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ABSTRACT   

MOONS (Multi-Object Optical and Near-infrared Spectrograph for the VLT) is entering into the final design phase. This 

paper presents and discusses the latest proposed version of the optical design of the cryogenic spectrograph. The main 

developments and modifications were aimed at minimizing the overall size and mass of the cryogenic spectrograph. The 

most remarkable new feature is the design of an extremely fast (F/0.95), light and compact (40 kg in less than 80 dm
3
) 

camera with superb image quality over a very large field of view (9 degrees on a collimated beam of 265 mm). The 

camera consists of only three optical elements: two lenses and one mirror. All elements are made of fused-silica. The 

optical performances are independent on the temperature, i.e. the camera can be fully characterized at room 

temperatures. 

 

Keywords: Ground-based instruments, multi-object infrared spectrographs 

1. INTRODUCTION 

MOONS is the acronym of Multi-Object Optical and Near-infrared Spectrograph which is currently being developed for 

the European Southern Observatory (ESO). The instrument was first selected by ESO
1
 in 2011. The phase-A and 

Preliminary Design Review (PDR) were successfully completed in April 2013 and March 2016, respectively.  

The main scientific aims of the instrument
2
 include

 
galactic archaeology (based on a detailed analysis of a few millions 

single stars in the Milky Way and in the Local Group) and cosmology (based on a spectroscopic study of the integrated 

light from several millions of galaxies at redshifts z>1). 

The top-level requirements for the instrument that directly affect the design of the spectrograph are: 

• Simultaneous spectroscopy of 800 (goal 1000) objects/sky fibers at one of the VLT foci. 

• Sky-projected diameter of each fiber of 1.0 (goal 1.2) arc-sec.  

• Medium spectral resolution mode with resolving power R>3,000 (goal R> 4,000) that simultaneously cover the 

spectral ranges 830-1330 nm (goal 640-1350 nm) and 1470-1750 nm (goal 1450-1800 nm) 

• High spectral resolution mode simultaneously covering part of the H band (wavelength range 1523-1620 nm; goal 

1521-1632 nm) at resolving power R>18,000 (goal R=23,000) and a region centered on the CaII triplet (wavelength 

range 765-895 nm; goal 760-900 nm) with resolving power R>9,000 (goal R=10,000).  

• Cross-talk between neighboring spectra lower than 2% (goal 1%). 

These requirements translate into remarkable challenges for the design of the spectrograph. A detailed analysis of the 

spectrometer parameters, the preliminary optical design and the trade-off analysis; used for the phase-A proposal and for 

the PDR; has already been published.
3,4

 Here we present  the latest version of the design that was developed at the end of 

the PDR with the specific aim to optimize the optical quality, to simplify the alignment  and to minimize the total volume 

and mass of the spectrometer. 
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2. OVERALL DESIGN OF THE SPECTROGRAPH 

The baseline design consists of two identical spectrographs. Each instrument collects the light from 512 fibres. The light 

from the fibres is collimated and fed, through two dichroics, to three dispersers covering the "RI", "YJ" and "H" arms. 

The names of these arms correspond to the photometric bands that they cover. The instrument foresees two observing 

configurations, namely “low resolution” (LR) and “high resolution” (HR). The first provides a complete wavelength-

coverage while the second covers selected ranges of specific interest. The wavelength ranges are fixed. 

 

The main optical parameters for the design of the instrument are as follows. 

DTEL  Telescope diameter, fixed to 8m (VLT) 

dPIX  Pixel size, fixed to 15µm 

NXPIX  Total number of pixels along dispersion 

NYPIX  Total number of pixels along the slit 

NFIB  Total number of fibres aligned along the slit 

DCOLL Diameter of the spectrometer collimated beam 

FCAM Focal aperture of the beam on the detector 

FCOLL Focal aperture of the collimator and nominal output-focal-ratio of fibres 

NRES Sampling, i.e. diameter of fibre image on detector expressed in pixels  

NDARK Number of dark pixels between adjacent spectra, chosen to be 5/3 of NRES 

αG  Blaze angle of the grating 

θFIB  Sky projected diameter of a fibre 

ηFRD  Fibre throughput degradation factor = [ (ΑΩ)TEL/(ΑΩ)SPEC ] 
0.5 

 

Where (ΑΩ)TEL is the etendue at the entrance of the fibre and /(ΑΩ)SPEC is the etendue accepted by the spectrometer. 

Therefore, the parameter ηFRD defines by how much the spectrometer is over-sized to compensate for the throughput 

losses produced by the fibres. Our reference value is ηFRD =0.90 and includes the focal ratio degradation and the under-

sizing of the fibre illumination necessary to compensate for pupil-wandering at the entrance of the fibre. In other words, 

the spectrometer is over-sized as if it had to be coupled to a telescope with diameter of 8.8 meters. The derived quantities 

and scaling laws are as follows.  

 

 Sky projected size of pixel  θPIX = 0.36” (ηFRD/0.90)  (FCAM /0.95)
-1 

 Diameter of fibre core   dFIB = 0.15  (θFIB /1.0”)  (ηFRD/0.90)
-1

  (FCOLL/3.5)    mm 

 Sampling   NRES = 2.7 (θFIB /1.0”) (FCAM /0.95) (ηFRD /0.90)
-1

      pixels 

 Distance between fibres  ∆FIB = 0.40 (θFIB /1.0”)  (ηFRD/0.90)
-1

  (FCOLL/3.5)    mm 

 Physical length of input slit LSLIT = 205 (NFIBRES/512) (θFIB /1.0”)  (ηFRD/0.90)-1  (FCOLL/3.5)   mm 

 Resolving power (R=λ/∆λ) R = 13700 tan(αG)  (DCOLL/265 mm)  (θFIB /1.0”)-1  (ηFRD/0.90)   

 Simultaneous λ−coverage  λMAX - λMIN = 0.40  λCENTRAL  (NXPIX/4096) (R/4000)-1  (NRES/2.7) -1   
   

 

The most striking and demanding aspects for the design of the spectrograph are 

 

• Huge field of view for the collimator, equivalent to a 23’ long-slit spectrometer on an 8m telescope. 

• Extremely fast cameras with huge field of view, equivalent to a 23’ x 23’ imager on an 8m telescope. 

• High resolution-slit product, achievable only with a large collimated beam that severely limits the use of lenses. 

• Simultaneous availability of low and high spectral resolution modes, with simple and affordable exchange modes. 

 

All these challenging requirements are fulfilled in the baseline design of the MOONS spectrometer depicted in Figure 1. 

The light from the fibers is collimated by a spherical mirror. The input fibers are organized along a curved slit as shown 

in a previous paper
4
. The collimated beam is split into the three arms by two dichroic beam-splitters. The YJ arm is 

equipped with a fixed transmission grating that disperses the light. The RI and H arms include interchangeable dispersive 

systems made by a combination of transmission gratings and prisms; the advantages of this solution are discussed in a 

previous paper
4
.  
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The dispersed light is re-imaged onto the detector by an extremely compact and remarkably simple camera. It only 

consists of 2 lenses and one mirror. It achieves truly superb image quality even with focal apertures faster than F/1. For 

this reason we call it the “Wonder-Camera”. 

 

The main parameters of the spectrometer are summarized in Table 1. They meet all the top level requirements and in 

several cases reach the goals. 

  

 

 

 

Figure 1 Layout and rays-tracing of the MOONS spectrometer. Top panel: LR configuration, bottom panel: HR configuration. 
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Table 1 Main parameters of the MOONS spectrometer 

 

Sky projected diameter of a fibre θFIB = 1.0” 

Focal ratio collimator FCOLL = 3.50 

Number of fibres per spectrometer NFIBRES = 512 

Length of input slit  LSLIT = 200 mm 

Diameter of collimated beam DCOLL = 265 mm 

Focal ratio of the camera FCAM = 0.95 

Sampling NRES = 2.7   pixels 

Number of dark pixels between adjacent fibers NDARK = 4.5   pixels 

Detector size  NXPIX  = 4096 NYPIX  = 4096     (1 detector per channel) 

Simultaneous wavelength coverage and resolving 

powers in the LR mode 

RI arm:  647 – 955 nm       R=4500 

YJ arm:  934 – 1350 nm     R=4300 

H  arm:  1452 – 1800 nm   R=6800 

Simultaneous wavelength coverage and resolving 

powers in the HR mode 

RI arm:  765 – 897 nm       R=9100 

YJ arm:  934 – 1350 nm     R=4300 

H  arm:  1523 – 1640 nm   R=18800 

 

 

 

3. THE WONDER-CAMERA 

Compared to the previous studies
3,4

 the most important new feature is the camera. Table 2 summarized the parameters of 

all cameras included in the trade-off study and Figure 2 shows their layouts. The refractive cameras (RFR) can be 

conveniently divided into four types. 

 

RFR-H includes only 4 lenses: the first is made of fused-silica and the remaining of mono-crystalline Silicon. It works 

only in the H band, where Silicon is perfectly transparent. The first surface of L1 is aspheric, the others surfaces are all 

spherical. Thanks to the very high refractive index of Silicon, this camera can achieve the required optical performances 

with an overall size and mass similar to the smaller RFL camera. An important drawback is the difficulty to align the 

lenses, because the Si elements are opaque to optical light and their refractive index strongly varies with temperature.  

 

RFR-IH can be used in all arms and includes 5 lenses: the first and last are made of fused-silica, while the remaining are 

made of S-FPL51 or CaF2 (these materials have similar performances in this type of camera). The first surface of L1 and 

the second surface of L5 are aspheric with quite large departures from a sphere (several mm). Adding aspheres to other 

surfaces does not help to decrease overall size and volume, but could be useful to achieve milder aspheric profiles on all 

surfaces. The large size and volume are a direct consequence of the low refractive index of the optical materials. Less 

bulky cameras can only be obtained by adding lenses with high refractive indices, but unfortunately there is no optical 

material with high refractive index and transparent over the required wavelength range. Another drawback of this camera 

is the practical difficulty to limit and control the internal homogeneity of the glass. In the case of fused silica, the 

homogeneity is normally guaranteed only along the principal axis. Special “3D” manufacturing - that guarantees 

uniformity along any direction - is possible at an increased cost (factor of 2) but only for relatively small blanks. 

 

RFR-IY is a camera based on “classical glasses”. It includes 3 lenses of BK7 and two elements of SF6 (the second and 

the last lenses). The first surface of L1 and the second surface of L5 are aspheric. This camera can only be used up to 

about 1150 nm, because of the internal absorption of the glass at longer wavelengths.  

 

CD-RFR-IH is a spectacular example of how the design could be simplified using a curved detector. It consists of only 4 

lenses, all of fused silica. The first surface of L1 and the first surface of L3 are elliptical, the remaining surfaces are 

spherical. The same lenses, with different spacers, can be used for all wavelengths/arms. The fundamental drawback is 

that curved detectors are not available. 

 

The reflective cameras (RFL) were already discussed in a previous paper
4
. 
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Table 2 Parameters of the cameras considered in the design of the MOONS spectrometer 

Name F/# 
Length 

(mm) 

Diameter of 

largest lens 

(mm) 

Diameter 

of mirror 

(mm) 

Mass(1) 

(kg) 

Central 

Obs.(2) 

(%) 

Comments 

Wonder-Camera 0.95 430 400 440 40 19 Detector is inside first lens  

RFL-IH-290 1.04 650 440 610 110 17  

RFL-IH-340 1.04 830 520 740 200 13  

RFL-IH-380 1.04 1030 620 920 300 10  

RFR-H 1.05 800 400 - 60 -  

RFR-IH 1.05 930 500 - 230 -  

RFR-IY 1.05 580 420 - 200 -  

CD-RFR-IH 1.00 580 420 - 70 - Needs a curved detector 

Notes to table 

(1) Total mass of the optics in one camera. 

(2) Fraction of light vignetted by last lens+detector; only for reflective cameras 

 

 
Figure 2 Layout of the Wonder-Camera compared to the other cameras studied for the spectrometer. Light goes from bottom to top. 
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The Wonder-Camera includes only three aspheric elements, all made of fused silica. The first lens (L1) is a meniscus 

with a central hole to accommodate the second lens (L2) and the detector (see Figure 3). The last surface of L2 is flat; 

this simplifies the mounting and interfacing of the two lenses. The clear apertures of the optical elements are within the 

limits of interferometric scanning metrology systems; thus simplifying manufacturing and quality-control. 

The camera achieves its best performance with a quite large back focal distance. Therefore, there is enough room to 

include long-pass filters made of materials that are intrinsically opaque at shorter wavelengths, i.e. RG glasses for the RI, 

YJ arms and Silicon for the H arm. This solution is much simpler and cost-effective than using large interference filters 

in the collimated beam.  

 

 
 

 
Figure 3 Rays tracing and views of the Wonder-Camera including details of the L1-L2 interface and a possible T-invariant mount. 

   

 

The optical quality can be evaluated from the plots in Figure 4. Each panel shows the diameters of encircled energy at 

50% (green diamonds), 80% (red dots) and 95% (blue crosses) at different wavelengths and spatial positions along the 

slit for a given observing mode. The Wonder-Camera delivers >95% encircled energy inside the fibre diameter; much 

better than the image quality achieved with other types of cameras.  

 

 

 
 

Figure 4 Left panel: optical quality of the Wonder-Camera. Right-hand panel: optical quality of the RFL-IH-290 camera. 
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The light losses due to the central obscuration are larger than in the other RFL cameras because the latter include a 

beam-expander that enlarges the beam around the detector
4
. However, the vignetting can be minimized by choosing a 

very fast focal ratio (F/0.95 in our case). Moreover, the light losses are partly compensated by the smaller number of 

optical elements (3 instead of 4). The only way to decrease the central obscuration would be using refracting cameras or 

much larger reflective systems; but these are ruled out because of their excessive sizes, masses and costs.  

 

The Wonder-Camera is relatively simple to align because it consists of only 3 elements of a material (fused silica) with 

virtually zero thermal expansion coefficients. Moreover change of refractive index with temperature does not affect the 

optical quality; i.e. the camera has the same performances at room and cryogenic temperatures. Table 3 summarizes the 

positioning and stability tolerances of the optical elements inside the camera. The tolerances are here defined as the 

displacements and tilts that produce an increase of 7% of the error-function; a very conservative criterium indeed. The 

second and third rows are the displacements from the aligned positions that can be recovered by moving (focus + tilt) the 

detector at operating temperature. The first row, instead, is the accuracy of the initial mounting (gluing) of L2 inside L1: 

the larger error in Delta-Z (shift along the optical axis) can be corrected by changing the distance between L1 and M1 

during the alignment.  

 

It should be noted that the numbers in Table 3 do not refer to the nominal positions of the optics in the optical and CAD 

designs. Rather, they are the deviations from the “ideal positions” that can be recovered with focus/tilt of the spider-

structure holding the filter+detector, without any significant loss of image quality. The “ideal positions” – in particular 

the distance between L1 and M1 – cannot be defined a-priori, but must be determined during the alignment phase. This is 

a fundamental characteristic (and complication) of this type of camera. The standard approach of using fixed distances 

between the optical elements yields manufacturing tolerances (<0.01% on the curvature of M1) that are impossible to 

meet. Therefore, one must include the possibility of changing (by several mm) the distances between L1 and M1 and 

align the camera using the following procedure 

 

– Determine the optimal distances between the optical elements; i.e. optimize the optical quality over the whole 

field of view using a suitable set-up which includes adjustments of all the elements in X,Y,Z,α,β (movements in 

α,β and X,Y do not need to be independent because lateral shifts and tilts compensate each-other). This 

procedure can be done at room temperature because the optical quality does not depend on temperature. One 

must foresee a few mm variations of the distances between L1 and M1. 

– Build a holder that maintains the optical elements at the ideal positions (within the tolerances of Table 3) at 

cryogenic temperatures. This second step could be avoided if the structure used for step-1 is made of fused-

silica or other materials with very-low CTEs. In other words, one could most conveniently build a T-invariant 

mono-block camera mounting/gluing the fused-silica optics onto a fused-silica structure (see Figure 3). 

– Correct for residual errors using a cryogenic 3-axis mechanism (focus-tilt) that moves the detector  

 

An alternative possibility, that avoids all the alignment procedure, is adding 3 cryogenic mechanisms/actuators that 

modify the distance and angle of M1 relative to L1. 

 

 

 

Table 3 Positioning and stability tolerances of the elements inside the camera  

Elements Compensators Delta-Z Delta-X/Y Tilt 

L2 relative to L1 (for initial mount/gluing) M1 and detector 0.3 mm 0.1 mm 120 arc-sec 

L2 relative to L1 (stability after mounting) Detector 0.05 mm 0.1 mm 60 arc-sec 

M1 relative to L1+L2    Detector 0.05 mm 0.05 mm 30 arc-sec 

Filter relative to detector None 1 mm 5 mm 1 degree 

Whole camera relative to disperser Detector 5 mm 1 mm 360 arc-sec 
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4. OTHER POSSIBLE APPLICATIONS OF THE WONDER-CAMERA 

In this section we briefly describe other possible applications of the Wonder-Camera. 

 

Figure 5 shows the layout of a fast (F/1) wide-field for the E-ELT. It re-images the full field of the E-ELT (D=10 arc-

min) onto a D=108 mm focal plane with excellent image quality (80% encircled energy within 15 microns/0.085 arc-sec) 

over the 450-900 nm spectral range. The central obscuration of the camera is well matched to the central obscuration of 

the E-ELT, i.e. the camera does not introduce any extra-vignetting. 

 

 

Figure 5 Layout of a F/0.95 wide-field imager for the E-ELT; the design is based on the Wonder-Camera. 

 

 

A section of the Wonder-Camera could be also used as off-axis optical system without central obscuration. This solution is 

particularly attractive for applications requiring large optical elements operating at UV and IR wavelengths; because the refractive 

elements are made of fused-silica, i.e. a material that is intrinsically transparent from below 300 nm to 2500 nm and available in large 

sizes. Figure 6 shows the layouts of a spectroscopic camera optimized for the UV spectral range and of a complete spectrometer. 
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