
2016Publication Year

2020-05-21T10:25:58ZAcceptance in OA@INAF

Protostars: Forges of cosmic rays?Title

Padovani, Marco; Marcowith, A.; Hennebelle, P.; Ferrière, K.Authors

10.1051/0004-6361/201628221DOI

http://hdl.handle.net/20.500.12386/25038Handle

ASTRONOMY & ASTROPHYSICSJournal

590Number



A&A 590, A8 (2016)
DOI: 10.1051/0004-6361/201628221
c© ESO 2016

Astronomy
&Astrophysics

Protostars: Forges of cosmic rays?
M. Padovani1, 2, A. Marcowith1, P. Hennebelle3, and K. Ferrière4

1 Laboratoire Univers et Particules de Montpellier, UMR 5299 du CNRS, Université de Montpellier, place E. Bataillon, cc072,
34095 Montpellier, France
e-mail: [Marco.Padovani;Alexandre.Marcowith]@umontpellier.fr

2 INAF–Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy
3 CEA, IRFU, SAp, Centre de Saclay, 91191 Gif-Sur-Yvette, France

e-mail: patrick.hennebelle@cea.fr
4 IRAP, Université de Toulouse, CNRS, 9 avenue du Colonel Roche, BP 44346, 31028 Toulouse Cedex 4, France

Received 29 January 2016 / Accepted 24 February 2016

ABSTRACT

Context. Galactic cosmic rays are particles presumably accelerated in supernova remnant shocks that propagate in the interstellar
medium up to the densest parts of molecular clouds, losing energy and their ionisation efficiency because of the presence of magnetic
fields and collisions with molecular hydrogen. Recent observations hint at high levels of ionisation and at the presence of synchrotron
emission in protostellar systems, which leads to an apparent contradiction.
Aims. We want to explain the origin of these cosmic rays accelerated within young protostars as suggested by observations.
Methods. Our modelling consists of a set of conditions that has to be satisfied in order to have an efficient cosmic-ray acceleration
through diffusive shock acceleration. We analyse three main acceleration sites (shocks in accretion flows, along the jets, and on
protostellar surfaces), then we follow the propagation of these particles through the protostellar system up to the hot spot region.
Results. We find that jet shocks can be strong accelerators of cosmic-ray protons, which can be boosted up to relativistic energies.
Other promising acceleration sites are protostellar surfaces, where shocks caused by impacting material during the collapse phase are
strong enough to accelerate cosmic-ray protons. In contrast, accretion flow shocks are too weak to efficiently accelerate cosmic rays.
Though cosmic-ray electrons are weakly accelerated, they can gain a strong boost to relativistic energies through re-acceleration in
successive shocks.
Conclusions. We suggest a mechanism able to accelerate both cosmic-ray protons and electrons through the diffusive shock acceler-
ation mechanism, which can be used to explain the high ionisation rate and the synchrotron emission observed towards protostellar
sources. The existence of an internal source of energetic particles can have a strong and unforeseen impact on the ionisation of the
protostellar disc, on the star and planet formation processes, and on the formation of pre-biotic molecules.

Key words. cosmic rays – ISM: jets and outflows – stars: protostars

1. Introduction

Cosmic rays (CRs), ordinary matter, and magnetic fields repre-
sent the fundamental elements of the Galaxy; they have com-
parable pressures and are coupled together by electromagnetic
forces (Ferrière 2001). The interaction between CRs and the in-
terstellar matter lays the foundation for the rich chemistry that
is observed in molecular clouds. In fact, as soon as the UV
interstellar radiation field is absorbed, at about 4 mag of vi-
sual extinction (McKee 1989) and far from the X-ray flux pro-
duced by embedded protostars (Krolik & Kallman 1983; Silk &
Norman 1983), CRs are the main ionising agents of molecular
hydrogen, the most abundant component of molecular clouds.
From this process, increasingly complex species are produced,
allowing the characterisation of the physical and chemical prop-
erties of protostellar sources.

The key parameter in the calculation of molecular abun-
dances from observations and from chemical models is the CR
ionisation rate, ζ. Determining the value of ζ is not straight-
forward since the propagation of CRs inside a cloud has to
be accurately described and a number of processes taken into
account: energy losses (Padovani et al. 2009), magnetic field
effects (Cesarsky & Völk 1978; Chandran 2000; Padovani &
Galli 2011, 2013; Padovani et al. 2013), and screening due

to self-generated Alfvén waves in the plasma (Skilling &
Strong 1976; Cesarsky & Völk 1978; Hartquist et al. 1978;
Rimmer et al. 2012; Morlino & Gabici 2015).

In addition to the chemistry, CRs play another important role
in regulating the formation of protostellar discs. A magnetic field
entrained in a collapsing cloud brakes the rotational motions as
long as the field is frozen in the gas (see e.g. Galli et al. 2006;
Mellon & Li 2008; Hennebelle & Fromang 2008). One of the
speculated mechanisms that mitigates the magnetic braking ef-
fect relies on non-ideal magnetohydrodynamic effects, namely
ambipolar diffusion, Hall, and Ohmic diffusion (Shu et al. 2006;
Dapp & Basu 2010; Krasnopolsky et al. 2011; Braiding &
Wardle 2012a,b; Masson et al. 2016; Tomida et al. 2015). The
associated diffusion coefficients depend on the abundance of the
charged species, which in turn is predicted by the CR ionisation
rate. Padovani et al. (2013, 2014) showed that, at least in the for-
mation process of low-mass protostellar discs, a proper treatment
of CR propagation can lead to very low values of ζ. As a conse-
quence, in the central region of a collapsing cloud the coupling
between gas and magnetic field is weaker than usually assumed,
flux freezing is no longer valid, and the influence of the magnetic
field on the collapse is reduced.

Cleeves et al. (2013) studied the inhibition of CR propaga-
tion in protoplanetary discs of Class II protostars as a result of
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magnetised stellar winds. They found that, in addition to X-ray
ionisation from the central star, ζ is set by short-lived radionu-
clides and it is of the order of 10−19 s−1. On the other hand,
Ceccarelli et al. (2014) and Podio et al. (2014) found very high
values of ζ towards two protostars (OMC-2 FIR 4 and L1157-
B1). These high values of ζ cannot be due to the interstellar
CR flux since the column density is too high, which damps the
propagation of interstellar CRs (Padovani et al. 2013). Follow-
ing the same reasoning, the interstellar electron flux cannot ex-
plain the synchrotron emission observed towards the bow shock
of DG Tau by Ainsworth et al. (2014).

The purpose of this paper is to investigate the possibility of
accelerating particles, i.e. of generating local CRs, inside or in
the immediate vicinity of a protostar. Our investigation is justi-
fied by simple arguments on the energetics of the system. The
gravitational luminosity of an accretion shock on the surface of
a protostar reads

Lgrav =
GMṀ

Rsh
, (1)

where G is the gravitational constant, M is the protostellar mass,
Ṁ is the accretion rate, and Rsh is the shock radius. If we con-
sider the gravitational collapse of an early Class 0 protostar with
M = 0.1 M�, Ṁ = 10−5 M� yr−1 (e.g. Shu et al. 1987; Belloche
et al. 2002), Rsh = 2 × 10−2 AU (Masunaga & Inutsuka 2000),
then Lgrav = 3 × 1034 erg s−1. The luminosity of the interstellar
CRs impinging on a molecular cloud core can be estimated by

LCR = R2
coreVAεCR, (2)

where Rcore is the core radius, VA is the Alfvén speed in the sur-
rounding medium, supposed to be the warm neutral medium, and
εCR is the energy density of the interstellar CRs based on the lat-
est Voyager 1 observations (Stone et al. 2013; Ivlev et al. 2015).
Here we adopt Rcore = 0.1 pc, VA = 9.3 × 105 cm s−1 (based
on nH = 0.5 cm−3 and B = 3 µG; Ferrière 2001), and εCR =
1.3 × 10−12 erg cm−3, then LCR = 1.2 × 1029 erg s−1 � Lgrav.
In previous studies we demonstrated that the interstellar CR
flux is strongly attenuated at high column densities (Padovani
et al. 2009, 2013), and so we expect εCR at the protostellar sur-
face to be much lower than its interstellar value and, a fortiori,
LCR ≪ Lgrav close to the protostar. Thus, if a small fraction
of the gravitational energy can be used to produce local CRs,
they could easily be dominant over the ISM ones. For a massive
star the gravitational energy available to generate high-energy
CRs is even higher since Ṁ could be as high as 10−3 M� yr−1

and in principle their γ emission can be observed (see e.g.
Araudo et al. 2007; Bosch-Ramon et al. 2010; Munar-Adrover
et al. 2011).

The organisation of the paper is the following. In Sect. 2 we
examine the acceleration processes that can take place in proto-
stellar shocks, carefully analysing the conditions leading to par-
ticle acceleration (see also Padovani et al. 2015), and in Sect. 3
we evaluate the pressure of accelerated CRs. In Sect. 4 we verify
in what part of the protostar these conditions are fulfilled, and
in Sect. 5 we evaluate the maximum energy that can be reached
and the emerging spectrum at the shock surface. In Sect. 6 we
describe the propagation mechanism of local CRs, how they can
be re-accelerated at the reverse bow shock of a jet, and how they
propagate in the hot spot region. In Sect. 7 we derive the CR
ionisation rate along the jet and the temperature profile of the
protostellar disc. In Sect. 8 we use our modelling to explain ob-
servational results, and in Sect. 9 we summarise our conclusions.

Finally, in the appendices we give more details on alternative ac-
celeration sites and mechanisms (Appendix A), the damping of
turbulence in a jet (Appendix B), the collisional character of the
shocks and the thermal equilibration (Appendix C), the calcula-
tion of the ion-neutral damping condition (Appendix D), and the
relevance of using a steady-state model (Appendix E).

2. Cosmic-ray acceleration in protostellar shocks

Protostars are classified as a function of their spectral en-
ergy distribution in the near- and mid-infrared domain (Adams
et al. 1987; André et al. 1994). These protostars are surrounded
by dusty envelopes that absorb and re-emit at infrared wave-
lengths the energy irradiated by the central forming star, and
this envelope becomes increasingly optically thin during the
evolutionary sequence. The most embedded objects are named
Class 0; they have a very weak emission at infrared wavelengths
with relevant emission in the submillimetre spectral range. At
this stage the envelope has already started its gravitational col-
lapse and collimated polar outflows and jets can be observed, but
the envelope mass is still much larger than the central condensa-
tion. Class I objects represent the following step in the evolution
of prestellar cores where the envelope progressively dissolves
through accretion processes onto the central object together with
ejecta in the form of outflows and jets. These objects are de-
tectable in the infrared, but not at optical wavelengths. Finally,
Class II and Class III objects are pre-main sequence stars, which
are the most evolved stages of a protostar. These objects can
be observed at both optical and infrared wavelengths. Class II
sources present an optically thick circumstellar disc, while in
Class III the disc is optically thin, but both are lacking a circum-
stellar envelope.

In the following we identify a number of possible particle
acceleration sites in protostars. Some of them are peculiar in the
first stages of protostar collapse (mainly Class 0), such as accre-
tion flows in the protostellar envelope; others, such as jets, are
common to Class 0 and the more evolved protostar classes. This
work focuses on shock acceleration, but alternative processes are
discussed in Appendix A.

2.1. Diffusive shock acceleration

Also known as first-order Fermi acceleration, diffusive shock
acceleration (DSA) is a process where charged particles sys-
tematically gain energy while crossing a shock front. Multiple
shock crossings allow the particle energy to rapidly increase and
to reach the relativistic domain. The motion of particles back
and forth from upstream to downstream requires the presence of
magnetic fluctuations that produce a scattering of the pitch angle,
which is the angle between the particle’s velocity and the mean
magnetic field. As a consequence, the distribution in momentum
space of the emerging accelerated particles is set by the ratio of
the relative energy gain in an acceleration (or Fermi) cycle to the
probability of being advected with the scattering centres down-
stream. In the limit of strong shocks, when the magnetic field is
not dynamically dominant, this ratio only depends on the shock
compression ratio r (see Eq. (7)), and once r is fixed the shock
distribution is a power law. This process is described in several
reviews (e.g. Drury 1983; Kirk 1994). In the following subsec-
tions we describe in greater detail the conditions (summarised in
Padovani et al. 2015) that have to be satisfied in order to effec-
tively accelerate particles through the DSA mechanism: criteria
that need to be fulfilled regardless of the origin of the magnetic
disturbances causing the particle scatterings (Sects. 2.2 and 2.3),
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those associated with the shock age and geometry (Sect. 2.5),
and with magnetic field fluctuations that are self-generated by
the particles themselves (Sects. 2.4 and 3).

All the conditions limiting the maximum energy of the ac-
celerated particles are written as functions of the upstream flow
velocity in the shock reference frame

U = vfl − vsh, (3)

where vfl and vsh are the flow and shock velocities, respectively,
both taken in the observer reference frame. We note that vfl will
later be equated to vacc or vjet depending on the acceleration site.

Figure 1 outlines the configuration of a protostar used for
our modelling. The shock in the accretion flow is assumed to
be stationary (vsh = 0). Shocks inside jets move more slowly
than the flow (see Sect. 4.2) so that the upstream region is close
to the protostar. The reverse bow shock (also known as Mach
disc) and the bow shock, when observed, usually move slowly
or are stationary as well (Caratti o Garatti & Eislöffel 2009).
After passing through the jet shock, the gas flow spreads out
until it yields a bow shock with its reverse bow shock. In the
intershock region, known as the working surface, the pressure
gradient forces perpendicular to the jet are so high that the gas
is ejected radially and propagates into the surrounding region,
called the hot spot region (e.g. Stahler & Palla 2005), through
the bow wings. Multiple shocks are observed, and so throughout
the paper we only account for the presence of a single jet shock.

We briefly discuss the consequences of recurring accelera-
tion processes in Sect. 9, and in Appendix A we describe alter-
native mechanisms that may provide efficient CR acceleration in
addition to DSA.

2.2. Condition on shock velocity

In order to have efficient particle acceleration, the flow has to be
supersonic and super-Alfvénic. These two conditions are com-
bined into the relation

U
102 km s−1 >max

{
9.1 × 10−2

[
γad(1 + x)

( T
104 K

)]0.5

, (4)

2.2 × 10−4
( nH

106 cm−3

)−0.5
(

B
10 µG

)}
,

where γad is the adiabatic index, T the upstream temperature,
nH the total number density of hydrogen, x the ionisation frac-
tion, and B the magnetic field strength. The two terms inside the
braces on the right-hand side of Eq. (4) are the ambient (or up-
stream) sound speed, cs, and Alfvén speed, VA, respectively, of
the total gas, i.e. when ions and neutrals are coupled, in units of
102 km s−1. The contribution of helium and heavier species in
the background plasma is neglected.

The electron temperature, Te, can be estimated by observa-
tions, and downstream of a shock any temperature difference is
rapidly thermalised so that the proton temperature, Tp, can be
safely assumed to be equal to Te. In fact, even if in the pres-
ence of collisionless shocks, such that the passage of the shock
creates a gradient between the temperatures of the two species
(mpTe ' meTp), it is possible to demonstrate that the time needed
to reach temperature equilibrium is shorter than the time between
two consecutive shocks (see Appendix C).

Fig. 1. Sketch of the protostar configuration employed in the paper. Ac-
cretion flow, jet, and shock velocities (vacc, vjet, and vsh, respectively) are
in the observer reference frame. Shock and transverse radii are labelled
Rsh and R⊥, respectively. Bow shock, reverse bow shock, bow wings,
and working surface are labelled BS, rBS, BW, and ws, respectively.
The shaded areas show the regions where CR acceleration takes place
(Sect. 2.1) and where turbulence is damped and particle propagation oc-
curs (Sect. 6). The dot-filled region corresponds to the hot spot region
(Sect. 6.2).

2.3. Condition on low-energy cosmic-ray acceleration:
collisional losses

We are interested in the acceleration of low-energy
(.100 MeV−1 GeV) CRs since they are responsible for
the bulk of the ionisation. We have to verify that the shock ac-
celeration rate is higher than the collisional loss rate, t−1

acc > t−1
loss.

Adapting Drury et al. (1996) to account for both parallel and
perpendicular shock configurations1, the acceleration rate is
given by

t−1
acc =

1.1 × 10−8

γ − 1
kαu (r − 1)

r[1 + r(kd/ku)α]
µ̃−1 (5)

×

( U
102 km s−1

)2 (
B

10 µG

)
s−1,

1 A parallel/perpendicular shock is when the shock normal is paral-
lel/perpendicular to the ambient magnetic field. More complex oblique
geometries are not considered.
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where µ̃ = m/mp is the particle mass normalised to the proton
mass, ku and kd are the diffusion coefficient in the upstream and
downstream media, respectively, defined by

ku =

(
κu

κB

)−α
=

(
3eB

γβ2mpc3 κu

)−α
, (6)

with κB the Bohm diffusion coefficient, e the elementary charge,
γ the Lorentz factor, and β = v/c = γ−1

√
γ2 − 1 (v and c are

the speed of the particle and the speed of light, respectively),
and they can possibly be dependent on the particle momentum
(Jokipii 1987). For a parallel shock α = −1 and ku = kd, while
for a perpendicular shock α = 1 and, since the magnetic field
is compressed by a factor r, ku = rkd (Priest 1994). The shock
compression ratio, r, is given by

r =
(γad + 1) M2

s

(γad − 1) M2
s + 2

, (7)

where

Ms =
U
cs

(8)

is the sonic Mach number and in the following the adiabatic
index is set to γad = 5/3. Obviously, Eq. (7) supposes that
the shock is adiabatic, an assumption that might not always be
satisfied. Owing to the dynamical nature of protostars, shocks
might sometimes be radiative, in which case the DSA scenario
should be modified as, for instance, injection from the thermal
pool might not work. In this case, alternative acceleration mech-
anisms should be considered (see Appendix A). In addition,
Eq. (7) is obtained in hydrodynamics, whereas DSA requires
the presence of a magnetic field. Here we verified that magnetic
pressure on each side of the shock front is much lower than the
ram pressure of the flow so that the magnetic field is dynamically
negligible and Eq. (7) remains valid. However, the magnetic field
is relevant for particle scattering.

The collisional energy loss rate is given by

t−1
loss = 3.2 × 10−9 β

γ − 1
µ̃−1

( nH

106 cm−3

) [ L(E)
10−25 GeV cm2

]
s−1,

(9)

where L(E) is the energy loss function (Padovani et al. 2009),
which was extended to lower energies to include Coulomb
losses. These functions are given for protons by Mannheim &
Schlickeiser (1994),

LC,p(E)
10−25 GeV cm2 = 0.1

xβ
β3

th + β3
, (10)

where βth = 2 × 10−3(T/104 K)0.5. For electron Coulomb losses,
we use the analytic fit by Swartz et al. (1971),

LC,e(E)
10−25 GeV cm2 = 7.3× 10−3 x

β

( E
1 GeV

)−0.44 (
E − Eth

E − 0.53Eth

)2.36

,

(11)

where Eth is the electron thermal energy. Synchrotron losses,
LS,e, were included in the energy loss function for electrons and
they read (Schlickeiser 2002)

LS,e(E)
10−25 GeV cm2 = 2 × 10−14 γ

2

β

( nH

106 cm−3

)−1
(

B
10 µG

)2

· (12)

The maximum energy of accelerated particles set by energy
losses, Eloss, is found when t−1

acc = t−1
loss, leading to

β

[
L(E)

10−25 GeV cm2

]
= 3.4

kαu (r − 1)
r[1 + r(kd/ku)α]

(13)

×

( U
102 km s−1

)2 ( nH

106 cm−3

)−1
(

B
10 µG

)
·

2.4. Condition on CR acceleration: ion-neutral friction

In this work we assume that CR scattering occurs in the so-called
quasi-linear regime. This assumes that the level of magnetic fluc-
tuations produced by the CRs themselves or by the background
turbulence is lower than the background large-scale magnetic
field or at most equal to it. In that regime the CR’s pitch an-
gle is only slightly deflected during an interaction with a mag-
netic perturbation so that the gyromotion around the background
magnetic field can be retained as a good approximation of the
trajectory (Schlickeiser 2002).

The main limit on the possibility of CR acceleration is given
by the presence of an incompletely ionised medium. The colli-
sion rate between ions and neutrals can actually be high enough
to decrease the effectiveness of DSA. The presence of neutrals
damps the CR self-generated fluctuations that allow the CRs
to move back and forth across the shock multiple times. Ions
and neutrals are effectively decoupled if the wave frequency is
higher than the ion-neutral collision frequency, otherwise neu-
trals take part in the coherent oscillations between ions and
Alfvén waves. Here we consider resonant waves whose pulsa-
tion satisfies the condition ω ∼ VA/rg, where the gyroradius is
rg ∼ γβµ̃mpc2/(eB). Following Eq. (11) in Drury et al. (1996)
and accounting for the fact that CRs are not fully relativistic, we
find that the critical energy separating these two regimes, Ecoup,
is derived by solving the following relation:

γβ = 8.5 × 10−7µ̃−1
( T
104 K

)−0.4 ( nHx
106 cm−3

)−1.5
(

B
10 µG

)2

· (14)

If the CR energy is higher than Ecoup, ions and neutrals are cou-
pled.

The upper cut-off energy due to wave damping, Edamp, is set
by requiring that the flux of locally accelerated CRs advected
downstream by the flow be equal to the flux of CRs lost upstream
because of the lack of waves (due to wave damping) to confine
the CRs. Following Drury et al. (1996), using their exact equa-
tion for the wave damping rate, accounting for departures from
fully relativistic behaviour, and assuming U to be much higher
than the Alfvén speed, Edamp follows from2

γβ2 = 8.8 × 10−5µ̃−1Ξ(1 − x)−1
( U
102 km s−1

)3 ( T
104 K

)−0.4

(15)

×

( nH

106 cm−3

)−0.5
(

B
10 µG

)−4  P̃CR

10−2

 ,
where

Ξ =

(
B

10 µG

)4

+ 1.4 × 1012µ̃2γ2β2x2
( T
104 K

)0.8 ( nH

106 cm−3

)3
,

(16)

2 See Appendix D for details on the derivation of Edamp.
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and

P̃CR =
PCR

nHmpU2 (17)

is the fraction of the shock ram pressure going into CR acceler-
ation (see also Sect. 3).

The normalisation is taken with respect to the proton mass
since the contribution of electrons to the total CR pressure is
negligible. Both Eqs. (14) and (15) are valid for T ∈ [102, 105] K.

If Edamp > Ecoup, then Edamp is in the coupled regime, i.e.
neutrals coherently move with ions and ion-generated waves are
weakly damped. The condition Edamp > Ecoup can be written by
combining Eqs. (14) and (15) as

R =
102

β
Ξ x1.5

( U
102 km s−1

)3

(18)

×

( nH

106 cm−3

) ( B
10 µG

)−6  P̃CR

10−2

 > 1.

In the following sections we consider shocks in three types of
environments: in jets, in accretion flows in the collapsing en-
velopes, and on the surfaces of protostars. Using the range of
parameters in Table 1, we find R � 1 in protostellar envelopes
(see Sect. 4.1). Therefore, the following two conditions on shock
age and geometry (Sect. 2.5) are uniquely discussed with refer-
ence to shocks in jets and on protostellar surfaces.

2.5. Conditions arising from shock age and geometry

The limit on the maximum energy determined by the age of the
shock, Eage, is found when the acceleration time, given by the
inverse of Eq. (5), is equal to the age of the shock, tage. The latter
can be assumed to be of the order of the dynamical time of the
jet (&103 yr, de Gouveia Dal Pino 1995) or equal to the accretion
time in the case of a surface shock, i.e. the time needed for a mass
element in the envelope to reach the central protostar (∼105 yr,
Masunaga & Inutsuka 2000). Then, Eage is computed from

γ − 1 = 3.2 × 102 kαu (r − 1)
r[1 + r(kd/ku)α]

µ̃−1 (19)

×

( U
102 km s−1

)2 (
B

10 µG

) (
tage

103 yr

)
·

When R > 1, the most stringent constraint is given by the ge-
ometry of the shock. In particular, the upstream diffusion length,
λu = κu/U, has to be at most a given fraction ε < 1 of the shock
radius, namely the distance from the source, Rsh. For a Class 0
protostar, we assume the accretion on the protostellar surface to
be still spherical and not driven by accretion columns from the
inner disc. We also assume the shock to be planar since the CR’s
mean free path around the shock is smaller than the transverse
size of the jet, R⊥. Because of the spherical geometry, no trans-
verse escape either upstream or downstream is expected. In con-
trast, in the jet configuration CRs may also escape in the trans-
verse direction. The maximum energy due to upstream escape
losses, Eesc,u, follows from

γβ2 = 4.8M kαu µ̃
−1

( U
102 km s−1

) ( B
10 µG

)
, (20)

where

M =
εRsh

102 AU
(21)

or

M = min
[
εRsh

102 AU
,

R⊥
102 AU

]
(22)

for a shock on the protostellar surface or in the jet, respectively.
In the following we assume ε = 0.1 (Berezhko et al. 1996).

Since jet shocks have a small transverse dimension, there is
a further condition for the escape of CRs downstream: the max-
imum energy due to downstream escape losses, Eesc,d, is found
when the acceleration time, the inverse of Eq. (5), is equal to the
downstream diffusion time, tdiff,d, which is given by3

tdiff,d =
R2
⊥

4κd
· (23)

Then, Eesc,d follows from

γβ2(γ − 1) = 2.1C
(kukd)α(r − 1)

r[1 + r(kd/ku)α]
µ̃−1 (24)

×

( U
102 km s−1

)2 (
B

10 µG

)2 ( R⊥
102 AU

)2

,

with C = 1 or r2 for a parallel or a perpendicular shock,
respectively.

Finally, if the shock is supersonic and super-Alfvénic
(Eq. (4)) and if R > 1 (Eq. (18)), the maximum energy reached
by a particle is

Emax = min[Eloss, Edamp, Eage, Eesc,u, Eesc,d], (25)

where Eloss, Edamp, Eage, Eesc,u, and Eesc,d are given by Eqs. (13),
(15), (19), (20), and (24), respectively.

3. Pressure of accelerated CRs

The value of the maximum energy is constrained by the frac-
tion of the shock ram pressure that is channelled to CR pressure
(see Eqs. (15) and (17)). We predict both non-relativistic and
mildly relativistic CRs and we checked a posteriori that there is
no strong back-reaction. This means that the upstream medium
is not warned by these CRs that a shock is coming and we can
safely assume that the shock and the DSA process are unmodi-
fied. For this reason, we can describe the CR momentum distri-
bution function at the shock surface in the test-particle regime
with a power law of momentum

f (p) = f0

(
p

pinj

)−q

, (26)

with f0 normalisation constant; pinj < p < pmax, where pinj is
the injection momentum (Eq. (32)) and pmax is the maximum
momentum (given by Eq. (25)); and q = 3r/(r−1) is the CR dis-
tribution index in the test-particle limit, with r the compression
ratio at the shock surface (Eq. (7)). By definition, f (p) is related
to the CR density per unit volume, nCR, by

nCR = 4π
∫

p2 f (p)dp = 4πI1 p3
inj f0, (27)

where

I1 =
1

q − 3

1 − (
pmax

pinj

)3−q · (28)

3 The factor 4 in the denominator of Eq. (23) comes from the fact
that the diffusion process in the perpendicular direction is in two
dimensions.
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Assuming an efficient pitch-angle scattering and hence an
isotropic CR distribution, the CR pressure reads

PCR =
4π
3

∫
p3v f (p)dp =

4π
3

I2(mpc)4c f0

(
pinj

mpc

)q

, (29)

where v is the CR velocity with

I2 =

∫ pmax/mpc

pinj/mpc

p̃ 4−q√
p̃ 2 + 1

dp̃, (30)

where p̃ = p/(mpc).
Berezhko & Ellison (1999) give the expressions for the nor-

malised CR pressure in non-relativistic and relativistic regimes
and also in the transition region. Eliminating f0 by equating
Eqs. (27) and (29), the sum of these pressures gives

P̃CR = ηr
( c
U

)2
p̃ a

inj

1 − p̃ b1
inj

2r − 5
+

p̃ b2
max − 1
r − 4

 , (31)

where a = 3/(r−1), b1 = (2r−5)/(r−1), and b2 = (r−4)/(r−1).
The parameter η ∈ [10−6, 10−3] (Berezhko & Ellison 1999) is
the shock efficiency, which represents the fraction of particles
extracted from the thermal plasma and injected into the accel-
eration process by a shock. In the context of supernova rem-
nants at relativistic energies, it is assumed that at least 10% of
the shock ram pressure goes into CR acceleration (Berezhko
& Ellison 1999). In contrast, protostellar shocks are expected
to be much less energetic events, with P̃CR � 10%; accord-
ingly, in the following we assume η ∈ [10−6, 10−5]. Following
Blasi et al. (2005), the minimum (or injection) momentum, pinj,
of a particle able to cross the shock that enters the accelera-
tion process is related to the thermal particle momentum, pth,
through

pinj = λpth = λmcs,d, (32)

where cs,d is the sound speed in the downstream region in the
strong shock limit given by (Berezhko & Ellison 1999)

cs,d =
U
r

√
γad(r − 1). (33)

This is a good approximation in our case since both the sonic and
the Alfvénic Mach numbers (Eqs. (8) and (A.4), respectively)
are greater than 1. The value of the parameter λ depends on the
shock efficiency η and it reads

η =
4

3
√
π

(r − 1)λ3e−λ
2
. (34)

Equations (27)–(30) are general and can be adapted to any ac-
celeration scenario presented in Sect. 2.

4. Potential CR acceleration sites

In this section, we identify and characterise possible sites of CR
acceleration in protostars. In particular, we consider accretion
flows in the envelope, the protostellar surface of Class 0 objects,
and also jets in more evolved sources.

Table 1. Ranges of values of the parameters described in the text.

Site∗ U T nH x B
[km s−1] [K] [cm−3] [G]

E 1−10 50−100 107−108 .10−6 10−3−10−1

J 40−160 104−106 103−107 0.01−0.9 5 × 10−5−10−3

P 260 9.4 × 105 1.9 × 1012 0.01−0.9 1−103

Notes. Columns: upstream flow velocity in the shock reference
frame (U), temperature (T ), total hydrogen density (nH), ionisation frac-
tion (x), and magnetic field strength (B). (∗) E = envelope (Sect. 4.1);
J = jet (Sect. 4.2); P = protostellar surface (Sect. 4.3).

4.1. Accretion flows in collapsing envelopes

A number of Class 0 collapsing envelopes have been observed
and their density and temperature profiles have been modelled
(e.g. Ceccarelli et al. 2000; Crimier et al. 2009). Assuming a
spherical collapse, U ' 1−10 km s−1 at 100 AU. If B = 10 µG
in the initial (pre-collapse) volume of radius 0.1 pc and assum-
ing field freezing, the magnetic field strength in the final (post-
collapse) volume of radius 100 AU is about 400 mG. This naive
estimate is comparable within a factor of 2 with the value found
by Alves et al. (2012) who estimate B ≈ 200 mG from observa-
tions of shock-induced H2O masers. This is an averaged quan-
tity, but Imai et al. (2007) computed the position of the H2O
masers, and found the farther one to be at about 110 AU. Finally,
the ionisation fraction has to be of the order of 10−4 to 10−5 in or-
der to justify the presence of maser pumping (Strelnitskij 1984;
Wootten 1989). Masers arise in the presence of shocks and
they are usually associated with jet activity rather than accretion
flows; in other words, the values for both magnetic field strength
and ionisation fraction have to be regarded as upper limits in
our estimates. We check all the conditions in Sect. 2.1 and make
a parameter study using the ranges of values shown in the first
row of Table 1 verifying that Eq. (18) is not fulfilled in accretion
flows (R � 1). The ionisation fraction and the shock velocity
are too small and they quench the CR acceleration, and the mag-
netic field strength is also high enough to produce a sub-Alfvénic
shock. This means that we can rule out accretion flows as possi-
ble CR acceleration sites.

4.2. Jets

Jets are observed at all stages during the evolution of a proto-
star, from the main infall phase of Class 0 objects (e.g. HH 212,
McCaughrean et al. 2002) to evolved Class I protostars (e.g.
HH 111, Reipurth et al. 1997) and to Class II sources (e.g.
HH 30, Watson & Stapelfeldt 2004). Jet speeds, vjet, are sim-
ilar for different classes, between about 60 and 300 km s−1

with shock velocities, vsh, of the order of 20−140 km s−1 (Raga
et al. 2002, 2011; Hartigan & Morse 2007; Agra-Amboage
et al. 2011). In the equations of Sect. 2.1, U is the upstream flow
velocity in the shock reference frame (see Eq. (3) with vfl = vjet).
Taking the extreme values of vjet and vsh, we assume U to be in
the range 40−160 km s−1. A stationary shock is seen at 20 AU in
Class I and II protostars, while for the time being the resolution
is too low for Class 0 objects. There are also moving internal
shocks, spaced each other by about 100 AU.

The total hydrogen density is between 103 and 107 cm−3

(Lefloch et al. 2012; Gómez-Ruiz et al. 2012) with tem-
peratures from about 104 K up to about 106 K (Frank
et al. 2014). Thus far there are no measurements of mag-
netic field strengths. The only theoretical estimate has been
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carried out by Teşileanu et al. (2009, 2012) who have found B ∼
300−500 µG for Class II sources. The transverse radius of a
jet is about 10 AU and 50 AU at a distance of 100 AU and
1000 AU from the source, respectively, and the opening angle
spans from about 4◦ for RW Aur to about 15◦ for DG Tau (Cabrit
et al. 2007). Hartigan et al. (2004) give estimates closer to the
source: about 5 AU of transverse radius at a distance of about
15 AU from the central object for the two Classical T Tauri stars
HN Tau and UZ Tau E.

The ionisation fraction in Class II objects for the atomic gas
can be as high as 0.94, decreasing towards the source as a re-
sult of recombination processes due to higher densities (Maurri
et al. 2014). The ionisation fraction in Class I objects is similar
to that in Class II objects, x ∼ 0.05−0.9, but with higher electron
and total densities (Nisini et al. 2005; Antoniucci et al. 2008;
Garcia López et al. 2008; Frank et al. 2014). Conversely, Class 0
jets are mainly molecular, allowing for a rapid dissociative re-
combination that acts to dramatically decrease the ionisation
fraction. For instance in the Class 0 HH 211, nH ∼ 105 cm−3 with
x ∼ (1.6−5) × 10−3 at about 1000 AU from the source (Dionatos
et al. 2010). The second row of Table 1 summarises the range of
parameter values.

4.3. Protostellar surfaces

In order to study the efficiency of CR acceleration on protostel-
lar surfaces, we used the computational results of Masunaga &
Inutsuka (2000) for the Class 0 protostellar collapse of an ini-
tially homogeneous cloud core. Their simulation describes the
phase of main accretion when the protostar mass grows because
of the steady accretion from the infalling envelope. They give
the temporal evolution of temperature, density, and flow velocity
in the observer reference frame, which – assuming a stationary
shock – is equal to the upstream flow velocity in the shock ref-
erence frame. Considering the shock to be stationary, the down-
stream region is close to the protostar and the upstream region
towards the envelope, namely the opposite configuration with re-
spect to the jet shock case. The radius of the protostar is set to
2 × 10−2 AU and we find that only the last time step of the sim-
ulation, corresponding to the end of the main accretion phase,
leads to a strong proton acceleration. The ranges of parameter
values are listed in the third row of Table 1.

5. Spectrum of accelerated CRs at the shock
surface

For jet and protostellar surface shocks we perform a parametric
study using the values in the second and third rows of Table 1. In
order to calculate P̃CR, we fix η = 10−5 in Eq. (31) and we omit
the contribution of the last term, which contains p̃max. To be con-
sistent, Emax should be recursively computed and then Eq. (31)
solved, but we verified that the variation in P̃CR is lower than a
factor of about 3. With this assumption, P̃CR only depends on the
shock velocity with respect to the upstream flow and the ionisa-
tion fraction, spanning from 2 × 10−3 (U = 40 km s−1, x = 0.9)
to 5 × 10−2 (U = 160 km s−1, x = 0.01).

We study the case of a Bohm-type diffusion shock (ku = 1,
see Eq. (6)) since this is the most favourable circumstance for
accelerating CRs in the case of self-generated waves (see also
Sect. 5.4.1). In fact, the upstream diffusion coefficient can be
written as a function of the magnetic field strength and of its

4 If T ≈ 106 K, then x ≈ 1.

turbulent component, δB (see Drury 1983):

ku =

(
κu

κB

)−α
=

( B
δB

)2

· (35)

If ku = 1, then δB = B, i.e. the magnetic fluctuations responsible
for pitch angle scattering are large enough to cause DSA to be
effective at its maximum degree (see also Sect. 2.1). To justify
this assumption, we compute ku following Pelletier et al. (2006)
for the case of a parallel shock (α = −1)

ku =
2

P̃CR

VA

U
= 4 × 10−2

( U
102 km s−1

)−1

(36)

×

( nH

106 cm−3

)−0.5
(

B
10 µG

)  P̃CR

10−2

−1

·

With the values in the second and third rows of Table 1, ku is
found to be about 1.

5.1. Maximum CR energy at the jet shock surface

For jet shocks, we set the temperature at T = 104 K, and consider
magnetic field strengths between 50 µG and 1 mG as well as
shock velocities between 40 and 160 km s−1, then we study the
parameter space of hydrogen density, nH ∈ [103, 107] cm−3, and
ionisation fraction, x ∈ [0.01, 0.9], for a shock at a distance Rsh =
100 AU from the protostar and a transverse radius R⊥ = 10 AU.

We first consider the case of a parallel shock. Figure 2 shows
the maximum energy that a shock-accelerated proton can reach
in the case of a parallel shock. We find that for low shock ve-
locities with respect to the upstream flow (U = 40 km s−1) the
acceleration process is efficient only for low values of B (for
B > 100 µG, Emax is lower than 1−10 keV). By increasing both
U and B, the maximum energy attains higher values (from about
100 MeV to about 13 GeV). It is interesting to note that once
the combination of parameters satisfies the condition R > 1 (see
Eq. (18)), Emax rapidly reaches a constant value, encompassed
by the cyan contours in each subplot. In fact, the maximum en-
ergy is generally controlled by downstream escape (Eq. (24)),
which is independent of both nH and x. The number in each sub-
plot shows the maximum value of Emax in GeV that can be at-
tained for given values of the shock velocity and the magnetic
field strength.

Electrons can be accelerated as well, but generally Emax
for electrons is much lower than Emax for protons because of
wave damping and stronger energy losses. For instance, for
U = 160 km s−1 and B = 1 mG, Emax ∼ 300 MeV for a narrow
range of density and ionisation fractions (nH & 3 × 106 cm−3,
x & 0.6). For lower values of B and U, Emax . 50 MeV.

Supposing the magnetic field to have a strong toroidal
component, we repeat the calculation for the case of a per-
pendicular shock. We find that Emax increases by a factor of
E⊥esc,d/E

‖

esc,d = r(r + 1)/2, where superscripts ⊥ and ‖ refer to a
perpendicular and parallel shock, respectively.

For the sake of completeness, we show in Sect. 5.4.3, Fig. 7,
the results for a higher temperature, T = 105 K.

5.2. Accelerated CR spectrum at the protostellar shock

For protostellar surfaces, we study the parameter space of mag-
netic field strength and ionisation fraction using ε = 0.1
(Eq. (20)), η = 10−5 (Eq. (31)), and ku = 1 (Eq. (35)) for
both a parallel and a perpendicular shock. Figure 3 shows that
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Fig. 2. Case of a parallel shock in jets: ionisation fraction, x, versus total
hydrogen density, nH, for different combinations of initial parameters.
The magnetic field strength varies from 50 µG to 1 mG (from left to
right), while the shock velocity varies from 40 to 160 km s−1 (from top
to bottom). The temperature is assumed equal to 104 K and the shock
distance from the protostar and its transverse radius are Rsh = 100 AU
and R⊥ = 10 AU, respectively. The colour map shows the values of
Emax in the case of a parallel shock when the conditions imposed by
Eqs. (4) and (18) are simultaneously satisfied. Cyan contours delimit
the regions where Emax reaches its maximum asymptotic value shown in
GeV in each subplot. Vertically hatched regions refer to combinations
of parameters corresponding to strong wave damping (R < 1). The
two solid white stars in the upper left and lower right plots show the
values of nH and x considered for the evaluation of the emerging spectra
(modelsW and S in Fig. 4).

at the protostellar surface accelerated CR protons can reach
Emax ≈ 26 GeV and Emax ≈ 37 GeV in the case of a parallel and
a perpendicular shock, respectively. The values of the magnetic
field where CR acceleration is possible, B ∼ 3−10 G, are com-
patible with those computed by e.g. Garcia et al. (2001). Because
of high temperatures, Coulomb losses are dominant and Emax is
constrained by Eloss. Thus, for a perpendicular shock Emax in-
creases by a factor of E⊥loss/E

‖

loss = (r + 1)/2.

The maximum energy can be even higher in the case of mas-
sive protostars where shocks are much stronger because the mass
is higher. It is important to bear in mind that, in principle, CRs
accelerated at the protostellar surface shock could also be re-
accelerated in jet shocks.

Fig. 3. Case of parallel (left) and perpendicular (right) shocks on proto-
stellar surfaces: ionisation fraction, x, versus magnetic field strength,
B, for the parameters specified in the third line of Table 1 (Rsh =
2×10−2 AU). The colour map shows the values of Emax when the condi-
tions imposed by Eqs. (4) and (18) are simultaneously verified. The cyan
contour delimits the region where Emax gets its maximum asymptotic
value shown in GeV in each subplot. Vertically hatched regions refer
to combinations of parameters corresponding to strong wave damping
(R < 1). The solid white star in the left panel shows the values of B and
x considered for the evaluation of the emerging spectrum (models P in
Fig. 4).

5.3. Emerging CR spectrum at the shock surface

The solution given by Eq. (26) is used to compute the emerg-
ing CR spectrum at the shock surface. The energy distribution
function of shock-accelerated CRs reads

N (E) = 4πp2 f (p)
dp
dE
· (37)

Then, the CR flux emerging from the shock surface, j(E),
namely the number of particles per unit energy, time, area, and
solid angle reads

j(E) =
v(E)N (E)

4π
· (38)

We compute the emerging CR proton spectrum in the case of a
parallel shock both in a jet (for two opposite and extreme cases:
a weak and a strong shock, labelledW and S, respectively) and
on a protostellar surface, labelled P. The relevant parameters are
shown in Table 2 and by the white stars in Figs. 2 and 3. We
note that when assuming η = 10−5, the normalised CR pressure
(Eq. (17)) for all three models is lower than 10%, as predicted in
Sect. 3.

Figure 4 displays the above shock-accelerated proton spec-
tra together with their corresponding Maxwellian distributions
of thermal protons.

5.4. Effect of specific parameters on Emax

There are a number of mechanisms that can dramatically atten-
uate the emerging CR spectrum at the shock surface such as
variations in diffusion coefficient (Sect. 5.4.1), in CR pressure
(Sect. 5.4.2), and in temperature (Sect. 5.4.3).

5.4.1. Upstream diffusion coefficient

A variation of the diffusion coefficient can strongly modify
the CR flux. In our derivation, we assume Bohm-like diffusion
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Table 2. Parameters to calculate the particle distribution f (p) in the case of parallel shocks for κu = κB and η = 10−5.

Model U B nH x T r Emax P̃CR λ pinj pmax
[km s−1] [G] [cm−3] [104 K] [GeV] [10−2] [MeV/c] [GeV/c]

W 40 5 × 10−5 105 0.33 1 2.977 0.13 0.88 4.010 0.306 0.505
S 160 10−3 6 × 105 0.60 1 3.890 12.9 4.70 4.062 1.146 13.762
P 260 5 1.9 × 1012 0.30 94 2.290 11.4 0.03 3.950 2.058 12.306

Fig. 4. Emerging spectra of the shock-accelerated protons (solid lines)
for the models described in the text. The dashed lines represent the cor-
responding Maxwellian distributions of the thermal protons.

(κu = κB), but – since κu = κB(B/δB)−2α (Eq. (35)) – for a parallel
shock κu ≥ κB, while for a perpendicular shock κu ≤ κB. In the
case of parallel shocks, an increase in κu corresponds to a reduc-
tion in δB, the turbulence produced by the accelerated CRs that
is responsible for DSA (see Sect. 2.1), resulting in a decrease
in the shock acceleration efficiency. As shown in Fig. 5, con-
sidering for instance κu = 30 κB for a parallel shock, the shock
velocity has to be higher than at least 80 km s−1 and the mag-
netic field greater than 50 µG to accelerate CR protons above
100 MeV. In order to assess how much the upstream diffusion
coefficient affects Emax, we compute the relation between these
two quantities for a parallel shock, assuming U = 160 km s−1,
nH = 6 × 105 cm−3, and x = 0.6, such as in model S. As shown
in Fig. 6, the values of ku = (B/δB)2 at which Emax drops below
the threshold for efficient acceleration are about 2, 20, and 40 for
B = 50 µG, 500 µG, and 1 mG, respectively.

In the case of perpendicular shocks, if κu decreases, then
δB also decreases. However, as pointed out by Jokipii (1987),
in this case Emax increases by a factor of kukd = (B/δB)4/r
(see also Eq. (24)). In this configuration particles drift along
the shock face colliding with it several times in a single scat-
tering mean free path. In other words, since the magnetic field
turbulence decreases as does the particle-wave scattering, parti-
cles are more easily caught by the shock, the acceleration time is
reduced, and then Emax increases. Nevertheless, two effects limit
the increase in Emax. First, the perpendicular transport is usually

Fig. 5. Same as Fig. 2, but for an upstream diffusion coefficient
κu = 30 κB for a parallel shock.

controlled by magnetic field line wandering (Kirk et al. 1996),
and it is enhanced with respect to the solution obtained from pure
scattering, and the expected Emax is reduced. Second, to avoid
any anisotropy in the particle distribution, in order for DSA to
take place at the injection momentum, pinj (Eq. (32)), particles
must be scattered in the time required to drift through the shock
(Jokipii 1987). This gives a constraint to the maximum value
of ku, ku,max, which in turn defines Emax,

ku,max =
βinjc
U

, (39)

where βinj is related to pinj. Once the temperature is fixed, the
injection momentum only depends on the shock velocity with
respect to the upstream flow, then ku is uniquely a function
of U. For instance, using the range of U for jets (see Sect. 4.2),
ku,max is limited between 2.44 (U = 40 km s−1) and 2.29
(U = 160 km s−1). This means that for a perpendicular shock,
DSA is efficient in a narrow range of ku, but particles can still
be injected in the acceleration process by means of other mech-
anisms (see Appendix A). However, for U = 160 km s−1, as-
suming ku = ku,max = 2.29, Emax is about 100 GeV for a shock at
Rsh = 100 AU from the propostar. This means that for perpendic-
ular shocks at larger Rsh, where the transverse radius, R⊥, is also
larger, CRs can reach TeV energies and their γ emission could

A8, page 9 of 23

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201628221&pdf_id=4
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201628221&pdf_id=5


A&A 590, A8 (2016)

Fig. 6. Maximum energy of accelerated protons as a function of (B/δB)2

in the case of parallel shocks for U = 160 km s−1, nH = 6 × 105 cm−3,
and x = 0.6 with B = 50 µG (dotted line), 500 µG (dashed line), and
1 mG (solid line).

be a target for Cherenkov telescopes (a work is in preparation to
quantify this aspect).

5.4.2. CR pressure

The accelerated CR spectrum at the shock surface can also be
attenuated if the CR pressure decreases. In fact, the normalisa-
tion constant f0 (Eq. (29)) is directly proportional to PCR, which
in turn depends on the parameter η (Eq. (31)). In addition, CR
pressure controls Emax through Edamp (Eq. (15)). For instance, if
in model S we decrease η by a factor of 10, then Emax decreases
by a factor of about 500. This translates into a lower number of
high-energy CRs available to “refill” the low-energy part of the
spectrum during propagation, so that thermalisation occurs at a
lower column density and the ionisation rate decreases.

5.4.3. Temperature

An increase in temperature of one order of magnitude from
104 K to 105 K results in an almost negligible increase in the
maximum energy achieved (see Fig. 7) because Emax is set by
Eesc,d (Eq. (24)) or Eloss (Eq. (13)) for a jet shock or a protostel-
lar surface shock, respectively. Both Eesc,d and Eloss, for paral-
lel shocks, are proportional to (r − 1)/[r(r + 1)] and the com-
pression ratio r depends on the temperature (see lower panel of
Fig. 8). In addition, the space of solutions narrows and there are
no combinations of total hydrogen density and ionisation frac-
tion allowing the particle acceleration for U = 40 km s−1. In
fact, the condition R > 1 (Eq. (18)) is never satisfied because
of the temperature dependence in the factor Ξ (Eq. (16)). The
higher the temperature, the lower both the sonic Mach num-
ber and the particle pressure (see Fig. 8). Then, for increasing
temperatures the shock enters the subsonic regime, the condi-
tion in Eq. (4) is no longer fulfilled, and the acceleration process

Fig. 7. Same as Fig. 2, but for a temperature of 105 K.

becomes ineffective. However, even when Ms > 1, P̃CR can be
so low that particle acceleration is damped (R < 1).

6. Propagation of accelerated CRs in the jet

As shown in Fig. 1, CRs are accelerated downstream of the shock
surface (acceleration zone). Here the turbulence produced by
CRs (δB . B) triggers the acceleration process. So far, B and
δB have not been determined by observations, except for two
sources where we have some information on the magnetic field
morphology and magnitude (Carrasco-González et al. 2010; Lee
et al. 2014).

Moving farther and farther away from the shock, δB de-
creases (turbulence damping zone) unless there are other turbu-
lence sources. In a partially ionised medium such as in a jet,
damping occurs through ion-neutral collisions for waves gen-
erated by particles with energies above a few MeV and through
resonant interaction with the background plasma, i.e. linear Lan-
dau damping, for waves generated by particles with energies be-
low a few MeV (see Appendix B). It is found that the resonant
self-generated waves produced at the shock front are damped
over length scales much shorter than the distance between the
inner shock in the jet and the termination shock.

Entering the propagation zone, we assume that the tur-
bulence created at the jet-outflow interface discussed in
Appendix A is negligible. In this case, CR propagation in the
jet is dominated by energy losses and can be treated using
the continuous slowing-down approximation (Takayanagi 1973;
Padovani et al. 2009). Neglecting magnetic turbulence, we can
imagine that CRs propagate by gyrating around magnetic field
lines, losing energy because of collisions with hydrogen atoms
or molecules5. We compute the attenuation of accelerated CR

5 Jets in Class 0 protostars are mainly molecular, while hydrogen is
mostly in atomic form in more evolved sources.
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Fig. 8. Sonic Mach number (upper panel), normalised CR pres-
sure (middle panel), compression ratio and factor proportional both
to Eesc,d and Eloss for parallel shocks (grey and black lines, respec-
tively, in lower panel) as a function of the temperature for x = 0.3,
η = 10−5; U = 40 km s−1 (solid lines), U = 80 km s−1 (dashed lines),
U = 120 km s−1 (dotted lines), and U = 160 km s−1 (dash-dotted lines).

protons at the jet shock surface shown in Fig. 4, along the jet
and towards the termination shock, using the method developed
in Padovani et al. (2009). The two upper panels of Fig. 9 show
the results for both modelsW and S (see Table 2 for more de-
tails). The accelerated CR protons soon start to lose energy with
increasing column density and their flux is attenuated; the most
energetic CRs are slowed down to 0.1–100 MeV, contributing
to the bulk of the ionisation. We note that even if CR electrons
are not efficiently accelerated in the jet (see Sect. 2.4), they are
created as the product of hydrogen ionisation due to CR pro-
tons (See Appendix B in Ivlev et al. 2015 for the calculation
of the secondary electron spectrum). It is evident that the CR
spectrum related to model W is attenuated faster with column
density than the spectrum related to model S. This happens be-
cause Emax for modelW is about 100 MeV, while for model S
it is about 13 GeV (see Table 2), so that the latter model has a
larger “reservoir” of high-energy CR protons, which gradually

Fig. 9. Propagated spectra in the absence of magnetic turbulence for
models W (left column) and S (right column) neglecting and ac-
counting for gyromotion effects (upper and lower row, respectively).
Blue solid and red dashed lines show the attenuated proton and sec-
ondary electron spectra, respectively, at increasing depth in the cloud
labelled by values of the column density along the line of sight,
log10 [Nlos(H2)/cm−2].

populate the low-energy part of the spectrum. We also note that
if Emax . 105 eV, the spectrum is completely thermalised as soon
as the column density is of the order of 1019 cm−2. This is to say
that CR protons are not sufficiently accelerated to take part in the
ionisation process and this happens irrespective of the shape of
the spectrum at low energies.

Nevertheless, these CR spectra have to be regarded as up-
per limits. In fact, Padovani & Galli (2011) and Padovani
et al. (2013) demonstrated how the calculation of the ionisation
rate cannot be carried out without accounting for gyromotion ef-
fects due to the presence of magnetic fields. Since CRs perform
helicoidal motion around field lines, the effective column density
that they pass through, Neff , is higher than the column density
along the line of sight, Nlos. Currently there is no observational
estimate of the magnetic field strength and of its configuration in
protostellar jets, but it is possible to conjecture about the pres-
ence of a strong toroidal component such as that depicted by
Teşileanu et al. (2014). Furthermore, the angle between magnetic
field lines and the disc surface has to be lower than 60◦ in order
to have a successful jet launching (Blandford & Payne 1982).
Using Eqs. (19)–(24) from Padovani et al. (2013) and assuming
that the toroidal field component is larger than about 50% of the
total field, we estimate that Neff can be a factor of about 100−300
higher than Nlos. Because of this increase in column density, the
CR proton flux of both models is more rapidly thermalised at
∼5 × 1022 cm−2 and ∼8 × 1023 cm−2 for models W and S re-
spectively (see lower panels of Fig. 9).

6.1. (Re-)acceleration at the reverse bow shock

The jet morphology is far from being universally defined. Jet
lengths spread over orders of magnitude and usually there is
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not just a single final bow shock, but the innermost knots are
all resolved into bow shocks due to a time-variable jet emitting
dense-gas bullets (e.g. McCaughrean et al. 2002). The situation
is further complicated by jet angle variations due to precession
(e.g. Devine et al. 1997) or orbital motion (e.g. Noriega-Crespo
et al. 2011). For the sake of simplicity, we account for a single
shock at 100 AU from the protostar (see Sect. 4.2), following
CR propagation up to the reverse bow shock (rBS). Once the
accelerated CRs reach the rBS, they are subjected to further ac-
celeration before entering the hot spot region (see Sect. 6.2 and
Fig. 1). In Sect. 9 we will briefly discuss the dependence of Emax
on Rsh and on multiple shocks.

We suppose that two processes take place at the rBS: the ac-
celeration of thermal protons (electrons are not efficiently accel-
erated, see Sect. 5.1) and the re-acceleration of CRs propagated
from the jet shock. Finally, we expect the bow shock to be much
weaker than the rBS because of the interaction with the sur-
rounding material and we neglect any further CR acceleration.

Shocks developed along a jet can also re-accelerate a pre-
existing population of accelerated CRs. Following Melrose &
Pope (1993), if the momentum distribution function of the CRs
accelerated at the jet shock and propagated upstream of the rBS
is fJS, prop(p), the distribution function of the re-accelerated CRs,
fJS, reacc(p), reads

fJS, reacc(p) = qrBS

( p
R

)−qrBS
∫ p/R

0
ξ qrBS−1 fJS, prop(ξ)dξ, (40)

where qrBS = 3rrBS/(rrBS − 1) is the shock index, rrBS is the com-
pression ratio at the rBS, and R3 = rJS accounts for adiabatic
losses because of the decompression that develops behind the
rBS. It is important to note that re-acceleration at the rBS also
involves the secondary CR electrons produced during primary
ionisation. These CR electrons are boosted up to relativistic en-
ergies and in Sect. 8.1 we will show their relevance to explaining
synchrotron emission.

The total CR distribution function at the reverse bow shock
surface, frBS(p), is given by

frBS(p) = frBS,th(p) + fJS, reacc(p), (41)

where frBS, th is the distribution function of thermal protons ac-
celerated at the rBS surface and fJS, reacc is given by Eq. (40).
In order to compare the contribution of the re-accelerated CRs
with the more freshly accelerated component of thermal protons
at the rBS, we consider for instance both modelsW and S and
a distance for the rBS, DrBS = 1.8 × 103 AU, corresponding
to the position of the bow shock in DG Tau (knot C; Eislöffel
& Mundt 1998). Assuming a constant total hydrogen density of
105 cm−3 and 6 × 105 cm−3 for model W and S, respectively
(see Table 2), the accelerated CRs pass through a line-of-sight
column density of 2.7 × 1021 cm−2 and 1.6 × 1022 cm−2, respec-
tively. The propagated CR proton and electron spectra, including
gyromotion effects (see Sect. 6), from the jet shock surface are
labelled “JS, prop” in Fig. 10. The decrease at low energies is due
to energy losses during the propagation (see also Fig. 9). Using
these spectra as input to the integral of Eq. (40), we compute
the re-accelerated CR spectra at the rBS surface (“JS, reacc” in
Fig. 10), making use of Eqs. (37) and (38).

We evaluate the CR proton spectrum drawn from the ther-
mal pool at the rBS (labelled “rBS, th” in Fig. 10) following
Sect. 5 and assuming the same values for the shock velocity, ion-
isation fraction, total hydrogen density, magnetic field strength,
and temperature as for the shock at 100 AU. However, the con-
sidered transverse radius, R⊥, which enters the evaluation of the

maximum energy through the condition on shock geometry (see
Eqs. (20) and (24)), is larger by about two orders of magni-
tude than R⊥ computed at 10 AU, and for DG Tau it is about
1.3 × 103 AU6. As a consequence, Emax can increase to TeV en-
ergies, being mainly constrained by downstream escape losses
(see Sect. 4.2).

6.2. Solution in the hot spot region

After the rBS, in the hot spot region the flow is expected to be
turbulent. The turbulence is likely connected with flow-ambient
medium interactions. Cunningham et al. (2009, see references
therein) considered the propagation of stellar jets in a turbulent
medium that may be associated with a molecular cloud disrupted
through thermal or Vishniac instability. Other fluid instabilities
that can lead to turbulent motions are also expected while the jet
propagates in the interstellar medium. Hence we account for the
possibility that the downstream hot spot flow is turbulent, com-
puting the CR distribution in the downstream medium using a
two-zone model. This approximation is strictly valid if the length
scales over which the escape and loss processes occur are longer
than the scale of the region under consideration. This allows us
to use space-average diffusion and loss terms.

The particle energy distribution function in the downstream
jet medium, N (E, t), evolves following

∂

∂t
N (E, t) = −

∂

∂E

[
dE
dt

N (E, t)
]
−

N (E, t)
tesc,d

+ Q(E), (42)

where Q(E) is the injection rate at the shock front (see Eq. (50))
and tesc,d accounts for downstream losses due to both advection,
which is produced by the downstream flow carrying the scatter-
ing centres of CRs, and diffusion. It can be written as

1
tesc,d

=
1

tadv
+

1
tdiff
· (43)

The advection time is given by

tadv =
RHS

vfl,d
=

rRHS

(r − 1)U
, (44)

with vfl,d the downstream flow velocity in the observer reference
frame and RHS the radius of the hot spot region. The downstream
diffusion time reads

tdiff =
R2

HS

6κHS
, (45)

where the factor 6 accounts for three-dimensional diffusion. The
diffusion coefficient in the hot spot region, κHS, reads

κHS = κHSκgal, (46)

which we assume is proportional to the local galactic diffu-
sion coefficient, κgal, since we suppose that the turbulence self-
generated at the shock surface has damped at large distances
from the shock front. From radio galactic emission observations
and secondary-to-primary CR ratios, κgal deduced for the propa-
gation in the local ISM reads

κgal = 4 × 1028
( E
3 GeV

)0.5

cm2 s−1 (47)

6 R⊥ at the bow shock of DG Tau has been estimated from the value of
the volume of the emitting region evaluated by Ainsworth et al. (2014).
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for E ≥ 3 GeV (Berezinskii et al. 1990). For lower energies, κgal

is not well constrained and we assume κgal = 4 × 1028 cm2 s−1.
Some recent estimates using Voyager 1 data (Herbst et al. 2012)
give κgal ' 1026−1027 cm2 s−1, so we adopt κHS = 0.01−1 to
account for possible turbulence enhancement with respect to the
local value.

The energy loss per unit time is described by∣∣∣∣∣dE
dt

∣∣∣∣∣ =
E
tad

+ 3β
( nH

106 cm−3

) [ L(E)
10−25 GeV cm2

]
GeV s−1, (48)

where L(E) is the energy loss function described in Sect. 2.3.
The adiabatic time, tad, accounts for the fact that behind the bow
shock there is a re-expansion of the flow so that CRs adiabati-
cally lose energy; it is given by

tad = ψ
r

3(r − 1)
RHS

U
, (49)

where ψ is equal to 1.5 or 3 for non-relativistic or relativistic
particles, respectively (see e.g. Lerche & Schlickeiser 1982).

The injection rate at the shock front, Q(E), which we assume
to be time-independent, reads

Q(E) =
Nsh(E)

tesc,a
, (50)

where Nsh(E) is given by Eq. (37) and tesc,a is the escap-
ing time from the acceleration zone. Following Moraitis &
Mastichiadis (2007), we can write

tesc,a =
rL
U

, (51)

where L = k−αu κBU−1[1 + r(kd/ku)α] is the size of the region
around the shock where the acceleration takes place. For elec-
trons, Eq. (51) should include a term in the denominator for ra-
diative losses, but it is negligible for energies lower than TeV
and a magnetic field strength lower than 1 mG.

In general, we can assume particles to be in a steady state
since the lifetime, given by

tlife =
DrBS

vjet
, (52)

where DrBS is the distance of the reverse bow shock, is much
longer than the escape time downstream (see Appendix E) and
this allows us to put ∂N (E, t)/∂t = 0 in Eq. (42). Ginzburg &
Syrovatskii (1964) give the analytical solution of Eq. (42) in the
steady-state case,

N (E) =

(
dE
dt

)−1 ∫ Emax

E
Q(E′) exp

[
−
τ(E, E′)

tesc,d

]
dE′, (53)

where

τ(E, E′) =

∫ E′

E

(
dE′′

dt

)−1

dE′′. (54)

Finally, the solution of Eq. (53) allows us to derive the particle
spectra in the hot spot region, jHS, which reads

jHS(E) =
vdr(E)N (E)

4π
, (55)

where

vdr =

(
κHS

6tlife

)0.5

(56)

is the drift velocity of the particles in the turbulent hot spot re-
gion (Skilling 1975). The resulting CR spectra in the hot spot
region, labelled “HS” in Fig. 10, are encompassed by a shaded
region; the upper and lower limits are obtained by assuming κHS
equal to 1 and 0.01, respectively.

We note that Ptuskin et al. (2006) compute different trends
for κgal at low energies. Therefore we also calculate the emerg-
ing spectra in the hot spot region by considering an increasing
and a decreasing diffusion coefficient at non-relativistic ener-
gies, namely accounting for the plain diffusion model (hereafter
PD), κgal ∝ β−2, and the diffusive re-acceleration model (here-
after DR), κgal ∝ β(γ2 − 1)0.17, respectively. The resulting CR
spectra, jHS, both for CR protons and electrons at most increase
or decrease by one order of magnitude in the non-relativistic en-
ergy range, using the PD or the DR model, respectively (we note
that vdr ∝ κ

0.5
gal).

Finally, Fig. 10 also displays the expected CR proton and
electron spectra propagating into the hot spot region after the rBS
acceleration (see Sect. 6.2) and the interstellar CR spectra con-
strained by the most recent observations of the Alpha Magnetic
Spectrometer (Aguilar et al. 2014, 2015), while at low energies
we used the results of Stone et al. (2013) based on Voyager ob-
servations (see also Ivlev et al. 2015). A comparison between the
hot spot and the interstellar CR spectra confirms that effects such
as synchrotron emission for a shock such as model S (Sect. 8.1)
and high ionisation rates (Sect. 8.2 and 8.3) cannot be due to
the interstellar CR flux, but could be explained by a source of
accelerated particles in jet shocks.

7. Cosmic-ray ionisation rate

In the next subsections we examine the range of values of the
ionisation rate expected inside a jet accounting for the different
effects described in Sects. 5.4.1, 5.4.2, and 6 (diffusion coeffi-
cient, shock CR pressure, and gyromotion, respectively). Then
we investigate the impact on the heating of the protostellar disc
due to these locally accelerated CRs.

7.1. Ionisation rate along the jet

We use the emerging CR spectra of the jet shock-accelerated
protons (modelsW and S) shown in Fig. 4 to compute the CR
ionisation rate, ζ, which reads

ζ(N) = 2π
∑
k=p,e

∫
jk(E,N)σion

k (E)dE, (57)

where jk is the spectrum of the accelerated CR protons or sec-
ondary electrons (see Eq. (38) and Sect. 6). We apply the mod-
elling described in Padovani et al. (2009) to study the variation
of ζ with increasing column density, i.e. while CR protons prop-
agate inside the jet. With respect to Padovani et al. (2009), cross
sections, σion

k , were modified to include the effect of relativistic
protons and electrons (see Krause et al. 2015). This does not in-
validate the previous results since the spectra used in Padovani
et al. (2009) have a negligible high-energy component, so that
any former conclusion remains accurate. The resulting ionisa-
tion rates at the shock surface show values between 3×10−10 s−1

(modelW) and 5 × 10−9 s−1 (model S).
Because of the strong toroidal magnetic field configuration

expected in jets (Blandford & Payne 1982), we assume that the
transverse diffusion is negligible so that the accelerated CRs are
confined to the jet. Figure 11 displays the total ionisation rate
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Fig. 10. Spectra of accelerated protons (blue) and secondary electrons
(red) for modelW and S (upper and lower panel, respectively), and a
rBS at 1.8 × 103 AU. Both panels show the spectra of the CRs acceler-
ated at the jet shock at 100 AU and propagated up to the rBS (JS, prop;
dash-dotted lines), the spectra after re-acceleration at the rBS (JS, reacc;
short-dashed lines), the spectrum of the accelerated CR protons at the
rBS (rBS, th; long-dashed line), the spectra in the hot spot region (HS;
shaded regions), and the interstellar CR proton and electron spectra
(ISM; dotted lines).

(primary protons plus secondary electrons) for increasing col-
umn density along the line of sight for the two models W and
S, hereafter labelled ζW and ζS, respectively.

Without including gyromotion effects, ζW is about one
order of magnitude lower than ζS at low column densities,
N . 1022 cm−2. Then, around N = 1023 cm−2 ζW decreases
ever more rapidly until CRs are completely thermalised around
3 × 1024 cm−2. Conversely, model S is not strongly attenuated,
not even at N = 1026 cm−2, because of the larger reservoir
of high-energy CRs that gives an efficient ionisation at higher
column densities (see also Sect. 6). If we account for the im-
pact of gyromotion, both ζW and ζS decrease by about one

Fig. 11. Ionisation rate at the shock surface in a jet as a function of the
molecular hydrogen column density for modelsW and S described in
the main text in the case of a parallel shock. Solid and dashed lines
show the values of ζ neglecting and accounting for gyromotion ef-
fects, respectively. The dotted line displays ζ for model S when the
upstream diffusion coefficient is 30 times higher than the Bohm coeffi-
cient, without including any further attenuation due to gyromotion. The
dash-dotted line shows ζ for model S with η reduced by a factor of
about ten with respect to the value in Table 2.

order of magnitude at low column densities, but then CRs are
more rapidly thermalised at about 2 × 1022 cm−2 and about
4 × 1023 cm−2 for modelW and S, respectively.

Figure 11 also shows the dependence of ζ on column density
with an upstream diffusion coefficient κu = 30 κB. As explained
in Sect. 5.4.1 (see also Figs. 5 and 6), Emax decreases for increas-
ing values of κu, and accelerated CRs are thermalised at a lower
column density (N ' 1025 cm−2).

We finally evaluate the trend of the ionisation rate for
model S assuming a shock efficiency η = 1.5 × 10−6 (Eq. (34)),
which is about one order of magnitude lower than the value used
in the previous sections. The drop in ζ is due to fact that when
η decreases, then Emax is fixed by Edamp (Eq. (15)). In this case
the accelerated CR protons are thermalised at a column density
more than three orders of magnitude lower (N ' 7 × 1022 cm−2)
than in the case of η = 10−5.

Even if the knowledge of some parameters constraining our
modelling is still missing (e.g. shock efficiency, magnetic field
strength and configuration, turbulent magnetic field component),
we can imagine that the accelerated CR flux and the corre-
sponding ionisation rate could be even markedly modified by the
mechanisms discussed in this paper. Whatever the involved pro-
cesses, the ionisation rate due to the shock particle acceleration
may be higher than the typical values of 10−17−10−18 s−1 esti-
mated for dense cores and protostellar discs due to the interstel-
lar cosmic-ray flux, at least in a region close to the acceleration
site.
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7.2. Ionisation and heating rates in a protostellar disc

In order to quantify the variation of the ionisation degree in a
protostellar disc due to accelerated CRs propagating from the
hot spot region, we use the two-dimensional disc density profile
described in Andrews et al. (2011) and Cleeves et al. (2013). We
propagate the hot spot CR proton and electron spectra computed
for both modelsW and S (see Fig. 10) accounting for a dilution
factor d−2, where d is the distance from the hot spot, and we con-
sider the distance of the hot spot region equal to 1.8× 103 AU as
in DG Tau (Sect. 6.2). Figure 12 shows the expected ionisation
rate in the disc: while for model W the ionisation rate is com-
parable to that due to the interstellar CR flux, for model S the
value of ζ increases up to about 10−14 s−1 in the upper layers of
the protostellar disc.

In order to check that ζ ≈ 10−14 s−1 does not give a gas
temperature, Tg, that is higher than the observed values, we
follow the approach outlined by Goldsmith (2001) and Galli
et al. (2002) used to compute Tg by balancing the heating by
the locally accelerated CRs and the cooling due to molecular
and atomic transitions and collisions with dust grains. In the ap-
proximation where the dust temperature, Td, is independent of
interaction with the gas, the thermal balance equation is given by

ΓCR = Λgd + Λg, (58)

where Λgd is the gas-dust energy transfer rate, given by Burke &
Hollenbach (1983) and is given by

Λgd = 2 × 10−33
( nH

cm−3

)2
(

Tg − Td

K

) (
Tg

10 K

)1/2

erg cm−3 s−1,

(59)

while Λg is the gas cooling rate by molecular and atomic transi-
tions, given by Goldsmith (2001)

Λg = αg

(
Tg

10 K

)βg

erg cm−3 s−1, (60)

where αg and βg are parameters that depend on the total hydro-
gen density and the molecular depletion factor, fd. We adopt
a dependence of fd on nH given by fd = exp(nH/ndep) or
fd = fd,max for nH ≤ ndep log( fd,max) or nH > ndep log( fd,max),
respectively. The critical density for CO depletion is taken to
be ndep = 5.5 × 104 cm−3 and the maximum depletion factor is
fd,max = 100. The CR heating rate reads

ΓCR =

( nH

cm−3

) (
ζ

s−1

) ( Eh

erg

)
, (61)

where Eh is the mean heat input per ionisation (Glassgold
et al. 2012). Neglecting the UV heating by the interstellar ra-
diation field, we can estimate the net effect of locally accelerated
CRs on the gas temperature. We consider two positions in the
disc upper layers at a radius R = 50 AU (nH = 7 × 105 cm−3,
Td = 100 K) and R = 200 AU (nH = 8 × 104 cm−3, Td = 30 K),
e.g. Cleeves et al. (2013). Assuming that the column density
passed through the accelerated CRs coming from the hot spot
is 1019 cm−2 and ζ = 10−14 s−1, we find Tg = 130 K and 108 K
at R = 50 AU and 200 AU, respectively. These values of Tg are
comparable with those estimated by Cleeves (2013).

8. Comparison with observations

In the following subsections we describe a number of exam-
ples where we adopt our modelling as a theoretical support for
observations.

Fig. 12. CR ionisation rate profile in a protostellar disc according to
model W (upper panel) and S (lower panel). Black and white solid
lines show the iso-ionisation rate contours. The grey shaded area shows
the jet profile according to the jet opening angle estimated by Dougados
et al. (2000).

8.1. Synchrotron emission in DG Tau

Ainsworth et al. (2014) detected synchrotron emission towards
the low-mass T Tauri star DG Tau through observations at low
frequencies (325 and 610 MHz) speculating that this could be
due to relativistic electrons accelerated in the interaction be-
tween the jet and the ambient medium. This emission is associ-
ated with a bow shock at a distance of about 1800 AU, 13′′ from
the central source, which is moving at about 100 km s−1 (knot
C in Eislöffel & Mundt 1998). The minimum magnetic field
strength and particle energy that can explain the synchrotron
emission is Bmin ≈ 110 µG and Etot ≈ 2.5 × 1052 eV (Ainsworth
et al. 2014).

The jet structure of DG Tau is well studied down to sub-
arcsecond scales (Maurri et al. 2014) where other knots and in-
ner bow shocks were discovered in addition to the arcsecond-
scale knots (Eislöffel & Mundt 1998). Moreover, McGroarty
et al. (2009) and Oh et al. (2015) computed kinematic and physi-
cal properties along the jet. Even if we are aware of this complex
structure, we show that the synchrotron emission seen towards
DG Tau can be explained by the acceleration of secondary CR
electrons in the jet-hot spot system. According to our model con-
straints (Sect. 2), it is not possible to have an efficient accelera-
tion of thermal electrons, although secondary CR electrons pro-
duced in a previous shock can be re-accelerated (see Sect. 6.1).
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Through this mechanism CR electrons gain a noticeable boost at
relativistic energies at the rBS surface.

For this reason, we suppose that a first acceleration takes
place at the shock surface of an inner knot (knot B in Eislöffel
& Mundt 1998), computing the emerging CR spectrum accord-
ing to Sect. 5, and we follow the propagation of the acceler-
ated CR protons and secondary electrons up to knot C (as in
Sect. 6) accounting for gyromotion effects. Then we consider re-
acceleration at the rBS (Sect. 6.1) and diffusion in the hot spot
region (Sect. 6.2). Finally, following Longair (2011), assuming
an isotropic distribution of re-accelerated secondary electrons in
the hot spot region with Lorentz factors in the range [γmin, γmax],
we estimate their synchrotron emissivity, εν, which is given by

εν =
1

4π

∫ γmax

γmin

ne(γ)PS(ν, γ)dγ, (62)

where PS(ν, γ) is the power emitted at frequency ν by a single
electron with Lorentz factor γ averaged over all possible direc-
tions, which reads

PS(ν, γ) =

√
3e3〈B⊥〉
mec2 F

(
ν

νc

)
, (63)

with

F(x) = x
∫ ∞

x
K5/3(ξ)dξ, (64)

where x = ν/νc, K5/3 is the modified Bessel function of or-
der 5/3, and

νc =
3
2
γ2e〈B⊥〉
2πmec

, (65)

where 〈B⊥〉 is the average value of the perpendicular component
of the magnetic field, which is equal to πB/4 for an isotropic
electron population. The electron density per unit volume, ne(γ),
is given by

ne(γ) =
4π j(E)
v(E)

dE
dγ
· (66)

The synchrotron emissivity has to be converted into spectral en-
ergy flux density, S ν, so as to compare the model to Giant Metre-
wave Radio Telescope (GMRT) and Expanded Very Large Array
(EVLA) observations of DG Tau (Ainsworth et al. 2014; and
Lynch et al. 2013, respectively). Assuming a Gaussian beam pro-
file, S ν reads

S ν =
π

4 ln 2
Iνθ2

FWHM, (67)

where θFWHM is the synthesised beam size in radians. The spe-
cific intensity, Iν, is given by

Iν =
εν
κν

(
1 − e−τν

)
, (68)

where τν = Rκν is the optical depth and R is the radius of the
emitting region. Finally, the specific absorption coefficient, κν,
reads

κν =
1

8πmeν2

∫ γmax

γmin

γ2PS(ν, γ)
d

dγ

[
ne(γ)
γ2

]
dγ. (69)

Relying on the above equations, we compute the expected syn-
chrotron emission spectrum. We assume a constant magnetic
field strength of 300 µG for both knots B and C, R of the order of

Fig. 13. Spectral energy flux density as a function of the frequency.
GMRT and EVLA observations (yellow solid circles) from Ainsworth
et al. (2014) and Lynch et al. (2013), respectively, are shown together
with their fit (yellow dashed line) predicting a synchrotron spectral in-
dex of −0.89 ± 0.07 (Ainsworth et al. 2014). The two black shaded re-
gions show the result of our modelling using two different shock veloci-
ties with respect to the upstream flow (U = 100 km s−1 and 200 km s−1)
and their widths refer to an assumed error of 30% on the value of the hot
spot radius, the central value (RHS = 1300 AU, Ainsworth et al. 2014)
pinpointed by the white dotted lines. The green shaded areas show the
two LOFAR bands (LBA=low band antenna; HBA = high band an-
tenna), and their lower boundary in S ν corresponds to the sensitivity
limit using its most extended configuration (van Haarlem et al. 2013).

1300 AU (Ainsworth et al. 2014), and we compute the expected
synchrotron emission for two values of the shock velocity with
respect to the upstream flow (U = 100 km s−1 and 200 km s−1)
because of the uncertainty in its value. We also adopt an error of
30% in the emitting region radius. As shown by Fig. 13, we find
a synchrotron spectral index of −1.01, which is close to the value
inferred from observations (−0.89±0.07, Ainsworth et al. 2014),
and we are able to explain the observations with U = 100 km s−1.
It is important to note that the synchrotron emission would be
inefficient if secondary CR electrons were not re-accelerated in
subsequent shocks: this is the key process to accelerate CR elec-
trons in the synchrotron energy domain (see Fig. 10). Finally, we
also show in Fig. 13 the frequency range that was observed by
LOFAR, which can give a further constraint to our model.

8.2. High ionisation rate in L1157-B1

Another case of remarkably high level of ionisation was mea-
sured by Podio et al. (2014) in the bow shock of L1157 known
as B1. They found that the observed abundances of the HCO+

and N2H+ ions, which are usually employed such as probes of
the ionisation rate, can be simultaneously reproduced only by
assuming ζ = 3 × 10−16 s−1. The youngest knot, termed B0, lies
at about 1.2×104 AU, while B1 is at 1.7×104 AU with a hot spot
cavity radius of about 1.2×103 AU (Lefloch et al. 2012), assum-
ing a source distance of 250 pc (Looney et al. 2007). The jet ve-
locity is of the order of 100 km s−1 with shock velocities between
20 and 40 km s−1 (Bachiller et al. 2001; Tafalla et al. 2015).
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The total hydrogen density is of the order of 105−106 cm−3 (e.g.
Gómez-Ruiz et al. 2015). Podio et al. 2014 traced the cold gas
with temperatures of 60−200 K and there are hints of a warm gas
component with a temperature of at least 103 K that can explain
the water lines (Busquet et al. 2014).

Our modelling can explain the high ionisation rate in B1 if
we assume that thermal protons are accelerated in B0 and, once
they reach B1, that they undergo a further acceleration without
any additional thermal proton acceleration. This situation can
take place supposing that 1) the shock velocity with respect to
the upstream flow and/or the shock efficiency is too low at the
bow-shock surface B1 or 2) the upstream diffusion coefficient is
too large to have an efficient acceleration of thermal particles.

We follow the steps described in Sects. 5 and 6 (calculation
of the emerging CR spectrum at B0, its propagation up to B1, its
re-acceleration at B1, and the hot spot region diffusion), assum-
ing U = 60 km s−1 and U = 40 km s−1 in B0 and B1, respec-
tively, Neff/Nlos = 2×102 (see Sect. 6), B . 100 µG, x = 0.2−0.4,
T = 103 K, nH = 105 cm−3, ku = 1, and η = 5 × 10−6 in both B0
and B1. We obtain proton and secondary electron spectra leading
to a total ionisation rate ζ = 6.1 × 10−16 s−1, consistent within a
factor of about 2 with the value estimated from observations.

The values of U, B, T , x, nH, ku, and η can vary along the
shock surfaces B0 and B1, which is why our result has to be
interpreted as a proof of concept. Further observations could give
better constraints on the above parameters to test the validity of
our hypothesis.

Figure 14 shows the comparison between the ionisation rate
due to the local CRs accelerated in the hot spot, ζHS, and the
value due to the interstellar CRs assuming a spectrum similar to
that from Voyager 1, ζISM (Stone et al. 2013; Ivlev et al. 2015).
We conclude that the high value of ζ observed in L1157 and
explained by our modelling may not be due to interstellar CRs.
In fact, at the hot spot (R = 1.7 × 104 AU), ζHS is about a factor
of 10 higher than ζISM. Then, entering the envelope towards the
protostar, the contribution of the hot spot CR flux to the total
ionisation rate becomes negligible at R . 5× 103 AU because of
the geometric dilution factor, d−2, where d is the distance from
the hot spot.

Following Sect. 7.2, we compute the gas temperature in the
envelope of L1157 only accounting for the heating due to both
interstellar and locally accelerated CRs. The dust temperature
profile is given by T (r) = 300(R/AU)−0.41 K (Chiang et al. 2010,
2012). Neglecting the UV heating by the interstellar radiation
field, for R . 300 AU gas and dust are coupled, while for larger
radii, at first Tg decreases because the heating by the interstellar
CRs is too weak, then CRs at the hot spot cause a slight increase
in Tg with respect to Td, up to 30 K.

8.3. High ionisation rate in OMC-2 FIR 4

Ceccarelli et al. (2014) observed one of the closest known
intermediate-mass protostars in Orion, OMC-2 FIR 4, via Her-
schel observations of HCO+ and N2H+. The abundance of these
molecular ions were used to estimate the ionisation rate which
reaches values of the order of 1.5 × 10−12 and 4 × 10−14 s−1

at 1600 AU and 3700 AU from the source centre, respec-
tively. Actually, the structure of this protostar is highly com-
plex since it contains a cluster of a few embedded intermediate-
and low-mass protostars (Shimajiri et al. 2008; López-Sepulcre
et al. 2013). It is also worth noting that Shimajiri et al. (2008)
found the presence of a shock region produced by the interac-
tion of an external bipolar outflow driven by the nearby OMC-2
FIR 3 region, lying to the north-east of OMC-2 FIR 4 (see also

Fig. 14. Dust and gas temperature (solid and dashed red lines, respec-
tively) as a function of the distance from the protostar L1157. The plot
also shows the ionisation rate of interstellar CRs (dash-dotted green
line), of CRs coming from the hot spot (dashed green line), and the
total value (solid green line).

López-Sepulcre et al. 2013). This shock appears to be respon-
sible for the high degree of fragmentation observed in OMC-2
FIR 4.

Thus far no jet activity has been observed in OMC-2 FIR 4.
Nevertheless, in order to justify the extremely high values of ζ,
the presence of a mechanism able to accelerate particles inside
the source must be postulated since at a radius of the order of
thousands of AU the interstellar CR flux is strongly attenuated
(Padovani et al. 2013). Assuming that no jet is present and that
the accretion on the protostellar surface is still spherical, we can
recover an efficient proton acceleration at the protostellar sur-
face (Sect. 4.3). For instance, following Sect. 2 we compute the
emerging proton spectrum by considering U = 260 km s−1,
T = 9.4 × 105 K, nH = 1.9 × 1012 cm−3, B = 5 G, x = 0.3,
ku = 1, and η = 10−5 at Rsh = 2 × 10−2 AU as in the model
by Masunaga & Inutsuka (2000). The maximum energy of the
accelerated CRs is Emax = 11.4 GeV. Then, neglecting magnetic
turbulence (see Sect. 6), we propagate the proton and secondary
electron fluxes up to the two positions where the ionisation rate
in OMC-2 FIR 4 was estimated, 1600 AU and 3700 AU. Com-
bining the density profiles in Masunaga & Inutuska (2000) and
Crimier et al. (2009), we find that the accelerated particles go
through a column density of about 1.8 × 1024 cm−2. Accounting
for a geometrical dilution factor of (Rsh/R)2, with R = 1600 AU
and 3700 AU, we obtain ζ = 3 × 10−15 s−1 and 6 × 10−16 s−1,
respectively. However, including gyromotion effects would in-
crease the effective column density (Sect. 6), causing a further
reduction in the ionisation rate.

It is important to emphasise that the above result is obtained
by neglecting any diffusion process. Since it is difficult to de-
scribe turbulence in the envelope, we briefly discuss the effects
of diffusion here. If the accelerated CRs undergo diffusion during
propagation from the shock surface, the CR energy distribution
function at a distance R from the shock and at a time t in the case
of continuous CR injection from a point source reads

N (R, t, E) =
Q(E)

4πκ(E)R
erfc(g), (70)
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where κ(E) is the diffusion coefficient, g = R/(Rdiff
√

2), and
Rdiff =

√
tκ(E) is the diffusion length (Aharonian 2004). If

R � Rdiff , then erfc(g)→ 1/(g
√
π) exp(−g2) and the propagated

spectrum is attenuated as R−2 exp[−R2/(2R2
diff)], i.e. much faster

than in the free-streaming case. In contrast, if R � Rdiff , then
erfc(g)→ 1 and the propagated spectrum is attenuated as R−1, as
opposed to R−2 in the free-streaming case, and ζ would be much
higher: ζ = 3 × 10−10 s−1 and ζ = 1 × 10−10 s−1 at R = 1600 AU
and R = 3700 AU, respectively.

As shown in Fig. 15, the values of ζ computed from observa-
tions lie between the two extreme cases of free streaming and
pure diffusion with R � Rdiff

7. However, after performing a
check on gas temperature (as outlined in Sect. 7.2), the atten-
uation of the spectrum with a factor R−1 corresponds to higher
values of Tg than those determined by Ceccarelli et al. (2014)
from a large-velocity gradient analysis. We can conclude that the
propagation mechanism is probably neither purely diffusive nor
free streaming. A better knowledge of the magnetic field con-
figuration close to the protostar and of its turbulence degree is
needed for a more careful description of CR propagation from
the protostellar surface to the envelope.

8.4. 10Be enrichment in meteorites

Ceccarelli et al. (2014) argued that the accelerated proton flux
causing the high ionisation rate could also be responsible for the
formation of short-lived radionuclei, such as 10Be, contained in
the calcium-aluminium-rich inclusions (CAIs) of carbonaceous
meteorites. In fact, the measured abundance of 10Be in mete-
orites is higher than that found in the ISM and this should be
due to spallation reactions between the accelerated CRs and the
thermal gas that took place during the earliest phases of the pro-
tosolar nebula.

To test the consequences of our modelling, we use the emerg-
ing spectrum at the protostellar surface (Sect. 8.3) scaled at
1 AU, taking into account the geometric dilution of R−1 or R−2,
appropriate for the purely diffusive or free-streaming case, re-
spectively. We calculate the fluence per unit time, Ft, which
reads

Ft(Emin) = 2π
∫ Emax

Emin

j(E)dE, (71)

where Emin ' 50 MeV is the energy threshold for the spal-
lation reaction p + 16O → 10Be + . . . (Gounelle et al. 2006)
and Emax = 11.4 GeV (Sect. 8.3). We find Ft = 2 × 1017

and 8 × 1018 protons cm−2 yr−1 at 1 AU, for the purely dif-
fusive and free-streaming cases, respectively. This means that
an irradiation time of a few tens of years can explain the val-
ues of the fluence derived by Gounelle et al. (2013) equal to
1019−1020 protons cm−2, in agreement with the estimates by
Ceccarelli et al. (2014). This result is also consistent with the
X-wind model predictions (Shu et al. 1997), according to which
a proto-CAI of radius RCAI spends a time t ∼ 20(RCAI/1 cm) yr
in the reconnection ring. Nevertheless, it is important to note
that the model by Gounelle et al. (2013) predicts too much heat-
ing (Tatischeff et al. 2014). If diffusion is present, the particle
flux in Eq. (71) is higher and the fluence computed by Gounelle
et al. (2013) would be even more easily recovered.

7 Hereafter we refer to the purely diffusive case with R � Rdiff as pure
diffusion.

Fig. 15. Ionisation rate (upper panel) and temperatures of gas and dust
(lower panel) as a function of the distance from the protostar OMC-
2 FIR 4. Observational estimates of ζ and Tg (black solid circles and
squares, respectively; Ceccarelli et al. 2014) are compared to the results
from the modelling described in Sect. 8.3 (green and red solid lines).
The green and red shaded areas encompass the range of ζ and Tg by
assuming a dilution factor R−1 (purely diffusive propagation) and R−2

(free-streaming propagation). The green dash-dotted and dashed lines
show the interstellar CR ionisation rate assuming a spectrum similar to
that from Voyager 1 (Stone et al. 2013) and an enhanced CR proton
flux (see model H in Ivlev et al. 2015). The red dashed line shows
the trend of the dust temperature (Masunaga & Inutsuka 2000; Crimier
et al. 2009).

9. Conclusions

In this paper we investigated the possibility of accelerating CRs
within a protostellar source by means of shock processes. Dif-
fusive shock acceleration (DSA) is the main process leading to
CR acceleration: a CR gains energy up to the relativistic do-
main by multiple back-and-forth shock crossings. A number of
conditions have to be satisfied in order for DSA to be effec-
tive, some of them related to magnetic fluctuations (determining
pitch-angle scattering), others associated with cooling processes
and also shock velocity, age, and geometry constraints. We fo-
cused our attention on the effectiveness of shocks in accretion
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flows, in jets, and on protostellar surfaces. Our main conclusions
are the following:

1. At jet shocks, CR protons can be effectively extracted from
the thermal plasma and accelerated up to relativistic ener-
gies, while CR electrons can only reach energies of about
300 MeV because of wave damping and energy losses.

2. In accretion flows, the ionisation fraction is too small and the
shock velocity too low, which prevents any CR acceleration.
Furthermore, the high magnetic field strength implies sub-
Alfvénic flow speeds.

3. On protostellar surfaces, shocks caused by impacting mate-
rial during the collapse phase are strong enough to boost CR
protons, but not electrons.

The set of conditions that has to be fulfilled is highly non-
linear: small variations in one or more parameters (magnetic
field strength, ionisation fraction, total hydrogen density, tem-
perature, flow velocity, upstream diffusion coefficient, and shock
efficiency) can make the acceleration process inefficient. As a
consequence, since a protostar is a highly dynamic system, CR
acceleration can be a very intermittent process; for instance, a
locally enhanced ionisation rate caused by the accelerated parti-
cles could modify the local ionisation fraction and then the effi-
ciency of this acceleration mechanism. The intrinsic limit of our
modelling lies in the observational uncertainties of these param-
eters. High-resolution observations carried out for example with
ALMA will help to have better constraints, with special consid-
eration for the magnetic field configuration. In addition, the pa-
rameters listed above are not constant all along the shock surface
so that the efficiency of the acceleration can be reduced. How-
ever, while we only accounted for acceleration at the surface of
a single inner jet shock at 100 AU plus re-acceleration at the fi-
nal reverse bow shock, jets usually show multiple inner shocks,
which makes it possible to recover the acceleration efficiency of
our modelling.

After demonstrating the possibility of accelerating CR pro-
tons in a jet shock, we described their propagation in the jet, also
accounting for secondary CR electrons produced by the ionisa-
tion process. Once the reverse bow shock is reached, CR protons
and electrons are re-accelerated together with a local component
of thermal protons before streaming in the hot spot region. A
number of observations can be explained by our modelling. In
particular:

1. The synchrotron emission seen in the bow shock of DG Tau
can be explained by the presence of high-energy CR elec-
trons. Using the available parameter values for DG Tau, we
succeeded in reproducing the synchrotron index estimated by
observations. The most important conclusion is that the elec-
trons responsible for synchrotron emission are the secondary
CR electrons re-accelerated at the bow shock.

2. The high ionisation seen towards the bow shock B1 in L1157
can be reproduced if we assume that the first acceleration
of thermal protons takes place in the shock B0 and that the
further acceleration of thermal particles in B1 is inefficient
(e.g. because of low flow velocity and shock efficiency, or
high upstream diffusion coefficient).

3. We attempted to describe the high ionisation towards OMC-2
FIR 4. So far no jet activity has been observed, which is why
we explained the observed ionisation rate and the 10Be abun-
dance assuming that CR acceleration takes place directly on
the protostellar surface. However, it is important to remem-
ber that this source shows hints of fragmentation so that our
modelling may not be directly applied.

The most limiting condition for the maximum energy reached
by a CR proton is due to the geometry of the jet. In fact, the jet
transverse radius increases with the distance of the shock from
the source and CRs are confined in the jet for a longer time since
their possibility of escaping in the perpendicular direction de-
creases. In this way they can reach higher energies. Thus, if DSA
takes place in a jet shock far from a protostar, it is possible to ac-
celerate CR protons up to 1−10 TeV energies and in principle
their γ emission could be observed with the next generation of
ground-based telescopes such as CTA.

In closing, it is important to note that D’Alessio et al. (1998)
found that in the disc region between 0.2 AU and 4 AU the ion-
isation fraction is smaller than the minimum value required to
have magnetorotational instability operating near the disc mid-
plane. The acceleration of CRs inside protostars predicted by our
modelling would cause an increase in the number of electrons.
As a consequence, the extension of the so called “dead zone”
(Gammie 1996) could be modified together with the planetesi-
mal formation efficiency.
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Appendix A: Alternative acceleration mechanisms

A.1. Shear acceleration at the jet-outflow interface

At the interface between the jet and the outflow, particles see two
fluids moving at different velocities and they can gain energy by
being scattered by magnetic field turbulence in the same manner
as in the DSA process except that the up- and downstream me-
dia are replaced by the outer and inner shear flows. In order to
establish which of these two mechanisms prevails, we compare
the acceleration timescale due to DSA, tacc, given by the inverse
of Eq. (5), and that due to shear acceleration, tshear. Following
Rieger & Duffy (2006), tshear reads

tshear =
1

4 + α

(βc)2

3κshearΓ
, (A.1)

where κshear = kshearκgal, with kshear = 0.01−1. The shear flow
coefficient, Γ, reads (Earl et al. 1988)

Γ ' 3 × 10−18
( vjet

102 km s−1

)2
(

R⊥, outflow

102 AU

)−2

s−2, (A.2)

where we assumed vjet � voutflow and R⊥, jet � R⊥, outflow. The pa-
rameter α comes from the assumption of momentum-dependent
scattering time τ ∝ pα (Rieger & Duffy 2006). Using the three
different trends for κgal described in Sect. 6.2, we find α = −2
for a constant diffusion coefficient at non-relativistic energies,
α = −1 for the DR model, and α = −4 for the PD model. We
note that in this last case, tshear → ∞ and the shear acceleration
does not occur. We compute tacc for model S minimising tshear
(by taking kshear = 1, vjet = 300 km s−1, and R⊥, outflow = 103 AU),
and we find tacc < tshear when E . 100 GeV. At a greater
distance from the protostar, DSA is even more favoured since
tshear ∝ R2

⊥, outflow. However, in terms of geometrical efficiency,
shear acceleration could be more efficient than DSA since, in
principle, the former process can occur all along the jet-outflow
contact surface while DSA takes place only at a shock surface.

A.2. Acceleration by shocked background turbulence

The basic requirement for the acceleration mechanism described
thus far assumes that the waves providing the scattering of the
energetic particles are self-generated by the particles themselves.
However, turbulence in protostars can be injected by other means
since jets propagate into a turbulent environment (Giacalone &
Jokipii 2007) and because the magneto-rotational instability in
the accretion process induces turbulent motions (Hawley 2000).
The level of background turbulence is poorly known, but it could
overcome the turbulent fluctuations generated by any CR accel-
erated at a shock front. Finally, it might even be that background
turbulence is required to trigger CR acceleration, which, if effi-
cient enough, could enter the self-generated regime.

Background turbulence prevails over self-generated turbu-
lence if

Wbg >
Pp

MA
, (A.3)

where Wbg = δB2
bg/(8π) is the background magnetic pressure;

Pp ∝ p4v f (p) is the particle pressure at momentum p, where p
is related to the wavenumber k through the resonance condition
k ∝ 1/rL, rL being the Larmor radius (e.g. Drury et al. 1996);
and

MA =
U
VA

(A.4)

is the Alfvénic Mach number. If a background CR distribution is
present, then the condition becomes

Wbg >
Pp

MA

[
1 −

fbg(p)
f (p)

]
· (A.5)

If the above condition is fulfilled, DSA theory has to be ap-
plied with diffusion coefficients controlled by background tur-
bulence, i.e. diffusion coefficients that deviate from the Bohm
scaling given by Eq. (6).

A.3. Turbulent second-order Fermi acceleration

Low-energy particles, in the non- or mildly-relativistic regime,
can be subject to stochastic acceleration by the turbulence gen-
erated around the shock. The relative importance of stochastic
acceleration and pitch-angle scattering is given by the ratio of
the two corresponding timescales (Petrosian & Bykov 2008),
namely

Dpp

p2Dµµ
≈

VA

βc

2

, (A.6)

where Dpp and Dµµ are the Fokker-Planck coefficients, µ be-
ing the cosine of the pitch angle. As discussed in Prantzos
et al. (2011), stochastic acceleration is important only if it can
overcome the particle losses given by Eq. (9). Second-order
Fermi acceleration becomes important when β ∼ VA/c, but for
typical ranges of total hydrogen, ionisation fraction, and mag-
netic field strength in a protostar (Sect. 4), this acceleration
mechanism turns out to be negligible.

A.4. Magnetic reconnection

In more evolved protostars, magnetic reconnection is expected in
coronal winds above the accretion disc and in accretion columns
from the inner disc region to the central source. De Gouveia Dal
Pino & Lazarian (2005) proposed that an acceleration mecha-
nism similar to DSA takes place in reconnection sites. In fact,
particles are expected to gain energy bouncing between converg-
ing flux tubes with oppositely directed magnetic fields. Through
3D magnetohydrodynamic numerical simulations, de Gouveia
Dal Pino et al. (2014) found the formation of a hard proton power
spectrum (∝E−1) for proton energies between about 10 GeV and
1 TeV.

Appendix B: Turbulent damping in jets

In a plasma, turbulent perturbations can either be damped by
collisional or collisionless processes depending on the ratio be-
tween the wavelength of the perturbations to the proton mean
free path due to collisions (see Yan & Lazarian 2004). Here, the
resonant waves have a wavelength, λ, given by

λ ' rL = 3.3 × 109
( E
GeV

) ( B
mG

)−1

cm, (B.1)

while the proton mean free path, `mfp, reads

`mfp = 9.4 × 106
( T
104 K

)2 ( nH

105 cm−3

)−1
cm. (B.2)

The damping is in the collisional regime if λ > `mfp otherwise
it is in the collisionless regime. In the conditions prevailing in
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stellar jets, particles with energies higher than a few MeV gen-
erate waves that are damped in the collisional regime. The dom-
inant collisional damping process is due to ion-neutral collisions
and the damping rate is given by Eq. (D.2). If E > 1 GeV, then
Γ ≈ ωn(ω/ωi)2, while if E ∈ [3 × 10−3, 1] GeV, we have Γ ≈ ωn.
The damping scale is

Ld = UdΓ−1 = 7.5 × 1010 ×

( U
100 km s−1

) (
Γ

10−4

)−1

cm, (B.3)

where Ud is the downstream flow velocity. If we assume Γ = ωn,
we obtain Ld ∼ 4× 10−4 AU, which is very small with respect to
the distance between the internal shock in the jet and the termina-
tion shock. At high energies, although the damping is weaker and
scales as (E/GeV)−2, the damping scale is always much smaller
than 1 AU, since the typical maximum energy found is of the
order of 10 GeV.

At low energies, the damping corresponds to very short
wavelengths and occurs in the collisionless regime. The appro-
priate damping rate is given by Eq. (A.13) in Jean et al. (2009).
It corresponds to the linear Landau damping rate, ΓLD, which is
the resonant interaction of the waves with the background ther-
mal plasma. The difficulty here is fixing a value of the wave
pitch-angle Θ (the angle between the wave number and the mag-
netic field direction). Downstream of the shock, accounting for
the magnetic field compression at the shock, this angle is likely
large, close to 90◦, and causes the damping to vanish. How-
ever, one can argue that the magnetic field keeps some obliq-
uity downstream. For instance, starting with an upstream pitch
angle of 45◦, a compression of the transversal magnetic com-
ponent produces a downstream pitch angle Θ = 63◦, leading to
ΓLD ≈ 30F(Θ)[5.4× 10−4 + 0.8G(Θ)] s−1, with F(Θ) ≈ 0.17 and
G(Θ) ≈ 1.17, respectively. It follows that the damping length is
very small as before, but it increases rapidly for Θ → 90◦ or 0◦.
Nevertheless, these cases are likely marginal for our modelling
and we assume that waves are also rapidly damped behind the
shock in the collisionless regime.

Appendix C: Collisionless character of the shocks
and thermal equilibration

The collision time between protons and electrons and the gyro-
period have to be compared in order to determine whether a
shock is collisional or collisionless. Equivalently, the proton-
electron collision length (λc) can be compared with the Larmor
radius (rL,th) of a thermal particle. If λc > rL,th, then the shock is
collisionless and it is mediated by magnetic field rather than by
collisions. In this case the shock can accelerate thermal plasma
particles. Conversely, if λc < rL,th, then the shock is collisional
and it can accelerate particles only if these are already acceler-
ated in the pre-shocked medium and if magnetic fields are also
involved.

The proton-electron collision length reads

λc = vth,pν
−1
c cm, (C.1)

where vth,p is the proton thermal speed and νc the proton-electron
collision frequency. These quantities are given by

vth,p = 9.09 × 105
( T
104 K

)0.5

cm s−1 (C.2)

and

νc,p = 4 × 10−3 ln Λ

( T
104 K

)−1.5 ( nHx
106 cm−3

)
s−1, (C.3)

where ln Λ ∼ 20 is the Coulomb logarithm. The Larmor radius
for a proton reads

rL,th = 9.47 × 106
( T
104 K

)0.5 (
B

10 µG

)−1

cm. (C.4)

Then a shock is collisional if

λc

rL
=

24
ln Λ

( T
104 K

)1.5 ( nHx
106 cm−3

)−1
(

B
10 µG

)
< 1. (C.5)

Using the values in Table 1, it is possible to verify that shocks
both in accretion flows and jets are collisionless.

Because collisionless shocks are present, we have to justify
the assumption of equal temperature downstream in our calcu-
lation (Tp,d = Te,d = T ). In fact, since recurrent shocks spaced
of about 100 AU are observed along the jets, the temperature T
entering the equations in Sect. 2.2 is the upstream temperature
during the passage of the first shock, and the downstream tem-
perature for the following shocks.

The temperature of a species s is proportional to its mass and
downstream reads

Ts,d =
r − 1

r2

msU2

k
, (C.6)

where k is the Boltzmann constant and s = p, e. The thermal
equilibrium between protons and electrons that have different
downstream temperatures is reached after a time teq given by

teq =
7 × 102

ln Λ

(
Te,d

104 K

)1.5 ( nHx
106 cm−3

)−1
s. (C.7)

This is the time needed to balance Te and Tp and it has to be
compared with the time between the passage of two consecutive
shocks, ∆tsh, which reads

∆tsh = 1.5 × 108
( Dsh

102 AU

) ( U
102 km s−1

)−1

s, (C.8)

Dsh being the distance between two successive shocks. If teq <
∆tsh, then protons and electrons reach the same temperature be-
fore another shock arrives. It is straightforward to verify that the
last inequality is always verified for the values in Table 1 as-
suming that shocks in jets are separated by about 100 AU. This
confirms the correctness of our hypothesis, and so we can keep
using the same temperature for protons and electrons for any
shock, the latter being observable.

Appendix D: Evaluation of Edamp

Equation (29) in Drury et al. (1996), assuming the shock velocity
to be much higher than the Alfvén speed, gives

2ΓκBVA = U3P̃CR. (D.1)

The wave damping rate, Γ, reads (Drury et al. 1996)

Γ =
ω2

ω2 + ω2
i

ωn, (D.2)

with ωn = nH(1−x)〈σv〉 and ωi = nHx〈σv〉. The average value of
the product between the charge exchange cross section and the
collision velocity, 〈σv〉, is given by Kulsrud & Cesarsky (1971)

〈σv〉 ≈ 8.4 × 10−9
( T
104 K

)0.4

cm3 s−1. (D.3)
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For resonant waves, ω is given by the ratio between the Alfvén
speed and the particle’s gyrofrequency

ω = 7 × 10−9 µ̃
−1

γβ

(
B

10 µG

)2 ( nH

106 cm−3

)−0.5
s−1. (D.4)

Equation (15) is found by substituting Eqs. (D.2)–(D.4) in
Eq. (D.1).

Appendix E: Justification for the steady-state
model

In order to justify the steady-state hypothesis in Sect. 6.2, we
have to verify whether tesc,d (Eq. (43)) is lower than the lifetime
tlife (Eq. (52)) of a bow shock. Here we consider two sources
with differing distances of the reverse bow-shock, DrBS: HH 111
and DG Tau with DrBS = 7 × 104 AU and DrBS = 1.8 × 103 AU,
respectively.

E.1. HH 111
Morse et al. (1993) states that the upper limit to the shock veloc-
ity at the apex of the bow shock V in HH 111 is vsh = 100 km s−1,
while the jet velocity is vjet = 400 km s−1. Then, the shock
velocity in the shock reference frame is U = 300 km s−1 and
tlife ' 835 yr. We assume the hot spot radius to be of the order
of the transverse radius of knot V, which is about 2 × 103 AU
(Reipurth et al. 1997), then tadv (Eq. (44)) is about 40 yr. Since
tdiff � tadv at any energy, then tesc,d ' tdiff � tlife and we can use
the steady-state approximation.

E.2. DG Tau
Eislöffel & Mundt (1998) estimates that knot C, which corre-
sponds to the bow shock, was ejected in 1936, so tlife ' 80 yr.
In the same paper they compute vjet ' 200 km s−1. Hartigan
et al. (1994) calculate vsh ' 100 km s−1, then U ' 100 km s−1.
The hot spot radius is about 1300 AU (Ainsworth et al. 2014)
and tadv ' tlife. As for HH 111, tdiff � tadv, the steady-state ap-
proximation is still marginally valid for this source.
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