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ABSTRACT
In this paper we derive and discuss several implications of the analytic form of a modified
blackbody, also called greybody, which is widely used in Astrophysics, and in particular in
the study of star formation in the far-infrared/submillimetre domain. The research in this area
has been greatly improved thanks to recent observations taken with the Herschel satellite,
so that it became important to clarify the sense of the greybody approximation, to suggest
possible further uses, and to delimit its intervals of validity. First, we discuss the position of
the greybody peak, making difference between the optically thin and thick regimes. Second,
we analyse the behaviour of bolometric quantities as a function of the different greybody
parameters. The ratio between the bolometric luminosity and the mass of a source, the ratio
between the so-called ‘submillimetre luminosity’ and the bolometric one, and the bolometric
temperature are observables used to characterize the evolutionary stage of a source, and it is of
primary importance to have analytic equations describing the dependence of such quantities
on the greybody parameters. Here we discuss all these aspects, providing analytic relations,
illustrating particular cases, and providing graphical examples. Some equations reported here
are well known in Astrophysics, but are often spread over different publications. Some of
them, instead, are brand new and represent a novelty in Astrophysics literature. Finally, we
indicate an alternative way to obtain, under some conditions, the greybody temperature and
dust emissivity index directly from an observing spectral energy distribution, avoiding a best-
fitting procedure.

Key words: radiation mechanisms: thermal – radiative transfer – stars: formation – dust, ex-
tinction – infrared: ISM – submillimetre: ISM.

1 IN T RO D U C T I O N

The concept of blackbody is widely used in modern Astrophysics
to model a quantity of phenomena that approach the ideal case of
radiation emitted by an object at the thermal equilibrium which is a
perfect emitter and absorber; the shape of the spectrum is completely
described in terms of its temperature. Laws describing global char-
acteristics of the blackbody, as the Wien or of Stefan–Boltzmann
ones, represent renowned milestones of quantum physics. However,
as far as the continuum emission of a source departs from a perfect
blackbody behaviour and another analytic expression is invoked in
place of the Planck function to describe the corresponding spectral
energy distribution (SED), it becomes interesting to understand how
the well-known relations valid for a blackbody have to change in
turn.

In particular, large and cold interstellar dust grains (D >

0.01 μm, T � 20 K) are recognized to be poor radiators at long
wavelengths (λ � 50 μm), therefore, their emission requires to be

�E-mail: davide.elia@iaps.inaf.it (DE); stefano.pezzuto@iaps.inaf.it (SP)

modelled by a blackbody law with a modified emissivity smaller
than 1 (i.e. the value corresponding to the ideal case), and be-
ing a decreasing function of wavelength (see e.g. Gordon 1995,
and references therein). The typically adopted expressions for such
emissivity are summarized in Section 2 of this paper.

Modelling the dust emission with a modified blackbody (hereafter
greybody for the sake of brevity) has been widely used to obtain
the surface density and (if distance is known) the total mass along
the line of sight for structures in the Milky Way (diffuse clouds,
filaments, clumps, cores) or for entire external galaxies. Two cases
are generally possible: (i) an observed SED is available, built with at
least three spectral points, so that a best fit is performed to determine
simultaneously both the column density and the average temperature
of the emitting source (e.g. André, Ward-Thompson & Barsony
2000; Olmi et al. 2009), or (ii) only one flux measurement at a single
wavelength (typically in the submillimetre regime) is available, then
an assumption on the temperature value has to be made (e.g. Aguirre
et al. 2011; Mookerjea et al. 2007) to obtain the column density.

Recently, the availability of large amounts of data from large
survey programs for the study of star formation with the Herschel
satellite (Pilbratt et al. 2010), such as Herschel infrared Galactic
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Plane Survey (Hi-GAL; Molinari et al. 2010), Herschel Gould Belt
Survey (HGBS; André et al. 2010), Herschel imaging survey of
OB Young Stellar objects (HOBYS; Motte et al. 2010), and Ear-
liest Phases of Star Formation (EPoS; Ragan et al. 2012) made
it possible to build the far-infrared/submillimetre five band (70,
160, 250, 350, and 500 μm) SEDs of the cold dust in the Milky
Way (e.g. Elia et al. 2010, 2013; Könyves et al. 2010; Giannini
et al. 2012; Pezzuto et al. 2012) in a crucial range usually con-
taining the emission peak of cold dust. In this case the approach
described at the point i represents the preferable way for estimating
the physical parameters of the greybody which best approaches the
observed SED.

In this paper, after introducing in Section 2 the analytic expression
of the greybody, in Section 3 we discuss how, unlike the case of a
blackbody, the position of the greybody emission peak shifts as a
function of different parameters besides the temperature. Moreover,
further obtainable quantities as, for example, bolometric luminosity
and temperature are often used to characterize star-forming clumps
(e.g. Elia et al. 2010, 2013; Giannini et al. 2012; Strafella et al.
2015). A comparison with the values predicted analytically by the
greybody model as a function of its physical parameters turn out to
be interesting in this respect. We derive such functional relationships
in Sections 4 and 5. Further considerations on the obtained analytic
relations suggest a method for deriving the greybody temperature
and dust emissivity of an SED without carrying out a best-fitting
procedure. This is discussed in Section 6. Finally, in Section 7 we
summarize the obtained results.

2 TH E E QUAT I O N O F A G R E Y B O DY

The solution of the radiative transfer equation for a medium with
optical depth τ ν (function of the observed frequency ν) and for a
source function constituted by the Planck blackbody Bν at temper-
ature T is

Iν = (1 − e−τν ) Bν(T ) (1)

(cf. e.g. Choudhuri 2010), where

Bν(T ) = 2 h ν3

c2

1

e
h ν

kB T − 1
. (2)

With h, kB, and c we indicate the Planck and Boltzmann constants
and the light speed in vacuum, respectively. Assuming Iν being
uniform over the solid angle �, the corresponding flux is

Fν = � (1 − e−τν ) Bν(T ). (3)

The empirical behaviour of τ ν as a function of ν for large inter-
stellar dust grains is generally modelled as a power law (Hildebrand
1983) with exponent β:

τν =
(

ν

ν0

)β

, (4)

where the parameter ν0 is such that τν0 = 1.
In the limit of ν � ν0, the term (1 − e−τν ) can be approximated

as follows:

lim
ν
ν0

→0
(1 − e−τν ) = τν =

(
ν

ν0

)β

. (5)

For an opportunely large ν0 it can happen that all the observed
frequencies fall in the regime in which the greybody turns out to be
optically thin.1 In such case, equation (1) becomes

Iν ≈
(

ν

ν0

)β

Bν(T ). (6)

Recalling the definition of optical depth, τ ν ≡ κν

∫
ρ ds, where

κν is the opacity of the medium, ρ is its volume density, and s is the
spatial integration variable along the line of sight, in the optically
thin regime it becomes

τν ≈ κref

(
ν

νref

)β


, (7)

where 
 is the surface, or column, density, and κ ref is the opacity
estimated at a reference frequency νref. For an optically thin enve-
lope, 
 = M/A, where M is the mass and A is the projected area
of the source. For a source located at distance d, A = � d2, so � =
M/(
 d2) = (M κ ref)/(τ d2), then equation (3) becomes

Fν = M κref

d2

(
ν

νref

)β

Bν(T ). (8)

The decision whether the optically thin assumption is valid or not
depends on the validity of the substitution τ for (1 − e−τ ). In turn,
this means that the error |[τ − (1 − e−τ )]/[1 − e−τ ]| should be
negligible compared to the data uncertainties. This point is almost
always overlooked in the literature. Notice that if τ = 0.2 the error
introduced in the mathematical substitution is 10 per cent, which is
negligible only if the fluxes have been measured with a much larger
uncertainty. When τ = 0.1 the error is ∼5 per cent and only when
τ = 0.02 the error becomes of the order of 1 per cent.

Finally, let us remind the reader that so far we expressed all
quantities as functions of ν, but they can be equivalently formulated
in terms of the wavelength λ. For example, the optical depth can be
expressed also as τ = (λ/λ0)−β , with λ0 = c/ν0. Furthermore, in the
literature regarding dust emission in the far-infrared/submillimetre,
generally one encounters the quantity Bν(T), measured in Jy sr−1,
expressed as a function of λ (in μm), which the reader has to keep in
mind before applying the equations reported in this paper to specific
cases.

3 T H E M A X I M U M O F G R E Y B O DY E M I S S I O N

The peak position of Iν can be found by differentiating equation (1)
with respect to ν. Nevertheless, we prefer to start from the optically
thin case (equation 6), which is quite simpler, and can be approached
in a way similar to the derivation of the Wien displacement law for a
blackbody. In this latter case, imposing the derivative of the Planck
function to be 0 leads to solve numerically the equation (see e.g.
Rybicki & Lightman 1979)

x = 3(1 − e−x), (9)

where x ≡ h ν/kB T. The solution of this equation is x � 2.82, i.e.
νb/T = 5.88 × 1010 Hz K−1.

Similarly, imposing the same condition to the expression in equa-
tion (6), the equation to be solved becomes

x = (3 + β)(1 − e−x), (10)

1 We call this case optically thin, although also the one described by equa-
tion (3) is optically thin at low frequencies. However, the ν � ν0 condition
ensures τ ν to be �1 across the entire frequency range taken into account.
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1330 D. Elia and S. Pezzuto

Figure 1. Plot of Iν as a function of λ for different values of parameters T and
β, in the optically thin case, described by equation (6). Three temperatures
are probed: 10, 20, and 30 K, corresponding to three sets of curves (red,
green, and blue, respectively); for each temperature, three values of β are
probed: 0 (corresponding to the case of a blackbody), 1, and 2, which
are plotted, for each set of curves, in black, dark colour and light colour.
The frequency ν0 is chosen such that λ0 = 5 μm, in order to fulfil the
requirements of the optically thin approximation in the considered range
of wavelengths. Dashed lines connect maxima of Iν at different β values,
from 0 (top) to 6 (bottom), at T = 10 (red), 20 (green), and 30 K (blue),
respectively. Grey dotted lines, instead, connect maxima of Iν at different
temperatures, for the cases β = 0 (top), 1 (middle), and 2 (bottom). All the
three lines start at T = 100 K (top left) down to T = 5 K (bottom right).
A colour version of this version is available in the electronic version of the
paper.

which for β = 0 corresponds to equation (9). The value of x increases
with β: for instance x = 3.92 for β = 1, and x = 4.97 for β = 2.
This means that for any β ≥ 1 putting 1 − e−x equal to 1 results in
an error smaller than 2 per cent. So we can write

x � 3 + β (11)

or

νp � kB T (3 + β)

h
= 20.837 T (3 + β) [GHz]. (12)

The corresponding wavelength is given by

λνp � hc

kB T (3 + β)
= 1.439

T (3 + β)
cm. (13)

Let us remind the reader that this is the wavelength at which the
peak of Iν is encountered, so equation (13) does not apply to Iλ (see
below). In Fig. 1, Iν as a function of λ is shown for different values
of T and β, highlighting how the peak position varies according to
equation (10).

Similarly to equation (9), the peak wavelength of Iλ has to be
calculated starting from

∂

∂λ

[(
λ

λ0

)−β

Bλ(T )

]
= 0, (14)

which, leads to an equation like

x = (5 + β)(1 − e−x), (15)

where x ≡ h c/λ kB T in this case. From this equation, for β = 0, one
can obtain the most used formulation of the Wien displacement law,

the one in terms of Iλ and λp. Since equations (10) and (15) constitute
an incompatible system, this gives an alternative demonstration of
the known result λp 
= λνp , namely the wavelengths at which Iλ and
Iν peak, respectively, do not coincide.

Let us now consider the most general case. Again, the derivative
of Iν with respect to ν is easier to compute. First of all, let us notice
that

∂(1 − e−τν )

∂ν
= βτνe−τν

ν
. (16)

Therefore,

∂

∂ν

[
(1 − eτν )Bν(T )

] = 0

⇒ 2 h ν2

c2

1

e
h ν

kB T − 1

×
[
βτνe−τν + (1 − e−τν )

(
3 − hν

kB T

e
hν

kB T

e
hν

kB T − 1

)]
= 0. (17)

Using again x ≡ h ν/kB T, the last condition is satisfied if

βτν

eτν − 1
= x

1 − e−x
− 3. (18)

In the above equation, when ν → 0 the two fractions tend to β

and 1, respectively; so the right-hand side tends to −2. When ν

� 1 the left-hand side tends to 0, while the right-hand side tends
to x − 3. Since the left-hand side is always positive, the solution
νp of the equation must be greater than the frequency νb at which
the right-hand side becomes positive (notice that νb, defined in this
way, coincides with the solution of equation 9, which is valid in the
case of a pure blackbody).

In Fig. 2 the two sides of equation (18) are plotted versus the
frequency, in correspondence of different choices of the parameters
β, ν0, and T. It is noteworthy that the left-hand side of the equation
depends only on the first two of these parameters, while the right-
hand side depends only on the third one. In this figure one can find
a graphical representation of the νp > νb condition.

Note that in the limiting case ν0 → 0 (a greybody optically thick
at all frequencies) one obtains νp → νb.

The opposite limiting case is ν0 → ∞ (a greybody optically thin
at all frequencies), in which the left-hand side of equation (18) gets
constantly equal to β and the frequency of the peak corresponds to
the solution of equation (12).

In summary, combining equations (12) and (18) one finds

1 < νp/νb ≤

⎧⎪⎨
⎪⎩

1.43, β = 1,

1.79, β = 2,

2.14, β = 3.

(19)

So, even though ν0 can be any real number, nonetheless the peak
frequency of the greybody lies within a limited range of values that
can be parametrized in terms of the peak frequency of the blackbody.

We can go further on in extracting information from equa-
tion (18), which gives the peak of the greybody for any given set of
the three parameters ν0, T, and β. However, if the peak is fixed to
the frequency νp, then only two parameters remain free. If we also
impose the condition νp = ν0, equivalent to assume τνp = 1, only
one parameter is left free, and equation (18) becomes

β

e − 1
= x

1 − e−x
− 3, (20)

which, for any chosen νp, gives the relation between T and β: if
one fixes, say, T, then equation (20) gives the value of β such that

MNRAS 461, 1328–1337 (2016)
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Figure 2. The two sides of equation (18) plotted as a function of frequency
(bottom x-axis) and wavelength (top x-axis). Units on the y-axis are a dimen-
sional numbers. Grey lines represent the left-hand side for β = 0 (black), 1
(dark grey), and 2 (light grey), respectively, with ν0 = 30 (solid lines) and
6 THz (dashed lines), corresponding to λ0 = 10 and 50 μm, respectively. In
addition, the case β = 2 and ν0 = νp at T = 30 K, namely ν0 = 2.6 GHz
(obtained through equation 21), is plotted as a blue dotted–dashed curve.
The red, green, and blue solid curves represent the right-hand side for T =
10, 20, and 30 K, respectively. For a given choice of the parameters β, ν0,
and T, the abscissae of the intersections of the coloured curves with the grey
ones represent the solutions νp of equation (18), while the intersections with
the black curve represent the blackbody case (νb). The fact that νp > νb is
highlighted in the case of T = 30 K through two vertical dotted lines at the
positions of νb (black) and νp at β = 2 (blue). The intersection between the
two blue lines, i.e. the solid and the dotted–dashed one, is marked with a
blue cross and is discussed in the text. A colour version of this version is
available in the electronic version of the paper.

ν0 = νp, and vice versa. We give a graphical example of this for T
= 30 K and β = 2 in Fig. 2, highlighting νp = ν0 with a blue cross.

The numerical solutions of equation (20) are x = 3.47, 4.10, 4.70
for β = 1, 2, 3, respectively. With these values for x, it is possible
to put x/[1 − e−x] � x. The error decreases from 3 per cent for β =
1 to less than 1.1 per cent for β = 3. So, for τνp = 1,

νp = kB T

h

(
β

e − 1
+ 3

)
. (21)

In the above form, equation (21) gives, for any pair (T, β), the
frequency of the peak of a greybody such that τνp = 1; for instance,
when T = 10 K one finds ν0 = 746, 868, 989 GHz (in terms of
wavelengths, λ0 = 402, 346, 303 μm) for β = 1, 2, 3, respectively.
For other temperatures, note that ν0 scales linearly with T. Now
we invert the problem: we fix λ0 and β and look for the values of
T that make the peak of the greybody falling at λp = λ0. Dealing,
for example, with Herschel, it is natural to set λ0 = 70 μm. Then
we find T = 57 K for β = 1, and T = 43 K for β = 3. So, the
triple (λ0 = 70 μm, T = 43 K, β = 3) is such that λp = λ0 and
then τ (λ = 70 μm) = 1. If we keep constant λ0 and consider T ≤
43 K and β ≤ 3, then the wavelength of the peak shifts to λp > λ0

(e.g. for λ = 70 μm, T = 40 K and β = 2.5 from equation 18 we
find λp ∼ 78 μm) so that τνp = (νp/ν0)β < 1. In conclusion, as long
as the temperature of the greybody is less than 43 K (the typical
case encountered in recent Herschel literature; e.g. Giannini et al.

2012; Elia et al. 2013) we are sure that τνp ≤ 1, independently of
the values of T, β and, for λ0 ≤ 70 μm, of ν0, as long as β ≤ 3.

The main limitation of this conclusion is that, actually, it does
depend on ν0 which, in general, is not known even if the sources
observed with Herschel typically have λ0 � 70 μm. In any case, to
go further also when only T and β are known we proceed as follows:
first we note that if τνp < 1, then τνp/(eτνp − 1) > 0.582 (this ratio
tends to 1 for τνp → 0). This condition implies that

1

β

(
xp

1 − e−xp
− 3

)
> 0.582 ⇒ xp

1 − e−xp
>

β

e − 1
+ 3. (22)

For β = 1, xp � 3.58, whilst for β = 3, xp � 4.70; with these
values of xp one can assume 1 − e−xp � 1, the error being about
3 per cent for β = 1 and even lower for higher β. So, under the
condition τνp < 1, we can cast equation (21) in the form

xp = h c

kB λp T
>

β

e − 1
+ 3,

then, finally,

λp <
h c

kB T

e − 1

β + 3(e − 1)
. (23)

This result can be clearly seen in Fig. 2, where the blue cross
symbol represents the right-hand side of equation (23) for T =
30 K and β = 2. All family of curves representing the left-hand
side of equation (18) intersecting, in this case (T = 30 K), the blue
solid curve below the cross symbol have τνp > 1 and λp violating the
condition imposed in equation (23). Clearly, varying the temperature
would change the position of the cross symbol in that diagram.

If we use equation (6) to fit a SED known over a set of fluxes at
wavelengths longer than a certain λmin, to obtain a reliable estimate
of T it should be that λp > λmin; if this is the case, the condition to
have τνp < 1 becomes

λmin <
h c

kB T

e − 1

β + 3(e − 1)
. (24)

Solving for T and setting, for example, λmin = 70 μm we obtain
T � 45 K for β ≤ 3; but T � 31 K is found for λmin = 100 μm and
T � 20 K for λmin = 160 μm.

A couple of comments can be made: first, if one uses equation (13)
to find the peak of the greybody, then equation (24) is always ver-
ified. This happens because equation (13) is valid if τνp � 1 while
equation (24) is more general, having imposed only that τνp < 1.
Second, the condition τνp < 1 means that λ0 < λp; the assumption
λmin < λp does not imply that λ0 < λmin, so that equation (24) gives
a necessary but not sufficient condition to justify the use of equa-
tion (6). In other words, the relation λmin < λ0 < λp is compatible
with equation (23) and in this case it is still true that τνp < 1; but
then there is a portion of the SED, between λmin and λ0, where τ ν

> 1 so that the use of equation (6) is not justified over the whole
observed SED.

We conclude this section by noting that equation (24) is a con-
dition to have τνp < 1, not a condition to have a reliable fit of the
SED: if the peak falls at wavelengths shorter than λmin it is still
possible to obtain a good fit of the SED, at least if it is not that
λp � λmin. However if we use equation (6) to fit the SED then, by
combining equations (10) and (23), we get the condition β(e − 2)
> 0 which is always true: this, in turn, means that the condition
τνp < 1 is implied by the adopted functional form of the SED, and
cannot be verified a posteriori from the values of T and β derived
from the fit.
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4 G R E Y B O DY L U M I N O S I T Y

The bolometric luminosity, namely the power output of a given
source across all wavelengths, is an observable widely used
in several fields of Astrophysics. In particular, in the far-
infrared/submillimetre study of early phases of star formation, this
quantity is exploited in combination with other quantities to infer
the evolutionary stage of young sources (e.g. Myers et al. 1998;
Molinari et al. 2008) as far as their continuum emission departs
from that of a simple cold greybody (T ∼ 10 K) and starts to show
signatures of ongoing star formation in form of emission excess at
shorter wavelengths (λ � 70 μm, e.g. Elia et al. 2013).

For making a comparison with the luminosity of a simple grey-
body, analytic dependence of it on T and β has to be explored.

First of all, let us recall the Stefan–Boltzmann law for a black-
body, describing the power Wb radiated from a blackbody (per unit
surface area), calculated as the integral over half-sphere,2 as a func-
tion of its temperature:

Wb = π

∫ ∞

0
Bν(T ) dν = σT 4, (25)

where σ = 5.67 × 10−8 W m−2 K−4 is the Stefan–Boltzmann
constant.

Here we search for an analogous relation for a generic greybody
with exponent β, in the optically thin case (equation 6):

Wg = π

ν
β
0

∫ ∞

0
νβ Bν(T ) dν

= π

ν
β
0

∫ ∞

0

2 h ν3+β

c2

1

e
h ν

kB T − 1
dν

= 2π k
3+β
B T 3+β

h2+β c2 ν
β
0

∫ ∞

0

(
h ν

kB T

)3+β 1

e
h ν

kB T − 1
dν. (26)

Imposing x ≡ hν
kBT

, then dx = h
kBT

dν,

Wg = 2π k
4+β
B T 4+β

h3+β c2 ν
β
0

∫ ∞

0

x3+β

ex − 1
dx, (27)

which shows a similar power-law dependence on temperature as
in equation (25), being

∫ ∞
0 x3+β/ (ex − 1) dx not depending on

temperature. Focusing the attention on this integral, let us notice
that 1/(ex − 1) = e−x/(1 − e−x) = ∑∞

n=1 e−nx , then∫ ∞

0

x3+β

ex − 1
dx =

∞∑
n=1

∫ ∞

0
x3+β e−nx dx, (28)

where
∫ ∞

0 x3+β e−nx dx can be integrated by parts recursively.
However, recalling the definition of the Euler gamma function
�(z) ≡ ∫ ∞

0 xz−1 e−x dz, and imposing y = nx (then dx = 1/n dy),
one finds∫ ∞

0
x3+β e−nx dx = 1

n4+β

∫ ∞

0
y3+β e−y dy

= �(4 + β)

n4+β
. (29)

Again, recalling the definition of Riemann zeta function ζ (z) =∑∞
n=1 1/nz, one finally finds∫ ∞

0

x3+β

ex − 1
dx = ζ (4 + β)�(4 + β). (30)

2 For a generic solid angle �, in equation (25) one can replace π with �.

Table 1. The product �(4 + β)/ζ (4 + β) for a few values of β.

β 4 + β �(4 + β) ζ (4 + β) �(4 + β)ζ (4 + β)

0 4 6 π4/90 π4/15
0.5 4.5 11.63 1.055 12.27
1 5 24 1.037 24.89
1.5 5.5 52.34 1.025 53.66
2 6 120 π6/945 8π6/63
2.5 6.5 287.89 1.012 291.34
3 7 720 1.008 726.01

Figure 3. Power radiated by an optically thin greybody versus temperature,
for different choices of β and ν0. The black solid line corresponds to the
blackbody case (β = 0), while red solid lines correspond to ν0 = 1.5 GHz
(i.e. λ0 = 200 μm; dark red: β = 1; light red: β = 2) and blue solid lines
correspond to ν0 = 60 THz (i.e. λ0 = 5 μm; dark blue: β = 1; light blue: β

= 2). Dashed lines represent the optically thick greybody (equation 1): the
same colour corresponds to the same parameter combination reported above.
Note that for ν0 = 60 THz the two regimes turn out to be indistinguishable
in the temperature range shown here, so that dashed lines are completely
superposed on the solid lines, then invisible the point where the power of the
greybody intersects the power of the blackbody marks the temperature above
which the condition of optically thin medium is violated and equation (31) is
no longer valid. A colour version of this version is available in the electronic
version of the paper.

Therefore,

Wg = 2π k
4+β
B ζ (4 + β) �(4 + β)

h3+β c2 ν
β
0

T 4+β . (31)

Reminding the reader that, for an integer argument n, �(n) = (n −
1)!, and that the ζ function can be analytically computed for positive
even integer arguments, in Table 1 we quote few representative
values of �(4 + β)ζ (4 + β).

In Fig. 3 the Wg versus T relation is displayed for some choices of
the parameters β (including the blackbody case) and ν0. Also in this
case it is possible to notice that the blackbody is the best radiator
at the probed temperatures, but all lines with β > 0 appear steeper
than the blackbody one, therefore there is an intersection point at
some Tint such that a given line is higher than the blackbody one at
T > Tint. This situation is unphysical because no thermal spectrum
can radiate more than the blackbody at the same temperature. This
means that above Tint the hypothesis of optically thin medium is
violated and to use equation (6), or equation (8), is not justified.

Combining equations (25) and (31) one finds

Tint = h ν0

kB

(
h3 c2

2π σ k4
B ζ (4 + β) �(4 + β)

) 1
β

. (32)
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The above relation indicates that, if ν0 decreases (i.e. the greybody
gets optically thin over a shorter range of frequencies), Tint decreases
linearly as well, shortening the range of temperatures T < Tint over
which Wb(T) > Wg(T), i.e. the physically meaningful case.

This issue is originated by the fact that the integral that leads to
equation (31) is computed over all the frequencies, also those such
that ν > ν0, violating the optically thin assumption. Therefore this
equation is still correct only if ν0 � ν∗, where ν∗ is the frequency
such that∫ ∞

0

x3+β

ex − 1
dx ≈

∫ x∗

0

x3+β

ex − 1
dx, (33)

where x∗ ≡ h ν∗/kB T .
We postpone the discussion of this issue to Section 4.2.1, after

having approached in Section 4.2 the class of integrals like the one
at the right-hand side of the above equation.

Finally, we numerically calculated the Wg(T) curves in the opti-
cally thick case (for which it is not possible to obtain an analytic
relation), and show them in Fig. 3. Such curves (i) do not show a
power-law behaviour as in the optically thin case; (ii) do not suffer
of the issue of getting higher than the blackbody, being equation (1)
valid at all frequencies; (iii) are always smaller than the correspond-
ing optically thin case; (iv) at increasing ν0 and for opportunely low
values of T (as those probed in the figure), the optically thick and
thin cases get practically indistinguishable (since the equation 6 is
valid over most of the frequency range).

4.1 The Lbol/M ratio

The ratio between the bolometric luminosity of a core/clump, due
to the contribution of a possible contained young stellar object and
by the residual matter in the parental core/clump, and its mass M
is a largely used tool for characterizing the star formation ongoing
in such structure (Molinari et al. 2008; Elia et al. 2013). Indeed,
an increase of Lbol is expected as the central source evolves and its
temperature increases (so the emission peak shifts towards shorter
wavelengths); this is evident especially during the main accretion
phase (Molinari et al. 2008, and references therein). Dividing Lbol

by the total envelope mass removes any dependence on the total
amount of emitting matter. Interestingly, a Lbol/M built in this way
is also a distance-independent quantity. It is important to show
the relation between Lbol/M and T for an optically thin greybody,
which corresponds to the case of a starless core/clump, to evaluate
departures from this behaviour, typical of protostellar source.

On one hand, the bolometric luminosity of a greybody located at
a distance d is observationally evaluated starting from the measured
flux:

Lbol = 4π d2
∫ ∞

0
Fν dν. (34)

On the other hand, Lbol = Wgb, so using equation (8) for Fν , one
obtains

Lbol

M
= 4π κref

ν
β
ref

∫ ∞

0
νβBν(T ) dν

= 4 κref

(
ν0

νref

)β

Wg

= 8π k
4+β
B ζ (4 + β) �(4 + β) κref

h3+β c2 ν
β
ref

T 4+β, (35)

which is dependent again on T4 + β , but independent on ν0, in the
limit of equation (33).

4.2 The Lsmm/Lbol ratio

Another quantity involving the bolometric luminosity and used to
characterize the evolutionary state of young stellar objects is the
Lsmm/Lbol ratio (André et al. 2000), where Lsmm is the fraction
of Lbol for the submillimetre domain, i.e. for λ larger than a cer-
tain λsmm. For example, with respect to the Class 0/I/II/III classi-
fication of low-mass young stellar objects (Lada & Wilking 1984;
Lada 1987; Andre, Ward-Thompson & Barsony 1993), André et al.
(2000) recognized as Class 0 those objects with Lsmm/Lbol > 0.005,
for λsmm = 350 μm.

For an optically thin greybody, the dependence of this ratio on the
greybody parameters can be ascertained starting from equation (34)
as follows:

Lsmm/Lbol =
∫ νsmm

0 Fν dν∫ ∞
0 Fν dν

=
∫ xsmm

0
x3+β

(ex−1) dx∫ ∞
0

x3+β

(ex−1) dx

=
∑∞

n=1
1

n4+β

∫ nxsmm

0 y3+βe−ydy

ζ (4 + β)�(4 + β)
, (36)

where νsmm = c/λsmm is the frequency assumed as the upper end of
the submm domain and xsmm ≡ h νsmm/kBT. While the denominator
of the last member does not depend on T (see equation 30), the
numerator contains an integral with a finite upper integration limit
containing in turn the temperature, which requires a more complex
treatment. One needs to invoke the concept of lower incomplete
gamma function, defined as γ (s, a) ≡ ∫ a

0 ys−1 e−y dy. It is found
(e.g. Press et al. 2007) that

γ (s, a) = ase−as

∞∑
i=0

�(s)

�(s + 1 + i)
ai . (37)

Therefore, being in this case s = β + 4 and a = n xsmm,∫ nxsmm

0
y3+βe−ydy

= �(4 + β)(n xsmm)4+β e−n xsmm

∞∑
i=0

(n xsmm)i

�(5 + β + i)
. (38)

So, equation (36) becomes

Lsmm/Lbol = 1

ζ (4 + β)

∞∑
n=1

e−n xsmm

∞∑
i=0

ni

�(5 + β + i)
x4+β+i

smm .

(39)

In Fig. 4 the behaviour of Lsmm/Lbol versus T is shown for different
choices of β and νsmm.

4.2.1 A by-product: discussing equation (33)

Here we exploit the results found for the integration of the grey-
body over a non-infinite range (i.e. equation 37) to conclude
the discussion about equation (33), namely regarding the fre-
quency ν∗ such that, given x∗ = h ν1/kB T , the condition, say,
R ≡ ∫ x∗

0
x3+β

ex−1 dx/
∫ ∞

0
x3+β

ex−1 dx > 99 per cent is satisfied. The ratio
R coincides exactly with the case of equation (36) fully developed
through equation (39), with ν1 playing in this case the role of νsmm

in those equations.
For a precision of 10 per cent (i.e. R = 0.1), x∗ ≥ 8 when β =

1, and x∗ ≥ 11 for β = 3. Turning x∗ in a wavelength, one finds
λ∗(μm)=1308/T(K) and λ∗(μm)=1798/T(K), for β = 3 and 1,
respectively. For instance, for a SED with T = 20 K and β = 1, the
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1334 D. Elia and S. Pezzuto

Figure 4. Plot of the Lsmm/Lbol ratio versus T relation, as expressed by
equation (39). The grey lines correspond to λsmm = 350 μm and different
values of β: 0 (black), 1 (dark grey), and 2 (light grey). The blue dashed line
corresponds to the case λsmm = 250 μm and β = 2. A colour version of this
version is available in the electronic version of the paper.

greybody must be already optically thin at λ∗ = 90 μm, while for T
= 30 K the limit on being optically thin is pushed down to 60 μm.

Clearly, these values for λ∗ apply to SED known over the infinite
range λ∗ ≤ λ < ∞. To be less generic, let us consider the practical
case of a SED which is known only at five Herschel bands: the
two 70 μm and 160 μm for Photodetector Array Camera and Spec-
trometer (PACS), and the three Spectral and Photometric Imaging
Receiver (SPIRE) bands 250, 350, and 500 μm. This is the case
for the Herschel surveys already mentioned: HGBS, HOBYS, and
Hi-GAL. We derived the theoretical SEDs from equation (1) for λ0

= 10, 50, and 100 μm, and for β = 1, 2, and 3; for the temperature
we explored the range 5 ≤ T ≤ 50 K in steps of 1 K.

For each SED we computed the true luminosity (Lthick) by nu-
merical integration of equation (1) from 1 μm to 1 mm: in the upper
panel of Fig. 5 we show the ratio between Lthick and the luminosity
LH computed integrating the five-band Herschel SED. This figure
shows the error3 associated with a Herschel-derived luminosity.
However, this is only of mathematical interest because in the most
common case the astronomer does not know β, so that it is not
known with which curve LH should be compared.

The other two panels are more interesting because we compared
the true luminosity with two quantities derivable from the data.
Since we are assuming that only the five Herschel fluxes are known
(we used five bands, but including the 100 μm PACS band too
would not alter our conclusions), it is not possible to derive a robust
estimate of β directly from the observed values, so that we fix
β = 2, a common choice when dealing only with Herschel data
(Sadavoy et al. 2013). For any theoretical SED, we looked for the
best-fitting optically thin greybody with β = 2. For this greybody,
we computed both the luminosity LH2 obtained integrating only the
fluxes at the five considered wavelengths, and the luminosity Lan2

given by equation (31). The ratios between these two luminosities
and the true luminosity Lthick are shown in the central and bottom
panels of Fig. 5, respectively. For simplicity, the x-axis reports the
true temperature in both cases, although the temperature used to
compute the luminosity is that derived from the fit. The central
panel of Fig. 5 is, qualitatively, quite similar to the top panel and
shows an erratic behaviour of the ratio: the agreement is within

3 We stress that this is an error and not an uncertainty.

Figure 5. Ratios between three different estimates of the luminosity of a
SED and Lthick, i.e. the luminosity of a greybody obtained by numerical
integration of equation (1) (considered here as the true luminosity of the
SED) versus greybody temperature. Top: ratio between LH, obtained by
integrating the SED observed by Herschel, and Lthick. Centre: ratio between
LH2, obtained by numerical integration of an optically thin model with β

= 2, best-fitting the SED observed by Herschel, and Lthick. Bottom: ratio
between Lan2, obtained directly through equation (31) with β = 2 and T
derived by the same fit as in the previous panel, and Lthick. The horizontal
black lines show the 20 per cent agreement zone. A colour version of this
version is available in the electronic version of the paper.
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20 per cent (limit shown by means of the two black horizontal
lines) for T � 10 K, but the upper limit on T, where the agreement
is good, strongly depends on β, which is unknown. The bottom
panel, on the contrary, shows a ratio contained in the 20 per cent
limits for all the T � 10 K up to 50 K, the highest T used in the
synthetic SEDs. Only for β as high as 3 there are ranges of T for
which the agreement is not good.

Our conclusion is that once an astronomer decides to fit an ob-
served SED with an optically thin greybody with β = 2, it is better
to compute the luminosity from equation (31) rather than to inte-
grate the observed fluxes, or those derived from the fit. The case in
which β is known from the data is dealt with in Section 6.

5 B O L O M E T R I C T E M P E R AT U R E

The bolometric temperature Tbol (Myers & Ladd 1993) is another
quantity used in the study of star formation to quantify the evo-
lutionary status of young stellar objects. Indeed it constitutes an
estimate, in units of temperature, of the ‘average frequency’ of a
SED (with the fluxes composing the SED used as weights):

ν̄ =
∫ ∞

0 ν Iν dν∫ ∞
0 Iν dν

. (40)

For a blackbody, exploiting equation (31), one finds

ν̄bb =
∫ ∞

0 ν Bν(T )dν∫ ∞
0 Bν(T )dν

= 4 kB

h

ζ (5)

ζ (4)
T . (41)

Rigorously, the bolometric temperature of a generic source is
defined as the temperature of a blackbody having the same mean
frequency ν̄:

Tbol = h

4 kB

ζ (4)

ζ (5)
ν̄ = h

4 kB

ζ (4)

ζ (5)

∫ ∞
0 ν Fν dν∫ ∞

0 Fν dν
. (42)

In this definition, Myers & Ladd (1993) adopted a normalization
suggested by equation (41) to obtain Tbol = T for the blackbody
case.

Looking at different phases of star formation, the transition from
Class 0 to Class I and then to Class II sources is characterized
by a temperature getting warmer and warmer and the SED get-
ting brighter and brighter in the near- and mid-infrared: as a con-
sequence of this, also ν̄ and Tbol increase. In this respect, Chen
et al. (1995) suggested to identify the aforementioned evolutionary
classes through Tbol.

Here we explore the analytic behaviour of the bolometric tem-
perature of an optically thin greybody as a function of the various
involved parameters. Combining equations (41), (8), and (31), one
obtains

νgb =
∫ ∞

0 ν1+βBν(T )dν∫ ∞
0 νβBν(T )dν

= kBζ (5 + β)�(5 + β)

h ζ (4 + β)�(4 + β)
T

= kB

h

ζ (5 + β)

ζ (4 + β)
T , (43)

so that the bolometric temperature for a greybody is given by

Tbol = 4 + β

4

ζ (4)ζ (5 + β)

ζ (5)ζ (4 + β)
T . (44)

It is noteworthy that in this relation the proportionality factor be-
tween Tbol and T is a monotonically increasing function of β being

Figure 6. Solid line: behaviour of the multiplicative term in front of T in the
expression of Tbol (equation 44), namely [(4 + β)ζ (4)ζ (5 + β)]/[4 ζ (5)ζ (4
+ β)], as a function of β. Dashed line: behaviour of ζ (5 + β)/ζ (4 + β) as
a function of β.

in turn the product of two increasing functions, as illustrated in
Fig. 6.

Furthermore, since ζ (4)/ζ (5) � 1.044, for β = 1 the ratio of the
ζ functions differ from 1 by ∼2 per cent, and by ∼1 per cent for β

= 2. One makes then a very small error putting ζ (5 + β)/ζ (4 + β)
= 1, so that

Tbol = 4 + β

4
T (for β ≥ 1). (45)

As an immediate consequence, a greybody source with β = 2 and
T > 47 K has Tbol > 70 K, i.e. above the boundary between Class
0 and Class I established by Chen et al. (1995).

6 A N A LTERNATI VE WAY TO ESTI MATE T
A N D β FOR A N O BSERVED SED

Equation (43) represents the first moment of the distribution of an
optically thin greybody, hereafter ν1. In general, the nth moment
can be straightforwardly calculated as

νn =
(

kB T

h

)n
�(n + 4 + β)ζ (n + 4 + β)

�(4 + β)ζ (4 + β)
. (46)

So, computing now the second moment one finds

ν2 =
(

kB T

h

)2
�(6 + β)ζ (6 + β)

�(4 + β)ζ (4 + β)
. (47)

As shown above, one can put ζ (6 + β)/ζ (4 + β) ∼ 1 so that

ν2 = (5 + β)(4 + β)

(
kB T

h

)2

(for β ≥ 1). (48)

Combining equations (43) and (48), one finds the interesting rela-
tion

β = 5ν2
1 − 4ν2

ν2 − ν2
1

. (49)

In the same way, by a combination of these two frequencies
(actually ν2 has the unit of Hz2) it is possible to derive the formula
for the temperature:

T = h

kB

(
ν2

ν1
− ν1

)
. (50)

These two equations give the exact values of β and T, provided
that the spectrum is known over a wide range of frequencies (or
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wavelengths). In reality this is not always true: the smaller the
number of data points, the higher the error associated with these
equations.

To give an idea of the applicability of these two formulae, we
took from literature the case of the candidate first-hydrostatic core
CB17MMS (Chen et al. 2012): the authors report the fluxes at
100, 160, 850 μm, and 1.3 mm, so just four wavelengths. From
these data we computed, with a straightforward application of the
trapezium rule, ν1 and ν2. As a second step, we generated a grid
of models, with 5 ≤ T(K) ≤ 50 and 1 ≤ β ≤ 3, at the same four
aforementioned wavelengths. For each model we computed the
expected values ν̄1 and ν̄2 that are compared with the values derived
from the observations ν1 and ν2: we looked for the minimum of the
residuals defined as

δ ≡
(

(ν̄1 − ν1)

max(ν̄1)

)2

+
(

(ν̄2 − ν2)

max(ν̄2)

)2

, (51)

where the normalization is necessary due to the fact that, for the
same model, ν̄2 is of the order of ν̄1

2: indeed, without this normal-
ization, δ would be dominated by the term containing ν1. All the
models in the grid, constructed in steps of 0.1 K in T and 0.1 in β,
were sorted by increasing residuals. The best model, corresponding
to the lowest δ, provides T and β, whereas the 10 best models are
taken into account to evaluate the spread of these two parameters,
hence the uncertainty affecting them. The final result is T = 10.6 ±
1.3 K and β = 2.1 ± 0.6. These values are in good agreement with
those reported by Chen et al. (2012), namely T ∼ 10 K and β = 1.8.
Notice that if we would have just used ν1 and ν2 to derive directly
T and β, the result would have been T = 7.8 K and β = 6.5, which
is unphysical.

Now, if we measure the luminosity of the object, again through
the trapezium rule, we find L = 0.18 L�, at the distance of 250 pc.
This luminosity can be compared with that expected theoretically
(equation 31) which depends on T, β, the solid angle, and ν0;
unfortunately Chen et al. (2012) did not provide the solid angle
in their paper, but the fluxes they reported for CB17MMS were
derived with apertures ranging from 10 to 20 arcsec: estimating
the solid angle from these apertures, equation (31) tells us that the
wavelength at which τ = 1 is in the range 30 � λ0(μm) � 58,
which looks reasonable.

As another example we consider the SED of GG Tau A as reported
by Scaife (2013): in this case the SED is emitted by a disc so that
the hypothesis of a single-temperature optically thin greybody is
very coarse, but still our results can be compared with those of the
author. Our procedure, applied to the SED from 100 μm to 1.86 cm,
gives T = 18.5 ± 6.7 K and β = 1.1 ± 1.7. Our T agrees well with
the reported value of T = 19.42 ± 0.55 K; the value of β has a large
uncertainty but the best-fitting value, β = 1.1, is also in agreement
with the value of Scaife (2013), 0.96 ± 0.04. Since T(R = 300 au)
≈ 20 K, as reported by the author, we took this radius as an estimate
of the solid angle, given the distance of 140 pc, and we found λ0 ∼
29 μm.

As a last example, we used the compilation of fluxes reported
recently by Ren & Li (2016) for a set of sources in NGC 2024
whose SEDs are built from 70 to 850 μm. In Table 2 we reported
the name of each source, T, β, and Lbol as computed by the authors,
the same quantities as computed by us, and, in the last column, λ0.

The source FIR-1 gives a result compatible with the hypothesis
of an optically thin greybody (λ0 < λmin) only if set λmin = 160 μm,
i.e. after discarding the first two available wavelengths; the same
happens with FIR-2 and FIR-3 as well. For FIR-4 and FIR-6 the
whole SED has been used, as the resulting λ0 is smaller than 70 μm.

Table 2. Results of applying equations (49) and (50) to source SEDs of
Ren & Li (2016).a

Ren & Li (2016) This paper
Name T β Lbol T β Lbol λ0

(K) (L�) (K) (L�) (μm)

FIR-1 18.5 2.5 80 29.3 ± 8.7 1.6 ± 0.4 22 19
FIR-2 18.0 2.7 130 18.4 ± 4.3 2.4 ± 0.6 32 145
FIR-3 17.5 2.6 220 19.0 ± 3.4 2.3 ± 0.7 47 141
FIR-4 22.0 2.9 570 32.2 ± 3.1 1.3 ± 0.3 221 64
FIR-6 18.5 2.7 160 26.1 ± 2.4 1.0 ± 0.4 118 43
FIR-7 18.0 2.6 110 19 ± 12 2.8 ± 0.7 8 70

aWe used the whole SED, from 70 to 850 μm, for FIR-4 and FIR-6; from
160 to 850 μm for FIR-1, FIR-2, and FIR-3; from 250 to 850 μm for FIR-7.

FIR-5 is resolved in two sources at 450 μm and not resolved at the
other wavelengths: for this reason we decided not to consider this
source. Finally, the SED of FIR-7 has been limited to λ ≥ 250 μm
to fulfil the condition λ0 < λmin.

Clearly, our Lbol are smaller than values of Ren & Li (2016)
because they were evaluated over a shorter range of wavelengths:
if we trust the values of λ0 found, our luminosities constitute an
estimate of the optically thin contribution to Lbol for each source.
The large uncertainty in T for FIR-7 clearly reflects the fact that we
derived the physical parameters of this source at large wavelengths,
excluding the peak of the SED.

In the examples reported above we have shown in a number of
cases how well, or how bad, our equations (46) and (47) can be
used to extract physical information from a SED: one may wonder
why equations (49) and (50) should be used to find β and T instead
of using well-known routines that can solve the non-linear least-
squares problems. There are a few advantages, indeed: first, one does
not need to give initial values for the parameters, which not always
are obvious to be estimated. Second, specifically to the greybody
problem, it is often assumed that, for Herschel data, it is not possible
to have realistic estimates of both β and T, given the well-known
degeneracy between these two values (Juvela et al. 2013), as it
can be seen in equation (12). On the contrary, our formulae do not
imply a fitting procedure, and give the two parameters without being
affected by degeneracy. Third, if the distance and the solid angle
are known for a source, one can derive also λ0, i.e. the wavelength
at which τ = 1. In the usual formalism given by, e.g. equation (8),
there is no way to derive λ0 from the data. As a consequence of this,
with our method the astronomer can judge a posteriori if the derived
values are consistent with the optically thin hypothesis, something
that seldom is done in literature.

Of course, we should not forget that inferring T and β from real
observations is more challenging because of line of sight mixing of
temperature (breaking the condition of isothermal emission), asym-
metric illumination of target source, and contribution of different
population of dust grains to the net emission. But these caveats
affect any kind of fitting procedure.

Finally, we provide an example of application of equation (41)
to derive T for a blackbody from an observed SED. We consider
the Cosmic Background Explorer (COBE)-Far-Infrared Absolute
Spectrophotometer (FIRAS) spectrum of the cosmic microwave
background radiation measured by Fixsen et al. (1996).4 The tem-
perature derived through equation (41) is 2.82 K, only 3 per cent

4 Data are available at http://lambda.gsfc.nasa.gov/data/cobe/firas/
monopole_spec/firas_monopole_spec_v1.txt
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higher than the 2.725 K value used by the authors to derive the
monopole spectrum.

7 C O N C L U S I O N S

In this paper we collected and re-arranged a number of dispersed
analytic relations among the parameters of a greybody, develop-
ing further equations and discussing the errors involved by typical
approximations. This is certainly of some interest for astronomers
who model the Galactic and extragalactic cold dust emission as a
greybody, especially in the current ‘Herschel era’, characterized by
the availability of huge archives of photometric far-infrared data. In
particular the following.

(1) The position of the peak of the greybody emission, in terms of
both frequency and wavelength as a function of the temperature has
been revised, considering deviations from the classical blackbody.
Approximated expressions for it are suggested in correspondence
of different regimes of optical thickness.

(2) Quantities typically exploited in the study of early phases
of star formation have been discussed in the case of an optically
thin greybody. The bolometric luminosity of a greybody shows a
power-law dependence on the temperature, with exponent 4 + β,
representing a general case of which the Stefan–Boltzmann law is
a particular case for β = 0 (blackbody).

(3) The ratio between the so-called submillimetre luminosity and
the bolometric one, which is used to recognize Class 0 young stellar
objects, shows a more complex behaviour. The temperature at which
this ratio gets larger than 0.05 per cent (so early-phase star forming
cores/clumps are identified) decreases at increasing β.

(4) The bolometric temperature of a greybody is found to be
linearly related to the temperature, through a multiplicative constant
that depends only on β and can be further simplified for β ≥ 1.

(5) We indicate a method to derive the temperature and the dust
emissivity law exponent of a greybody, or simply the temperature
of a blackbody, modelling an observed SED without performing
a best-fitting procedure. We report and discuss the conditions for
the applicability of this method, which appears well suitable for
well-sampled SEDs and in the range of temperatures typical of cold
dense cores/clumps.

AC K N OW L E D G E M E N T S

We thank the anonymous referee for accurate review and highly
appreciated comments and suggestions, which significantly con-
tributed to improving the quality of this paper. DE’s research ac-
tivity is supported by the VIALACTEA Project, a Collaborative
Project under Framework Programme 7 of the European Union
funded under Contract #607380, that is hereby acknowledged.

R E F E R E N C E S

Andre P., Ward-Thompson D., Barsony M., 1993, ApJ, 406, 122
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