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Abstract. A general introduction to the foundations of spot modelling is given. It
considers geometric models of the surface brightness distribution in late-type stars as
can be derived from their wide-band optical light curves. Spot modelling is becoming
more and more important thanks to the high-precision, high duty-cycle photometric
time series made available by space-borne telescopes designed to search for planets
through the method of transits. I review approaches based on a few spots as well as
more sophisticated techniques that assume a continuous distributions of active regions
and adopt regularization methods developed to solve ill-posed problems. The use of
transit light curves to map spots occulted by a planet as it moves across the disc of its
host star is also briefly described. In all the cases, the main emphasis is on the basic
principles of the modelling techniques and on their testing rather than on the results
obtained from their application.

1 Introduction

The photosphere of the Sun is not homogeneous. Dark features, called sunspots,
appear and evolve during most of the time, while bright faculae are often ob-
served in proximity to sunspots when they are close to the limb. Those structures
are due to the interaction of convection with localized magnetic fields. The total
sunspot area does not exceed 0.2 — 0.3 percent of the solar surface. The total
facular area can be about one order of magnitude larger, but faculae have a very
low contrast close to the disc centre and may not be easily detected there (e.g.,
Chapman et al. 2001, 2011). Looking at the photosphere with a resolution of
the order of 10? — 103 km, we see other brightness inhomogeneities associated
with magnetic flux tubes that are localized around the borders of the convective
cells. In particular, the flux tubes observed around supergranules are brighter
than the unperturbed photosphere and form the photospheric network that is
best detected on high-resolution magnetograms.

In distant late-type stars, we observe similar photospheric features because
those stars have surface convection and magnetic fields produced by a large-scale
dynamo, at least if they rotate sufficiently fast (e.g., Berdyugina 2005; Strass-
meier 2009; K&vari & Olah 2014). However, the lack of spatial resolution means
that we can detect them only indirectly. During this school several methods to
reach this goal have been introduced. Here I focus on the information that can
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be extracted from wide-band photometry, especially from the large datasets re-
cently made available by space-borne telescopes designed to look for planetary
transits such as CoRoT and Kepler (e.g., Auvergne et al. 2009; Borucki et al.
2010). The typical accuracy of the measured flux is of the order of 20 parts per
million (ppm) on a V = 12 magnitude G-type star in one hour of integration
time, considering that Kepler has a telescope diameter of 95 cm.

The rotation of a star changes the projected area of its surface brightness
inhomogeneities leading to a rotational modulation of its optical flux. Moreover,
the intrinsic evolution of these inhomogeneities contributes to the flux variations.
In principle, it is possible to measure the rotation period from the light modula-
tion provided that the inhomogeneities evolve on a timescale long in comparison
with the rotation period. If they evolve on a shorter timescale, the light varia-
tions will provide information on their typical lifetime, but they cannot be used
as tracers to measure the stellar rotation period. This is the case of the Sun. The
time variation of its total irradiance is dominated by active regions produced by
magnetic fields. When the modulation is dominated by faculae with a typical
lifetime of 50 — 80 days, i.e., 2 — 3 rotations, we can apply time-series analysis
techniques to measure the rotation period. On the other hand, when sunspots
with a lifetime of only 10 — 15 days dominate, the measurement of the rotation
period becomes difficult and imprecise (cf. Lanza et al. 2004).

Several techniques were introduced to analyze time series of stellar optical
photometry to derive the rotation period, the longitudes where surface inho-
mogeneities preferentially form, and their evolution timescales as well as the
long-term variations associated with stellar activity cycles, i.e., the phenomena
analogous to the eleven-year sunspot cycle (e.g., Jetsu 1996; Donahue et al.
1997a,b; Kollath & Olah 2009; Lehtinen et al. 2011; Lindborg et al. 2013; Mc-
Quillan et al. 2013; Reinhold et al. 2013; McQuillan et al. 2014). We shall not
discuss those techniques here, but shall focus on the foundations of the modelling
of the rotational modulation by means of a simple geometrical approach (spot
modelling). In the case of close eclipsing binaries, we can also exploit the occul-
tation of one component star by the other to scan its disc (eclipse mapping, e.g.,
Collier Cameron 1997; Lanza et al. 1998). This approach becomes particularly
powerful when a planet transits across the disc of its parent star. Thanks to its
small size in comparison to the stellar disc, a detailed scanning of the occulted
band becomes possible (transit mapping, e.g., Schneider 2000; Silva 2003). The
foundations of such a technique will be also briefly reviewed.

2 Spot modelling with discrete spots

2.1 Model geometry

For the sake of simplicity, let us consider a single, spherical star rotating with a
uniform angular velocity 2. We assume a Cartesian reference frame fixed in the
inertial space (i.e., a non-rotating frame) with the origin O at the barycentre of

the star, the z axis along the stellar spin axis (£ = ), and the z and y axes in
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the equatorial plane; the x axis is chosen so that the direction pointing towards
the observer § = OF is contained in the zz plane (see Fig. 1).

Let us consider a point P(x,y, z) on the surface of the star. If we denote its
colatitude and its longitude with 6 and ¢, respectively, the Cartesian components
of the unit vector OP are: OP = (sin € cos ¢, sin O sin ¢, cos #). Note that ¢ is a
linear function of the time ¢ because the star is rotating with an angular velocity
2. If the longitude of P at the time tg is ¢g, we have: ¢(t) = ¢g + 2(t — tp).
The Cartesian components of the unit vector pointing towards the observer are:
§ = (sini, 0, cos i), where 7 is the inclination of the stellar spin axis to the line of
sight.

The normal 1 to the stellar surface at the point P is parallel to OP because
the star is spherical, that is n = OP. Therefore, the angle 1 between the normal
at P and the direction towards the observer is given by the scalar product
cosY = n-§ = OP - 8. Introducing u = cos® and substituting the above
expressions for OP and § into this relationship, we finally obtain:

= sinisin 6 cos[¢o + £2(t — to)] + cosicos . (1)

2.2 Flux variation produced by an active region

Let us assume a quadratic limb-darkening law for the unperturbed photosphere
in the passband of the observations (cf. Gray 2008):

Lu(p) = Io(a + bu + cp®), (2)

where I, is the specific intensity in the given passband; Iy the intensity at the
centre of the disc; a, b, and ¢ the limb-darkening coefficients that verify a+b+c =
1. The flux emerging from the stellar disc of radius R is:

w/2 1
F, =2rR? / I.(cos 1) cos1psin v dyp = 27 R? / To(p)pdps, (3)
0 0
where dA = 2rR%sin0df is the area of the elementary band on the sphere
between colatitudes # and 8 + df, and the factor cost gives its projection on
the plane normal to the line of sight. Substituting the limb-darkening law and
performing the integration, we find the unperturbed stellar flux:

F, = nR%I, (a + gb + lc> . (4)
3 2

In the Sun and sun-like stars, the photospheric active regions are much smaller
than the area of the disc. Therefore, we can simplify our treatment by considering
point-like active regions. Each one consists of a spotted area As and a facular
area Ay localized at the same point P with A, Ay < mR? (cf. Lanza et al. 2003).
The flux perturbation produced by that active region, i.e., by its dark spots and
bright faculae localized in P, is:

AF = AF, + AF; = Agu(I, — I) + App(I — 1), (5)
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Fig. 1. Illustration of the geometry adopted to compute the spot modeling in the case
of a single spherical star. The reference frame has its origin at the barycentre O of
the star; the z-axis is along the stellar angular velocity (2; the xy plane coincides with
the equatorial plane of the star with the z-axis chosen so that the line of sight is in
the xz plane. The spherical coordinates of a point P on the surface of the star are the
colatitude # and the longitude ¢. The inclination of the stellar rotation axis to the line
of sight is ¢, while ¢ is the angle between the normal in P and the line of sight. The
projection of the point P on the equatorial plane of the star is indicated with Py, and
is introduced to define the longitude ¢ measured with respect to the z-axis.

If A is the area of a surface element of the photosphere, we define the filling
factor of the spots f; and that of the faculae @ f according to the relationships:

As = fsA> Af = QfsA = QAEH (6)

and their intensity contrasts as:

where the specific intensity of the spot I; and of the faculae Iy are given at the
same point of the photosphere as the unperturbed intensity I,,. The solar faculae
are more contrasted towards the limb and virtually invisible at disc centre. For
the sake of simplicity, we assume a linear dependence of their contrast on p (cf.
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Lanza et al. 2003, 2004):
ce = cro(l — ), (8)
so that

AF = Al (p) [—cs + Qero(1 — p)] = fsA Lu(p) [—cs + Qero(1 — ) . (9)

In addition, to further simplify our model, we assume that the spot area Ay and
the contrasts c; and cyo are constant as well as the ratio of the facular-to-spotted
area () = Ag/As. We also neglect the presence of the spot penumbra as in the
first simple models of the variation of the solar irradiance (e.g., Chapman et al.
1984).

The observed flux at the time ¢ is:

F(t) = Fy + AF(t), (10)

where the time dependence of AF comes from the rotation of the star that
changes the projection factor u. Therefore, the relative variation of the flux
according to Eq. (9) is:

AF() | Adu()

F;z) =1+ . :1+T[ch0(1—ﬂ)—cs]v(u)u, (11)

or, substituting Eqs. (2) and (4) into Eq. (11):

a cp?
ﬁg):1+<;§J<Q42$;;22>WQM1_M_$JMWM "

where the time dependence of the projection factor is given by Eq. (1) and v is
the wvisibility of the surface element centered at the point P defined as:

(1 >0
”W)_{Oﬁu<o. (13)

An illustration of the typical rotational modulation produced by our model active
region is given in Fig. 2. When the active region is on the invisible hemisphere, the
flux is constant at the unperturbed value. When stellar rotation brings the active
region into view, the flux initially rises because faculae are more contrasted close
to the limb and their dark spots have little effect owing to the foreshortening. As
the active region moves towards the centre of the disc, the effect of the faculae
becomes less important owing to the decrease of their contrast, while dark spots
become dominant as their projected area rises towards disc centre. Finally, when
the active region moves toward the other limb, the flux increases again due to
the prevailing effect of the faculae.

When a star is much more active than the Sun, its active regions cannot be
treated as point-like features. This is the case of young rapidly rotating stars or
of the active components of close binaries that were monitored from the ground
thanks to their large light curve amplitudes reaching up to 0.2-0.3 mag in the
optical passband (Strassmeier et al. 1997; Garcia-Alvarez et al. 2011). In this
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Fig. 2. Illustration of the rotational modulation of the flux produced by a single active
region consisting of a dark spot and a bright facular area around it with solar-like
contrasts.

case, active regions were generally treated as spherical caps, as discussed in,
e.g., Rodono et al. (1986), Dorren (1987), or Eker (1994). We shall not consider
the theory of the light variations produced by such extended spots, referring
the interested reader to those works and the references therein. However, a few
results obtained with those models will be mentioned in Sect. 2.3.

An important geometrical parameter affecting starspot modelling is the in-
clination of the stellar spin axis 4. If the photometric period P,y is known from
timeseries photometry, the rotational broadening of the spectral lines vsini is
measured from high-resolution spectroscopy, and the radius of the star R is
estimated from models or interferometry, we can derive the inclination from:
sini = Pot(vsini)/2wrR. This method can be applied to young rapidly rotat-
ing stars because for stars similar to the Sun the relative error on vsini is of
~ 50 — 100 percent due to the effects of macroturbulence, even when very high-
resolution spectra are available. Moreover, for those rapidly rotating stars, the
inclination can be derived by minimizing systematic errors in the process of
constructing Doppler imaging maps (e.g., Rice & Strassmeier 2000). For stars
that rotate slowly, the inclination is generally unknown or can be estimated
with large uncertainties. An intermediate case is that of stars that rotate with
2 > (2 — 3)02¢ for which asteroseismology can be applied to derive the inclina-
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tion because the visibility of the p-modes belonging to a given rotationally split
multiplet, that differ by the azimuthal order m, depends on the inclination (e.g.,
Ballot et al. 2006, 2011).

The role of the faculae is parametrized by @ in our simple model. In gen-
eral, light variations in stars remarkably more active than the Sun seem to be
dominated by dark spots (Lockwood et al. 2007) and also in the Sun the rel-
ative contribution of the faculae decreases during the maximum phase of the
11-yr cycle (e.g. Foukal 1998). The recent works by Gondoin (2008) and Messina
(2008) provide more information on the facular contribution. A method to es-
timate () from single-band light curves, thanks to the different shapes of the
facular and spot light modulations, was introduced by Lanza et al. (2003), and
its applications are mentioned in Sect. 2.3.

We have considered the case of photometry in a single passband because
space-borne telescopes generally observe in a single wide passband to maximize
the flux and reduce the photon-shot noise when searching for planetary transits,
or have a few non-standardized passbands, such as CoRoT (Auvergne et al.
2009). However, ground-based photometry is often acquired in several standard
photometric passbands that allow to estimate the spot temperature (e.g., Poe
& Eaton 1985; Strassmeier & Olah 1992). For this application, it is important
an appropriate modelling of the limb-darkening in the different passbands. In
Fig. 3, the synthetic light curves produced by a starspot on a solar-like star
in two different passbands are plotted. The spot is completely dark, that is no
flux is coming from it. Therefore, the observed colour variation is due solely
to the different limb-darkening coefficients in the two passbands and amounts
to & 10 percent of the amplitude of the light modulation. Therefore, a word of
caution is in order when interpreting colour modulations as immediate proxies for
starspot temperature. If the intrinsic flux of the spot in the considered passbands
is low, as it is often the case in the U or B passbands, the colour variation can be
dominated by differential limb darkening rather than by the spot temperature
deficit.

2.3 Few-spot models

The light curves of a spotted star are generally not sinusoidal, therefore a single
spot is not enough to obtain an adequate fit. The simplest models consider two
or three non-overlapping spots. In order to compute those models, it suffices to
add the effects of individual active regions as introduced in Sect. 2.2. For the
case of two spots, the free parameters are: the inclination 4, the rotation period
Pt = 27 /2, the limb-darkening coefficients, the unperturbed flux level Fy,, the
spot and facular contrasts ¢s and cgy, the ratio of the facular-to-spotted areas
Q; and, for each spot, the relative area Ag/7R?, the colatitude 6, and the initial
longitude ¢g. The unperturbed level is generally unknown, so it is usually fixed at
the maximum observed flux or allowed to vary by 0.1—1 percent above that level
because this can sometimes improve the best fit by providing the model with an
additional degree of freedom that allows it to converge to a deeper minimum in
the x? landscape. The parameters 3, P.ot, and Q are generally fixed and only
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Fig. 3. Upper panel: Synthetic flux vs. rotation phase at two wavelengths (400 and 600
nm) in the case of a completely dark starspot transiting across the disc of a late-type
star. The two light curves are different because of the dependence of the limb-darkening
coefficients on the wavelength. Lower panel: the flux difference (colour) vs. the rotation
phase.

the geometrical parameters, i.e., Ag, 8, and ¢ for each of the spots, are varied to
minimize the x? of the model. Sometimes, a flux term independent of the spot
longitude is added to the model to account for a uniformly distributed pattern
of spots that does not produce any flux modulation, but affects the mean light
level (cf. Lanza et al. 2003).

In some cases, thanks to the small number of varied parameters, the model
may be unique, for example, a well-defined minimum of the x? can be found
in the six-parameter space of a two-spot model. However, in most of the cases,
degeneracies among the parameters are present, especially when the accuracy of
the photometry is limited. This can be understood if one considers for simplic-
ity a model with only one dark spot without faculae (@ = 0). The minimum
of light corresponds to the transit of the spot on the central meridian of the
star’s disc and it allows us to derive the initial longitude of the spot ¢g. The
minimum of light occurs at time t,,, when (t,, — to) = —¢o /{2 and its amplitude
is: |AF | max/Fu = cs(As/mR?) cos(i — 0), where limb-darkening is neglected for
simplicity. The duration of the spot transit 6t corresponds to the two longitudes
where 1 = 0, i.e., 0t = to —t1, where sinisin 6 cos[¢g + 2(t; — )]+ cosicos§ = 0,
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with ¢ = 1,2. Therefore, if the inclination i # 90°, the unspotted flux level Fy,
and the other physical parameters are known, we can derive the three geomet-
rical parameters Ag, 0, and ¢ of our single spot from the duration ¢, the time
of light minimum ¢,,, and the amplitude of the light minimum |AF|mnax/Fu.
If the inclination is 90°, the duration §t of the transit of the spot across the
disc becomes independent of its colatitude and we loose the information on that
parameter. Even if 4 # 90°, the finite precision of the photometry induces uncer-
tainties on the spot location and area. If the inclination ¢ is not known a priori,
the colatitude 6, the unprojected area Ag, and the inclination 4 itself become
largely degenerate because the combination Ag cos(i — ) appears in the relation-
ship for the amplitude of the flux modulation. These considerations show that
spot modelling can give unique solutions only in very special cases.

When we fit two spots and the inclination is only poorly estimated, we ex-
pect strong degeneracies to arise among the different parameters because differ-
ent combinations of the individual spot areas and colatitudes give similar light
modulations, especially when the inclination is close to 90°. In spite of such
limitations, two-spot models have been widely applied to fit ground-based pho-
tometry for which the precision is of the order of 0.01 mag. To obtain a sufficient
coverage in phase, the data gathered along an entire season were generally used
to construct an average light curve, thus averaging short-term changes in the
spot pattern. Rodono et al. (1986) provided some examples of that kind of spot
models, generally yielding a well-defined minimum in the x? space thanks to the
limited number of free parameters. Spots at high latitudes and even at the poles
were often found because the model used them to adjust the variations of the
mean light level given that they were circumpolar for inclination ¢ # 90° and
therefore always in view.

Recently, two-spot models have been resumed and applied within a Bayesian
framework using Monte Carlo Markov Chain techniques to fully explore the a
posteriori parameter distributions and their degeneracies (Croll 2006; Frohlich
2007; Lanza et al. 2014). The applications were focussed on estimating the am-
plitude of the surface differential rotation by allowing the two spots to have
different rotation periods. A two-spot model with non-evolving spots was ap-
plied to individual time intervals sufficiently short to avoid that the intrinsic
spot evolution affects the result.

Other applications of models with a few spots are the estimation of the
facular-to-spotted area ratio @) or of the maximum time interval during which
the spot pattern is unaffected by the intrinsic starspot evolution. Lanza et al.
(2003) first performed those applications for the Sun and then for some CoRoT
and Kepler targets (cf. Lanza et al. 2009a,b, 2010, 2011; Bonomo & Lanza 2012).
Note that, since ) appears in combination with the facular contrast parameter
cfo in the product Qcgy (cf. Eq. 12), it is possible to determine @ only by fixing
CfQ.
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2.4 Multispot models with evolution

The advent of automated photometric telescopes in the ’90s allowed to follow the
evolution of the light modulation of active stars in a systematic way and posed
the problem of modelling their spot evolution (e.g. Rodono et al. 2001). Strass-
meier & Bopp (1992) were among the first to propose a model that incorporated
the intrinsic evolution of the starspots and the relative drift in latitude owing
to surface differential rotation. With space-borne telescopes such as CoRoT,
multi-spot models with evolution became even more important. Mosser et al.
(2009) fitted the light curves of several CoRoT asteroseismic targets by applying
a model with evolving spots, usually limited to 2—3 per stellar rotation. Best fits
were obtained with an extended exploration of the geometric parameter space
by means of a relaxed x? minimization based on a technique similar to simu-
lated annealing. Their method was extensively tested with simulated data and
compared to other approaches to study the dependence of the results on model
assumptions and on the parameters held fixed. The model proved useful to de-
rive robust estimates of the spot lifetimes and mean rotation period, while other
parameters, such as the inclination of the spin axis (independently known from
asteroseismology), spot latitudes, and differential rotation were found sensitive
to model assumptions.

Frasca et al. (2011) and Frohlich et al. (2012) (cf. also Frohlich et al. 2009),
applied multispot models with up to 7—9 evolving spots to fit Kepler timeseries
of several hundred days. A Bayesian approach was used to derive the a posteriori
free parameter distributions generally including the inclination and the surface
differential rotation.

The main limitation of multi-spot models, in addition to the strong parameter
degeneracies, is the large amplitude of the residuals in comparison with the
photometric errors. This is especially critical when we model the light curves
of eclipsing binaries because the eclipse profile is highly sensitive to the shape
and location of the occulted spots. For these reasons, continuous spot models,
similar to those considered for Doppler imaging (Vogt et al. 1987), have been
introduced since the second half of the ’90s to improve the best fits of the light
curves. They will be the subject of the next sections.

3 Models with continuous spot distributions

A continuous distribution of spots on the surface of a star can be specified by
giving the spot filling factor f; in each surface element. We define f; = Ag/A,
where Ag is the spotted area within the surface element of area A, as considered
above. The spot distribution is mapped by the distribution of fs over the surface
of the star. Since the light curve is a one-dimensional dataset, while the filling
factor map is a two-dimensional function, i.e., fs = fs(0, ), the problem of
finding fs given the light curve has generally many different solutions and the
map is also highly sensitive to small variations in the input dataset. In the
mathematical language, this is a ill-posed problem (cf. Tikhonov & Goncharsky
1987).
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The usual method to solve this kind of problems is by combining the in-
formation coming from the light curve with some a priori information in order
to obtain a unique and stable solution, i.e., a map that does not vary greatly
when there are small variations in the dataset, or, in other words, that is not
critically sensitive to the effect of the errors in the photometry. A simple way
of introducing a priori assumptions in the solution process is by restricting the
shape and number of the spots, as we did in the previous discrete spot models. A
more sophisticated way is that of coding some statistical property that we want
to impose to the solution into an appropriate functional. This is the method of
solution regularization that will be described below. However, before introduc-
ing the mathematical formulation of regularization, we need to compute the flux
emergent from the stellar disc in the presence of a continuous spot distribution.

3.1 Flux variation produced by a continuous distribution of active
regions

For simplicity, we subdivide the surface of the star into a large number of ele-
ments N, each of area Ay, where k = 1,..., N. The flux coming from the k-th
element is:
0Fk = I(pw) Arpurv(pk) (14)
where
I(pk) = fols + Qfs e + [1 — (Q + 1) fs] Lu () (15)

This equation gives the average specific intensity emerging from the given surface
element as the result of the intensity coming from the spotted photosphere with
a filling factor fs, from the facular photosphere with a filling factor @ fs, and
from the unperturbed photosphere, the filling factor of which is 1 — (Q + 1) fs.
With little algebra, we find:

I(pr) = {1+ [cpoQ(L — pr) — ] fo} Tu(pn)- (16)
The total flux coming from the disc is:

N

F(t) = 0Fc =Y ApL(ux) {1+ [croQ(1 — px) — cs] fu} v(p) s, (17)

k=1 k

where fy, is the spot filling factor (previously indicated with f), ux the projection
factor of the k-th surface element at the time ¢ (cf. Eq. 1), and v(uy,) the visibility
function in Eq. (13).

In general, we want to compute M flux values F; = F(t;), where t; are
the times of the observations, with j = 1, ..., M; we define them as the model
flux vector F = {F(t;),j =1,...,M}. We can express its relationship to the
distribution of the filling factor on the surface of the star by introducing an
M x N projection matrix R = {Rjx} and a constant vector Cy such as:

Fj = F(t;) = Y Rjxfs + Cuj, (18)
k
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or, in matrix notation: ~
F=Rf+C,, (19)

where f = {fx, k=1,..., N} is the vector of the filling factor on the surface of
the star and

Rjr = Aplu(pr) [epoQ(1 — pr) — es] v(pn) e with pr = pg(t;),  (20)

and
Cuj = ALy () v () i + Fog, (21)

(cf. 17) where we introduce the vector of the unperturbed flux F, consisting of
M constant components, i.e., Fy = {F;,j = 1,..., M} with F; = F,.

3.2 The light curve inversion problem and the regularization

We now consider the inverse problem of deriving the distribution of the spot
filling factor from the light curve dataset. If the observed flux values at the
times ¢; are denoted as the vector D = {D;, j =1, ..., M}, we can first consider
the ideal case when: a) there are no measurement errors; b) our model for the
flux variations is exact; and c¢) the unspotted flux is known. In this case, one
may hope to derive a solution for the filling factor vector f, by solving the linear
system:

Rf =D - C,. (22)

In general, this system has infinite solutions because the matrix R is singular,
i.e., it has a nullspace of finite dimension whose vectors fy,,,;; have the property
Rf, =0 (see Press et al. 2002, Ch. 2). Therefore, if a given vector fj is a solu-
tion of Eq. (22), fy + hf,un, where h is any real number, is a solution too. Cowan
et al. (2013) investigated the nullspace in some light curve inversion problems
showing that it can significantly affect the solution. From a geometrical point of
view, the existence of the null space is associated with particular distributions
of brightness on the stellar surface that do not produce a light modulation as
the star rotates (see Cowan et al. 2013, for some examples).

A more realistic case is that of a dataset with finite errors. In this case, we
look for a solution that minimizes the x? between the dataset and the model.
Specifically, the x? corresponding to a given distribution of the filling factor is:

M

2=y LB (23)

=19
where o; is the standard deviation of the flux measurement D;.

In general, the solution found by minimizing the x2 is not unique and is
highly sensitive to small changes in the dataset, in the sense that a small change
in the data vector D produces a large change in the filling factor distribution
f. The idea of regularization is to add to the x? an appropriate mathematical
function of f that warrants a unique and stable solution, i.e., a solution that
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varies in a continuous way in the f space. Note that in general the filling factor
is a function f(0,¢) that we have discretized into a vector f of N elements,
therefore the regularizing term is, mathematically speaking, a functional. There
are several possible choices that have been investigated by the mathematicians
and proved effective in our kind of inversion problem (cf. Tikhonov & Goncharsky
1987; Titterington 1985).

The most widely used is the maximum entropy functional that provides a
quantitative measure of the configuration entropy of the map, i.e., of the infor-
mation necessary to transmit the map expressed as a sequence of bytes (Bryan
& Skilling 1980; Narayan & Nityananda 1986). It assumes a default map as a
reference and measures the difference in the information content of the consid-
ered map with respect to it. In our case, the default map corresponds to an
immaculate star. The specific formulation of the maximum entropy functional
that I prefer is that given by Collier Cameron (1992).

The regularized solution is computed by minimizing an objective function Z
defined as a linear combination of the y? and the regularizing functional S. For
the maximum entropy case:

Z(f) = x*(f) — AueS(f), (24)

where f = {fi, £ =1,...N} is the vector of the spot filling factors for the indi-
vidual surface elements, Ay > 0 a Lagrangian multiplier, and

S=-Y w [fklogﬁ—l-(l—fk)logm : (25)
k

is the entropy functional, where wy, is the relative area of the k-th surface element
and m = 107% is a default minimum spot filling factor included to avoid the
divergence of the logarithm. S gets its maximum value equal to zero for an
immaculate star, i.e., fr = m in each surface elements.

The effect of the regularization is that of reducing the spot filling factor
(or the spotted area) as much as possible, compatibly with fitting the data,
by increasing the Lagrangian multiplier. In Fig. 3.2, we show the isocontours
of the x? landscape for the illustrative case of a map consisting of only two
surface elements that we use to explain the concept. Without regularization
(i.e., AMg = 0), the best fit has the minimum x? = y2 and the residuals of
the fit have a Gaussian distribution with a mean value y = 0 and a standard
deviation . In general, the best fit with x? = x3 is not acceptable because we
fit also some component of the measurement errors and the solution is unstable.
With the regularization, (Ayg > 0), the fit has x2 = x? > x2 and the residual
distribution is now centred at a value p < 0 because the spotted area is reduced.
However, the solution becomes stable and unique for a sufficiently large value of
AME-

The role of the a priori information introduced through the regularization is
that of selecting one specific solution vector f among the infinite ones that cor-
respond to the condition y? = x?. In the case of the maximum entropy solution,
the selected vector f corresponds to the solution that minimizes the individual



14 A. F. Lanza

fx, while verifying the condition x? = x?. Of course, it is possible to move along
a different line in the x? landscape which corresponds to a different kind of
regularization. The fundamental requisite for the choice of the regularizing func-
tional is that it must lead to a unique and stable solution when the Lagrangian
multiplier A is sufficiently large.

=
ol f

Fig. 4. The x? landscape in the case of a simple model with only two surface elements
f = {f1, f2}, showing the minimum of the x?, i.e., X3, and the effect of the regularization
(AmME > 0) that increases the x? value, driving at the same time the solution towards
the unspotted map with f = 0. The effect of a different regularizing functional that
moves the solution along a different path is also shown for comparison.

In the case of the maximum entropy regularization, we fix the optimal value of
AMmE by comparing p with o, the standard deviation of the residuals as obtained
with the unregularized best fit (i.e., for Ayg = 0). The signal-to-noise ratio of
a light curve can be defined as S/N = Apax/00, where Apax is the maximum
amplitude of the light modulation due to the starspots. By increasing Ayig, the
fit is shifted towards the unspotted level (see Fig. 3.2), while the distribution
of the residuals is shifted towards negative values and its standard deviation
o increases because the regularization smooths out the small spots that were
previously used to fit the noise components and reduce the x? (see Fig. 3.2). A
practical recipe to fix Ayg in the case of photometry with high signal-to-noise
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Fig. 5. Ilustration of the best fit of a light curve without regularization (solid line)
with x? = x& and with regularization having x* = x1 > x3 (dashed line). The latter is
higher than the best fit corresponding to the minimum of the 2 = x2 and its residuals
are not symmetrically centred on the zero value because the regularization smooths out
the spot pattern driving the solution towards the unspotted flux level, here assumed
to be higher than the light maximum.

(S/N > 100) consists in increasing A\yg until:
K W

where M is the number of data points in the light curve (cf. Lanza et al. 2009a).
When S/N ~ 10 — 30, we need to adopt a stronger regularization to reduce the
impact of the noise, i.e.:

(26)

0o
ot (27)
where 1.5 < 8 < 3 is a numerical factor (cf. Lanza et al. 2009b). A visual
inspection of the fit is generally needed to find the largest possible acceptable
deviations, i.e., to fix the appropriate value of 8 by considering the trade-off
between the accuracy of the fit and its smoothness.

Another regularizing functional often adopted is the Tikhonov functional
T. Tt selects the smoothest map compatible with the data, i.e., the one that
minimizes the average |V (6, )|? over the stellar surface (Piskunov et al. 1990).
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Fig. 6. Distribution of the residuals of the best fit of a light curve obtained without any
regularization (green histogram) together with its Gaussian best fit (green dashed line)
centred at zero value, as indicated by the dashed green vertical line. The distribution of
the residuals after applying the maximum entropy regularization is shown by the black
histogram together with its Gaussian best fit (black solid line); the solid vertical line
marks the mean of the Gaussian best fit. Note that the distribution of the residuals
of the regularized solution is centred at a negative value because the corresponding
fit is systematically higher than the photometric data points as shown in Fig. 3.2. Its
standard deviation is larger than that of the unregularized solution because the spot
pattern is smoother owing to the regularization.

In other words, one seeks to minimize a linear combination Z = x?+ AT, where
At > 0 is the Lagrangian multiplier and:

- @] e

where Y is the surface of the star whose element is dX = sin 8dfd¢. Of course,
other regularizing functionals are possible, e.g., that introduced by Harmon &
Crews (2000) and applied by Roettenbacher et al. (2013).

A crucial limitation of spot modelling is that we use 1-D information, that
is, a light curve, to reconstruct a 2-D map of the stellar surface. Most of the
applications of regularized spot modelling have targeted close eclipsing binaries
or, more recently, active stars with transiting planets whose inclination is close to
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90°. Therefore, the information on spot latitude is very limited or non-existent.
In those cases, it is better to collapse the 2-D map obtained by a regularized
model into a 1-D distribution of the spot filling factor versus the longitude and
consider that distribution as the final product of the modelling. The relative
variation of the spotted area vs. the longitude has little dependence on the
specific regularization adopted and can be considered as a robust result of the
analysis (cf. Lanza et al. 1998, 2006). In other words, the absolute value of
the spotted area depends on the often unknown spot contrast and unspotted
light level, but its relative distribution vs. longitude can be derived thanks to
the light modulation that it produces as the star rotates. Similarly, the long-
term variations in the relative spotted area can be considered a robust result of
the modelling, if we assume that the spot contrast stays constant in the given
passband. This allows us to detect stellar activity cycles akin to the 11-yr sunspot
cycle.

3.3 Alternative approaches

The minimization of the x2 can be approached also by means of the singular
value decomposition (hereafter SVD) of the projection matrix R. The method
is described in, e.g., Press et al. (2002). The main advantage is that the lin-
ear combinations of the components of f that are not constrained by the data
are driven to zero or to small, insignificant values, while the solution becomes
dominated by the linear combinations of the elements of f that can account for
most of the flux variation. These are the so-called principal components. The
number of components retained in the solution is determined by the minimum
acceptable singular value. An advantage of the method is that the errors of the
individual components can be evaluated starting from the errors of the individ-
ual photometric data. In the case of the regularized models, the statistical errors
on the fi are not easily estimated because the a priori information introduced
into the solution usually dominates. Therefore, systematic errors can be larger
than the statistical errors in most of the cases and only a comparison between
maps obtained with different regularizing functionals provides some insight into
the errors (Lanza et al. 1998).

Several spot modelling approaches based on the general principle of SVD or
principal component analysis have been proposed, e.g., by Berdyugina (1998) or
Savanov & Strassmeier (2005, 2008) who also performed comparisons with test
cases and studied the general properties of the solutions.

Finally, it is worth mentioning the approach by Cowan et al. (2013) who
applied a Fourier decomposition method to extract a map from the observed
rotational flux modulation. In principle, all the Fourier components of the spot
map characterized by different azimuthal orders m can be extracted in the case
of an ideal noiseless light curve sampled with perfect continuity. In practice,
their amplitude decreases as |m? — 1|=! for m > 1. This implies that in the
case of a real light curve, the amplitudes of the higher order Fourier components
become soon comparable with or smaller than the noise, making it impossible
to accurately extract them. In other words, it becomes impossible to resolve
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sufficiently localized brightness inhomogeneities. For this reason, a model based
on a discrete (or continuous) spot distribution is generally superior to Fourier
decomposition in the case of active stars.

4 Spot occultations during planetary transits

The observations of extrasolar planets transiting their host stars opened a new
avenue in the investigation of other planetary systems. Here, I shall consider only
the contribution that planetary transits give to the modelling of the distribution
of the surface brightness on the disc of their host stars. In Fig. 4, the case of a
planet transiting across the disc of a star with a dark spot along the occulted
band is shown, neglecting for simplicity the effects of the limb darkening. When
the planet’s disc is not covering the spot, the flux is reduced by the spot, but the
variation of the flux vs. the time has exactly the same shape as when the spot
is not on the stellar disc. However, when the spot is occulted by the planet, the
flux shows a relative increase because the configuration corresponds to that of
a planet transiting across the disc of a star without spots, that is, whose flux is
higher. The position of the centre of the light bump gives a measure of the spot
longitude on the stellar disc, while its extension gives a measure of the size of the
spot, or, to be precise, of the extension in longitude of the portion of the spot
that is occulted by the planet (e.g., Wolter et al. 2009). Finally, the amplitude
of the bump depends on the contrast of the spot that can provide a measure of
its temperature when the effective temperature of the unperturbed photosphere
is known. Silva-Valio et al. (2010) determined the distributions of the size and
contrast of the spots occulted in CoRoT-2 using this approach. This method is
unique to resolve small spots (~ 50 Mm) on slowly rotating, sun-like stars that
cannot be mapped through Doppler imaging techniques. In principle, spots as
small as a few Mm can be resolved if an Earth-size planet occults them, although
the photometric accuracy of CoRoT and Kepler is generally insufficient to do
that on individual transits (cf. Barros et al. 2014).

Starspot occultations can be used to derive the rotation rate of the star in
the latitude band occulted by the planet, if the orbit of the planet and the
equator of the star are aligned, because successive occultations of the same spot
along successive transits can be used to precisely measure the variation of its
longitude vs. the time (Silva-Valio 2008). On the other hand, is the stellar spin
and the orbital angular momentum are not aligned, the planet cannot occult the
same spot along successive transits because the rotational motion of the spot
across the stellar disc is not parallel to the transit chord (Nutzman et al. 2011;
Sanchis-Ojeda & Winn 2011; Sanchis-Ojeda et al. 2013). Therefore, monitoring
starspot occultations along successive transits can provide information on the
projected alignment of the stellar spin and orbital angular momentum in a plan-
etary system. Similar information can be obtained through the observation of
the radial-velocity anomaly induced by the transit, i.e., the so-called Rossiter-
McLaughlin effect, that allows a measurement of the projected misalignment,
although limited to stars with a vsini > 2 — 3 km s™! (e.g., Albrecht et al.
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Fig. 7. The case of a transiting planets occulting a dark spot (at the disc centre) along
the transit chord. The flux variation due to the transit in the case of a star with the spot
is given by the solid line in the lower plot that shows a relative flux increase (a bump)
when the spot is occulted. This happens because the corresponding configuration is
the same as in the case without spot. In that case the reference flux level outside the
transit is higher as shown by the dashed line that is the flux variation vs. the time in

the case of a star without spots. The quantity AFy,ot measures the flux decrease due
to the spot when it is in view on the stellar disc.

2012). Note that different models of planetary system formation predict differ-
ent misalignment distributions, therefore such a kind of measurements provides
stringent tests to those models.

The precise timing of planetary transits should also take into account the
distortions of the transit profile due to spot occultations. This can be a subtle
effect when the photometric accuracy is not high enough to resolve the individual
bumps (Oshagh et al. 2013; Barros et al. 2014).
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5 Tests of spot models

Many tests of spot models have been published in the literature since the begin-
ning of their application. Among the classic works, I refer to Kovari & Bartus
(1997) for two-spot models. Here, I shall consider only a few tests that are based
on a comparison with direct observations in the case of the Sun or with the
results obtained with independent methods such as Doppler imaging or starspot
occultations during planetary transits.

The total solar irradiance (hereafter TSI) provides a good proxy for the mod-
ulation of the Sun as a star because its variation is dominated by photospheric
sunspots and faculae that produce most of their effects in the optical passband,
although the relative variations becomes larger and larger at shorter and shorter
wavelengths, in particular if we consider those associated with the solar cycle.
Our star is seen almost equator-on, therefore the TSI light curve does not contain
information on the latitudes of the active regions, but only on their longitudes
and area variations. Lanza et al. (2007) performed detailed tests for different
spot modelling approaches by fitting the TSI modulation over an extended por-
tion of solar cycle 23. They applied three-spot, maximum entropy, and Tikhonov
regularized models, and compared the derived distributions of the filling factor
vs. longitude with those of observed sunspot groups as well as with the variation
of their total area. Adopting a fixed value @) for the facular-to-spotted area ratio,
they found a remarkably good reproduction of the longitude distribution of the
sunspot groups during the rising and the maximum phase of the cycle with the
maximum entropy model performing significantly better than the three-spot and
Tikhonov models. The resolution in longitude of the models was about 40° —50°
considering a typical S/N ~ 50 — 100.

The facular component in the active regions can induce systematic shifts in
their derived longitudinal distribution because faculae have a photometric effect
that reaches the maximum close to the limb, while dark spots produce their max-
imum effect closer to the disc centre. Therefore, the model can shift the longitude
of a given active region in an attempt to better reproduce the light modulation
with the constraint of a fixed (). The variation in the total spotted area is also
systematically affected by the value of @), but the overall variations due to the
solar 11-yr cycle are reproduced, in particular by the maximum entropy models.

Lanza et al. (2007) conclude that the maximum entropy model provides the
most precise description of the distribution of the active regions vs. longitude in
the Sun, in particular when the @ = 9 value they adopted is the most appro-
priate, that is in the rising and maximum phases of the 11-yr cycle. The good
reproduction of the overall variations in the total sunspot area supports the
use of that spot modelling to detect stellar activity cycles. The reason why the
maximum entropy model is better in comparison to the discrete and Tikhonov
models is probably associated with the low level of activity of our star that is
characterized by several small active regions simultaneously present on the stel-
lar disc. The three spot models has too few degrees of freedom to account for the
complexity of the pattern, especially during the rising and the maximum cycle
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phases, while the Tikhonov maps display too smooth and extended features that
are not observed on the Sun.

In the case of distant stars, the results of Lanza et al. (2007) support the
use of spot modelling to derive active spot longitudes and activity cycles. An
independent test by comparing maximum entropy models with an extended se-
quence of Doppler imaging maps was performed by Lanza et al. (2006) in the
case of the highly active close binary HR 1099 for which long-term photometry
from the ground was available. The results support the possibility of deriving the
distribution of the starspots vs. the longitude, although with a limited resolution
(= 100°) because of an S/N ~ 10 — 30 attainable from the ground.

Another interesting test was performed by Silva-Valio & Lanza (2011) in
the case of the planetary host CoRoT-2. From the out-of-transit light curve,
Lanza et al. (2009a) computed a maximum entropy spot model that provided
them with the distribution of the spot filling factor vs. the longitude and time.
It was compared with the longitudes of the spots occulted during the transits
finding a remarkably good agreement. Although planetary occultations provided
a significantly higher longitude resolution, the locations of the active longitudes
where starspots were preferentially found were reproduced very well and also
their migration vs. the time was very similar.

CoRoT-2 became also a benchmark to test different spot modelling ap-
proaches. For example, Huber et al. (2010) considered a model in which the
surface of the star was subdivided into 12 non-occulted sectors and 24 sectors
along the occulted chord, varying their brightness to fit the light curve. They
obtained a spot map remarkably similar to that of Lanza et al. (2009a) that was
based on the out-of-transit light curve only, thus confirming their results. An-
other test came from the comparison with a Bayesian few-spot model by Frohlich
et al. (2009).

Independent confirmations are particular important in view of the results
on the active longitudes, spot lifetimes, surface differential rotation, and short-
term activity cycles obtained for CoRoT-2 as well as for other stars with close-in
transiting planets such as Kepler-17 (Bonomo & Lanza 2012). For a detailed
discussions of these topics, I refer to the cited original papers and to Lanza
(2014) for the possibility of star-planet interactions affecting stellar photospheric
activity.

6 Conclusions

I briefly reviewed the foundations of spot modelling, the relevance of which is
becoming increasingly greater thanks to the availability of high-precision, high-
duty cycle light curves acquired by space-borne telescopes designed to look for
transiting planets around solar-like stars (cf. Rauer et al. 2014). Different map-
ping techniques can be applied to derive the distribution of the spotted area vs.
longitude and its relative time variation with good confidence, especially in the
case of stars with transiting planets for which the inclination can be safely de-
rived or reasonably guessed from the measurement of their projected spin-orbit
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angle. CoRoT-2 is a benchmark case for the comparison of different modelling ap-
proaches as well as for the phenomena that can be detected with spot modelling
such as active longitudes, spot evolution, differential rotation, and short-term
activity cycles (Lanza et al. 2009a).

I limited myself to the standard spot models proposed for active stars. How-
ever, specialized models for stars with transiting and non-transiting planets are
expected to become even more important in the near future because they pro-
vide information on the spin-orbit alignment of the systems. The radial velocity
jitter associated with stellar active regions is a major limitation to the detection
and measurement of the mass of Earth-sized planets (e.g. Haywood et al. 2014).
Spot modelling techniques can be applied to mitigate its impact as shown by
recent investigations (cf. Dumusque 2014; Dumusque et al. 2014, and references
therein).

The possibility of extending spot modelling to pre-main sequence stars is
also interesting, although limited to those objects the light variations of which
are dominated by photospheric brightness inhomogeneities (Cody et al. 2014).
Finally, a word of caution is in order in the case of close binary systems where
the light modulations due to different effects, such as ellipsoidicity, reflection,
gravity darkening, and Doppler beaming can combine with those due to surface
brightness inhomogeneities to produce a complex phenomenology the modelling
of which is a very challenging task (cf. Lanza et al. 1998; Kallrath & Milone
1999; Herrero et al. 2013, 2014).
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