurring in Titan's atmosphere. The Titan Imaging and Geology, Enceladus Reconnaissance (TIGER) mid-wave infrared camera will map thermal emission from Enceladus' tiger stripes at meter scales and investigate Titan's geology and compositional variability at decameter scales.

Authors

Giuseppe Mitri *

University of Nantes

Frank Postberg

University of Heidelberg

Jason M Soderblom

Massachusetts Institute of Technology

Gabriel Tobie

University of Nantes

Paolo Tortora

Universita di Bologna

Peter Wurz

University of Bern

Jason W Barnes

University of Idaho

Nathalie Carrasco

Université Versailles St-Quentin, Sorbonne Universités, UPMC Univ. Paris 06, CNRS

Athena Coustenis

LESIA, Paris Observatory, CNRS, UPMC Univ. Paris 06, Univ. Paris-Diderot

Francesca Ferri

Univ. Padova

Alexander Hayes

Cornell University

Jon Hillier

University of Kent

Sascha Kempf

University of Colorado at

Boulder

1 di 2 22/05/2020, 18:24

Jean-Pierre Lebreton
University of Orleans

Ralph D Lorenz

Johns Hopkins University Applied Physics Laboratory

Roberto Orosei

Istituto di Radioastronomia

Anastassios E. E Petropoulos NASA Jet Propulsion Laboratory

Kim R Reh

Jet Propulsion Laboratory

Find Similar

View Related Events

Day: Wednesday, 14 December 2016

Juergen Schmidt
University of Oulu

Christophe Sotin

NASA Jet Propulsion
Laboratory

Ralf Srama

University of Stuttgart

Veronique Vuitton

CNRS

Chen-Wan Yen
NASA Jet Propulsion
Laboratory

2 di 2