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ABSTRACT

Multi Conjugated Adaptive Optics is based upon tomographic reconstruction of the atmospheric turbulence
over the line of sight of a telescope, achieved by combining measurements from different directions in the sky.
Using deformable mirrors optically conjugated to different altitudes, a correction can be performed directly on
the reconstructed turbulence layers. Different approaches have been developed so far, notably the so called
layer-oriented one, experienced with success at the VLT (Very Large Telescope) through MAD (Multi Conjugate
Adaptive Optics Demonstrator). It was later shown that the tomography problem, once posed in terms of
solving a set of linear equations describing the turbulence layers with respect to the observables, can be solved
in an iterative manner through a technique first proposed by Kaczmarz in 1937. It was then speculated that a
layer-oriented iteration would asymptotically converge to the same solution. In this paper, we placed the two
approaches in the same theoretical framework, identifying them as two different iterative methods to solve the
same system of linear equations. We found that the layer-oriented approach can be seen as a weighted form of the
iterative method proposed by Cimmino in 1938. By using the known mathematical results relative to Kaczmarz’s
and the weighted Cimmino methods, we were able to demonstrate the validity of the initial speculation.

1. INTRODUCTION

Multi Conjugate Adaptive Optics (MCAO) was introduced for the first time in 19881 in order to obtain a more
uniform correction over a larger field of view with respect to classical AO systems.2 The principle of MCAO is
to obtain information about the atmospheric turbulence volume in more than one direction by using multiple
guide stars, and to use these measurements to reconstruct the main turbulence layers.3 Wavefront corrections
are then applied on more than one plane, using multiple deformable mirrors (DMs) optically conjugated to
different altitudes. Adopting the classical approach to MCAO, called star-oriented, each guide star is assigned
to a wavefront sensor (WFS) and the computation of the optimal mirror shape involves the solution of the three
sub-problems of wavefront reconstruction, where WFS measurements are used to reconstruct the wavefronts
collected in each sensed direction, atmospheric turbulence tomography, where the reconstructed wavefronts are
used to derive the shape of the main turbulence layers, and mirror fitting, where the optimal shape of the DMs is
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determined from the reconstructed layers. These three sub-problems are summarized into one operator, usually
called R, which maps the WFS measurements to the mirror shape (or related mirror commands). For the new
generation of extremely large telescopes, as the ESO E-ELT, using a MCAO system means dealing with the
inversion of a matrix-vector system of the size of ∼ 10000× 10000. Moreover, since the atmospheric turbulence
rapidly changes, an update for the mirror commands must be computed approximately every millisecond. The
size of the system and the short time in which it needs to be solved make its numerical solution particularly
challenging, and two alternative approaches to the classical star-oriented MCAO have been proposed. In the so
called layer-oriented approach,4,5 each WFS is conjugated to a specific atmospheric layer and coupled to the DM
conjugated to that layer. Each DM applies to its layer a correction proportional to what the corresponding WFS
measures, optically combining the light from all the guide stars. This approach does not require the computation
of a global reconstruction matrix and it is therefore computationally more efficient. Another advantage is an
increase of the sky coverage: optically combining the light from all the guide stars allows for the use of fainter
stars, whose light is added to the light coming from the other guide stars. The second alternative approach is
the one presented in Ref. 6 by Ramlau and Rosensteiner, who proposed a way to compute the mirror shape
without the use of matrix-vector multiplications, aiming at decreasing the overall numerical effort. The proposed
method solves the three sub-problems (wavefront reconstruction, atmospheric tomography, mirror deformation)
sequentially, using a Kaczmarz iterative algorithm to solve the atmospheric tomography problem.

Despite their different nature, “age” and origin, these two methods show some similarities, and a conjecture
was made about their achievable solution, believing that they asymptotically lead to the same one. As it was
originally thought and realized, the layer-oriented method does not perform several iterations before finding the
appropriate mirror shape, but the conjecture is that iterating the layer-oriented process of WFS “reading” and
DM “shaping”, considering a fixed turbulence profile (as in Ramlau and Rosensteiner’s approach), would asymp-
tomatically lead to the same correction achievable by using the iterative atmospheric reconstruction proposed
by Ramlau and Rosensteiner.

This work is organized as follows. We start by introducing the notation and mathematical framework we
use to describe and compare the two iterative methods. Section 3 explains the layer-oriented approach and its
reformulation as an iterative method. The the second method, the Kaczmarz approach, is described in Sec. 4.
In Sec. 5 we compare the two methods and discuss their solutions. Conclusions and ideas for future works are
presented in the final section.

2. ADOPTED FORMALISM

The mathematical framework we decided to work with is the one introduced in Ref. 6 to describe the Kaczmarz
approach to MCAO, which perfectly fits our need to write the two approaches in terms of iterative methods to
solve a system of linear equations. For the sake of completeness we include rigorous mathematical definitions,
but we also provide hints for an intuitive understanding of the formalism.

Throughout this work we use bold letters to indicate vectors, matrices, angles and domains (e.g. Φ, S, αg,
Ωm). Light letters are used for functions and operators (e.g. w, Tαghm). We collect some operators into vectors,
which we define as new operators; for these new operators we use bold letters, in order to emphasize their vector
nature (e.g. Aαg ). Light subscripts define different elements of a vector (Φ = [Φ1, . . . ,ΦM ]) and, when dealing
with iterative methods, bold subscripts are used to indicate different iterations (e.g. Φk, Φk+1, . . . ). When we
deal with the norm of a vector or an operator, and use symbol ‖ · ‖, we always refer to the norm induced by the
inner product defined for that particular space (e.g. the Euclidean norm for the space R2 ). Different norms are
explained and identified with a subscript (as for ‖ · ‖S−1).

Consider and MCAO system which involves G guide stars, all assumed to be at infinite altitude. Each star
is referred to using its direction, defined by the angle αg measured from the optical axis of the telescope. Let M
be the number of DMs, each of which is conjugated to a different height hm. Let (x, y) denote the plane of the
telescope aperture, with the origin (0, 0) on the telescope optical axis. Let ΩT be a disc with radius rT , centered
at the origin and representing the telescope aperture, i.e.

ΩT = {r = (x, y) ∈ R2 : ‖r‖ ≤ rT }. (1)
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The shape of the m-th DM can be described as a function Φm of the space L2(Ωm), the space of square integrable
functions defined on Ωm. Its domain Ωm corresponds to the intersection of a plane parallel to the pupil plane
but positioned at height hm and the light beams of the guide stars, as shown in Fig. 1. The m-th domain Ωm

can therefore be defined as the union of G shifted version of ΩT :

Ωm =

G⋃
g=1

ΩT (hmαg), (2)

where
ΩT (hmαg) = {r ∈ R2 : r − hmαg ∈ ΩT } (3)

represents the footprint of the g-th guide star on the plane conjugated to the m-th DM, as in Fig. 1, and can
also be called a pupil image, because it corresponds to the projection of the pupil in direction αg on plane hm.
ΩT is Ωm for m = 1. Having Φm equal to zero everywhere on Ωm means for example that no deformation is
assigned to the m-th DM, i.e. it is completely flat.

ΩT (hmα2)

ΩT (hmα1) ΩT (hmα3)

ΩT

Ωm

.

.

α2α1 α3

h1

hm

Figure 1. On the left: three guide stars, in directions α1, α2 and α3, and two planes in the atmosphere, at heights hm and
h1 = 0. On the right: the overlap, on each plane, of the light beams coming from the three observed directions. At h1 = 0,
the beams perfectly overlap on the telescope aperture ΩT . On a higher plane, each direction defines a different pupil
image ΩT (hmαg), and the shape of the illuminated area Ωm therefore depends on its height hm and on the directions
α1, α2 and α3.

In both layer-oriented and star-oriented approaches the first step of the MCAO system is to reconstruct
the wavefronts from the WFS measurements. Let wα1

, . . . wαg
, . . . wαG

be the G wavefronts observed in the
star-oriented approach. Each wαg is a function of L2(ΩT ), i.e. it is a square integrable function defined on
the pupil plane ΩT . In the layer-oriented approach we have M reconstructed wavefronts, since the WFSs are
conjugated to the M planes instead of the G directions. In this case we use the functions W1, . . .Wm, . . .WM to
describe the wavefronts reconstructed by the different WFSs, whith each Wm being a function of L2(Ωm), the
same domain as for the function Φm which describes the shape of the m-th DM.

In the following sections we use the introduced functions to create vectors of functions. For example, the M
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functions Φm representing the shape of the DMs can be collected to create the following vector:

Φ =

 Φ1

...
ΦM

 .

We define the inner product

〈Φ,Ψ〉M =

M∑
m=1

1

γm
〈Φm,Ψm〉L2(Ωm),

where γm is the strength assigned to the m-th turbulence layer, with

M∑
m=1

γm = 1. (4)

By introducing this inner product we have defined the Hilbert space

LM
2 =

M⊕
m=1

L2(Ωm) (5)

vector Φ belongs to. In the same way, the wavefront functions W1, . . .Wm, . . .WM can be collected in a vector
W , also belonging to the space LM

2 . Another useful tool we use in the following discussion are the shift operators
Tαghm , defined as

(TαghmΨm)(r) := Ψm(r + hmαg), r ∈ ΩT , hm ∈ R,αg ∈ R2. (6)

Operator Tαghm acts on functions defined on Ωm, such as the wavefront function Wm, and gives as an output
a function defined on the telescope aperture ΩT . It selects from the input function Wm only what is defined on
the footprint of the g-th star (the domain ΩT (hmαg)), and gives that “cut-out” of the function as an output,
but shifted to the domain ΩT , as can be seen in Fig. 2. We can combine the action of shift operators that act
on different planes and define the operator Aαg

: LM
2 → L2(ΩT ) defined as

Aαg
Ψ = (Tαgh1 , . . . , TαghM )

Ψ1

...
ΨM

 :=

M∑
m=1

TαghmΨm. (7)

Operator Aαg acts as a vector of shift operators on a vector of functions: each Tαghm selects from the m-th
function of the input vector the part defined on the footprint of the g-th star on the m-th layer. The M selected
“cut-outs” are all shifted to ΩT and added together. The easiest way to understand the use of Aαg

is considering
a star-oriented system. Imagine an atmosphere ideally composed of M turbulent layers, collected in a vector
Ψ. What would the g-th star-oriented WFS see of the turbulence represented by Ψ? The answer is Aαg

Ψ:
by observing in direction αg, the g-th WFS sees, projected on ΩT , a sum of the M wavefront deformations
introduced by the turbulence layers in that direction.

Finally we introduce the adjoint operator of Aαg
. The adjoint of an operator A: X → Y, with X and Y

Hilbert spaces, is a mapping A∗ : Y → X fulfilling 〈Ax, y〉Y = 〈x,A∗y〉X ; therefore, operator A∗ significantly
depends on the chosen inner products of the spaces X and Y. The adjoints of our operators

Aαg
:

M⊕
m=1

L2(Ωm) → L2(ΩT ), g = 1, . . . , G,

are given as the mappings

A∗
αg

: L2(ΩT ) →
M⊕

m=1

L2(Ωm), g = 1, . . . , G,

Proc. of SPIE Vol. 9909  99094J-4
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 23 Nov 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



and defined as

A∗
αg

ϕ =


γ1(T

αgh1)∗ϕ
γ2(T

αgh2)∗ϕ
...

γL(T
αghM )∗ϕ

 ,

where ϕ is a function defined on the telescope aperture ΩT and (Tαghm)∗ is the adjoint of operator Tαghm :

Proposition 1. The adjoint of Tαghm is given by

(Tαghm)∗ϕ = w(r − hmαg)χΩT (hmαg)(r).

In the above proposition (see Ref. 6 for the proof) r ∈ Ωm, hm ∈ R, αg ∈ R2, and χΩT (hmαg) denotes the
indicator function of the subset ΩT (hmαg) of Ωm, and is defined as follows:

χ : Ωm 7→ {0, 1}

χ(x) :=

{
1 if x ∈ ΩT (hmαg),

0 if x /∈ ΩT (hmαg).

Operator (Tαghm)∗ maps ϕ into a new function, defined on Ωm, that equals zero everywhere on the domain Ωm,
except on ΩT (hmαg), where it equals a shifted copy of ϕ (see Fig. 3). A graphic explanation of how operator
A∗

αg
acts on a function ϕ defined on ΩT can be seen in Fig. 4.

ΩT

Wm −−−−−−−−→
TαghmWm

Ωm

Figure 2. Let Wm be a function defined on Ωm representing a wavefront reconstructed from measurements taken on
plane hm. Operator Tαghm acts on Wm giving a new function, defined on ΩT , that equals a shifted copy of the part of
Wm defined on the pupil image ΩT (hmαg) (in darker blue).

3. LAYER-ORIENTED APPROACH

In the layer-oriented approach, the correction Φm(r, t) (with r ∈ Ωm) applied by each DM is proportional to
the measurement Wm(r, t) taken by its coupled WFS. The dynamic behavior of the closed loop system can be
described by the following system of differential equations:

dΦm(r, t)

dt
= γmWm(r, t) m = 1, . . . ,M, (8)

where γm is the gain of the m-th independent loop, with
∑M

m=1 γm = 1. In Ref. 7 this system was shown to be
stable, i.e. capable of returning to the initial conditions when perturbed by an instantaneous input. Furthermore,
the achievable correction was studied, under the simplifying hypothesis that the response time of the system is
much shorter than the evolution time of the turbulence. Considering this hypothesis and looking for the solution
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ΩT

ϕ ϕ 0−−−−−−−−→
(Tαgh̃m)∗ϕ

Ωm

Figure 3. Let ϕ be a function defined on ΩT , representing a wavefront reconstruted from star-oriented wavefront
measurements. Operator (Tαghm)∗ acts on ϕ giving a new function, defined on Ωm, that equals zero on the entire
domain except for ΩT (hmαg) (in blue), where it is equal to a shifted copy of function ϕ.

γ1(T
α1h1)∗ϕ

γ2(T
α1h2)∗ϕ

γ3(T
α1h3)∗ϕ

q

←−−−−−−

↑
A∗α1

ϕ

Ω3

Ω2

Ω1 = ΩT

ϕ

α1

Figure 4. Example of how operator A∗
α1

acts on a function ϕ defined on ΩT , considering M = 3. It maps the function
into a vector of the space

⊕3
m=1 L2(Ωm), i.e. in this case a vector composed of 3 layers. Each component of vector A∗

α1
ϕ

is a function of Ωm that equals zero on the entire domain except for the pupil image ΩT (hmαg), where it equals a shifted
copy of γmϕ.

achievable as t → ∞, starting with flat DMs, is the same as looking for the mirror deformations Φ1,Φ2, . . . ,ΦM

that solve system (8) when considering time constant turbulence and

dΦm(r, t)

dt
= 0 m = 1, . . . ,M. (9)

This means that we want to find the mirror deformations that ideally give:

γmWm(r, t) = 0 m = 1, . . . ,M, (10)

i.e. perfectly corrected wavefronts in all sensed planes.
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3.1 Iterative layer-oriented

As said, our purpose is to analyze the properties of the layer-oriented approach and comparing it, in terms of
achievable correction, to the Kaczmarz approach. In order to do this we here consider a time constant turbulence
and we build an iterative method to find the MCAO correction that proceeds at each step in a layer-oriented
way. Let γW be the vector containing the M closed loop wavefront measurements, weighted with weights γm

γW =

 γ1W1

...
γMWM

 ,

and let Φ0 be the vector whose M components represent the initial corrections applied by the M DMs. This
vector is the initial point of our layer-oriented iterative method. To obtain the first iteration, Φ1, we add to
the initial Φ0 a correction that is proportional to what the WFSs see when observing the stars corrected by Φ0

(closed loop). Since we are considering time independent incoming wavefronts, the WFS measurements depend
on those wavefronts and on the current DM deformations: Wm = Wm(Φ0). Note that what each WFS measures
depends on all the DMs, i.e. on the entire vector Φ0. With this notation, we are able to write the first iteration
of the layer-oriented iterative method asΦ1,1

...
ΦM,1

 =

Φ1,0

...
ΦM,0

+

 γ1W1(Φ0)
...

γMWM (Φ0)

 , (11)

or, shortly:
Φ1 = Φ0 + γW 0. (12)

The current DM deformations are now contained in vector Φ1. To find the second iteration we proceed in the
same way: we add to the current DM deformations a term proportional to the WFS measurements. TheM WFSs
now see the incoming wavefronts (constant in time) as corrected by the DMs described by Φ1: Wm = Wm(Φ1).
The second iteration is therefore given by

Φ2 = Φ1 + γW 1.

More generally, iteration k + 1 can be written as

Φk+1 = Φk + γW k, (13)

and a perfect solution is reached when W k = 0, which means that the WSFs observe perfectly corrected
wavefronts and the mirror deformations do not need any further update (the so called static response). By
using the operators introduced in the previous section, we can write the layer-oriented measurements W k in
terms of the time constant wavefronts coming in from directions α1, . . . ,αG. Let ϕαg

be a function defined on
the telescope aperture ΩT and representing the wavefront deformation observed in direction αg. What a WFS
conjugated to height hm sees of ϕαg

can be written as

Wm = sm

G∑
g=1

(Tαghm)∗ϕαg , (14)

where sm is a function, defined on Ωm, that equals a different constant value 1/s on different parts of the domain
Ωm. The weighting given by sm comes from the fact that, on each point of the m-th WFS, the incident light is
given by the sum of the light coming from different directions. Considering stars of equal intensities, the total
light that reaches a certain point of a WFS can be calculated by summing the different contributions and dividing
by the number of incident beams. As a next step, we can write each wavefront ϕαg , observed from the telescope
aperture in direction αg, in terms of the incoming wavefront wαg

and the currently applied DM correction Φk.
Without any mirror deformation we would have ϕαg

= wαg
(open loop), while taking the mirror deformations

into account we have
ϕαg

= wαg
−Aαg

Φk. (15)
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In the above equation, we use operator Aαg to select and add together the parts of the DMs which influence the
light coming from direction αg, and we then subtract this correction to the incoming wavefront. We substitute
Eq. (15) into Eq. (14) and multiply each Wm by the gain γm, obtaining the following expression for the entire
vector of measurements γW k:

γW k = S

G∑
g=1

A∗
αg

(wαg −AαgΦk)

= SA∗(w −AΦk), (16)

where A∗ is the adjoint of operator A and is represented by a matrix whose G columns are the operators A∗
αg

,
adjoints of operators Aαg (which are the rows of A), w is a column vector containing the G star-oriented
wavefronts wα1

, . . . , wαG
, and S =diag(sm) is the matrix of weighting functions (see Fig. 5). Iteration k+1 can

ΩT Φ1

s1

Ω2 Φ2

s21

11

1
3

1
2

1
2

1
2

1
3

Figure 5. Let Φ be a vector of two components, Φ1 and Φ2, defined on the two domains ΩT and Ω2. Matrix S is in
this case a 2× 2 diagonal matrix; its two diagonal values s1 and s2 are two functions, defined on ΩT and Ω2 respectively,
that equal a different constant value on each differently colored area of the two domains. Function s2 equals 1/3 on the
central area of Ω2, where three footprints overlap, 1/2 on the three lighter blue areas where two footprints overlap, and
1 in the three light blue areas where the detector is illuminated only by one guide star. Function s1 is simply a constant
function that equals 1/3 on the whole domain ΩT , since it is completely illuminated by the three guide stars.

therefore be written as
Φk+1 = Φk + SA∗(w −AΦk). (17)

If we then add a relaxation parameter λk, we obtain

Φk+1 = Φk + λkSA
∗(w −AΦk). (18)

This iteration is a weighted version of

Φk+1 = Φk + λk
1

G
A∗(w −AΦk), (19)

the iterative method introduced by Cimmino8 in 1938 to solve system

AΦ = w, (20)
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or, in a more explitic form, the system of linear equations

Aαg
Φ =

[
Tαgh1 · · · TαghM

]  Φ1

...
ΦM

 = wαg
g = 1, . . . , G. (21)

The unknown of this system is the vector of mirror deformations Φ, and the data are the open loop star-oriented
wavefont measurements wα1

, . . . , wαG
. A vector Φ∗ solves the above system if, for each direction, the sum of the

mirror corrections applied on the light coming from that direction (Aαg
Φ∗) equals the wavefront deformation

that light experiences going through the atmosphere (wαg ). Vector w belongs to the Hilbert space ΩG
T defined

by the inner product

〈w, z〉G =

G∑
g=1

〈wαg
, zαg

〉L2(ΩT ).

We have shown that iterating a layer-oriented method considering time independent turbulence corresponds
to using a weighted form of Cimmino’s iterative method to find the mirror deformations vector Φ that solves
system AΦ = w, whose known term is the vector of star-oriented measurements. The created iterative method
is in fact based on a numerical layer-oriented approach, where star-oriented measurements are combined, using
operators Aαg

and the weighting functions sm, in order to recreate the layer-oriented WFS measurements. We
must though keep in mind that in a real layer-oriented implementation light coming from the different guide
stars is optically combined on the WFSs: the data are not the G wavefronts wαg

, but the M measurements Wm.
This means that, even though we managed to write these measurements in terms of the star-oriented wavefronts
wαg , operators A and A∗ and the weighting matrix S (see Eq. (16)), and used this substitution to identify the
iterative layer-oriented method with a weighted Cimmino, in a real implementation term γW k of Eq. (13) is
directly obtained by the WFS measurements, with no need for matrix-vector multiplications nor calculation of
inverse operators.

4. KACZMARZ APPROACH

In the Kaczmarz approach, the three steps needed to compute the optimal mirror shape (wavefront reconstruc-
tion, atmospheric turbulence tomography and mirror fitting) are performed separately, one after another. The
incoming wavefronts are reconstructed from Shack-Hartmann WFS measurements; the atmospheric layers are
then reconstructed by using a Kaczmarz iterative method to solve the atmospheric tomography problem and
finally the optimal DM shapes are computed. For the wavefront reconstruction Ramlau and Rosensteiner used,
in Ref. 6, the CuReD method (Cumulative Reconstructor with Domain decomposition) described in Ref. 9. In
the following, we concentrate on the atmospheric tomography and mirror fitting steps, considering that the G
wavefronts wα1

, . . . , wαG
have already been reconstructed with the CuReD method. In Ref. 6, the tomography

problem is presented as the problem of finding a solution to the following system of linear equations:

ÃαgΦ̃ = wαg g = 1, . . . , G, (22)

where the wavefronts wα1 , . . . , wαG
are the star-oriented reconstructed wavefronts, Φ̃ is the vector containing

the L turbulence layers we want to find (approximation of the entire turbulence volume above the telescope)

Φ̃ =

Φ̃1

...

Φ̃L

 , (23)

and operators Ãαg are similar to the operators Aαg we introduced in Sec. 2, with the only difference that the

shift operators they are composed of act on the L turbulence layers at heights h̃1, . . . , h̃L:

Ãαg
:= (Tαgh̃1 , . . . , Tαgh̃L). (24)
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These operators and vectors, as well as the Hilbert spaces they belong to, can therefore be defined in the same
way we did for those we have used so far, simply changing m = 1, . . . ,M for l = 1, . . . , L.

Once the tomography problem described by system (22) has been solved, i.e. the L layers contained in Φ̃ have
been reconstructed, we need to find the optimal shape for the DMs. If the number of DMs equals the number of
reconstructed layers we can simply conjugate each DM to one turbulence layer. If, instead, we have less mirrors
than reconstructed layers, the mirror shape must be found following a chosen optimality criterion. Let M(< L)
be the number of DMs and Φ the vector of DM shapes. In Ref. 6 it is shown that, instead of reconstructing L
layers and then finding the M mirror shapes that best correct for them, one can directly reconstruct M artificial
layers located at the mirror heights hm, solving the following system of G linear equations:

Aαg
Φ = wαg

g = 1, . . . , G, (25)

where we go back to our operators Aαg
, which act on the mirror heights h1, . . . , hM , and vector Φ, which has M

components. Ramlau and Rosensteiner proposed to solve the above system using a Kaczmarz iterative algorithm,
which reads as follows:

Φk+1 = Φk +A∗
αc

(wαc −AαcΦk), (26)

where index k increases by 1 at each iteration (k = 0, 1, 2, . . . ), while index c cyclically sweeps through the
G sensed directions (c = 1, 2, . . . , G, 1, 2, . . . , G, . . . ). This algorithm approaches a solution to system (25) by
cyclically solving one of its G equations at a time: its g-th iteration gives a mirror deformation vector Φg

which perfectly corrects the wavefronts coming from the g-th direction. The following iteration adds to Φg the
correction needed in order to obtain a Φg+1 which perfectly corrects the wavefronts coming from direction αg+1,
and so on.

5. CONVERGENCE

Now that we have written the layer-oriented and the Kaczmarz approach as two different iterative methods to
solve the same system of linear equations, we can analyze and compare their behaviors and convergences. We
recall that, given the system

Aαg
Φ = wαg

g = 1, 2, . . . , G, (27)

the two considered iterative algorithms can be written as follows:

Kaczmarz : Φk+1 = Φk + λA∗
αg

(wαg
−Aαg

Φk), (28)

Layer− oriented : Φk+1 = Φk + λSA∗(w −AΦk), (29)

where λ > 0 is a relaxation coefficient (which could also assume a different value λk at each iteration), S =
diag(sm) is the weighting matrix and index g cyclically goes from 1 to G. In Sec. 5.1 and 5.2 we give the
mathematical description of the solutions achievable with the two methods. The main idea is that, starting
with completely flat mirrors (Φ0 = 0), both iterative methods asymptotically (k → ∞) find the mirror shape
that minimizes the overall residual wavefront error (Φ∗ = argmin{‖AΦ −w‖2}), where by “overall” we mean
considering all sensed directions. In our convergence analysis we studied the asymptotic solution to which the
Kaczmarz and the layer-oriented method converge to, and future works should be dedicated to an analysis of
their convergence rates. Even though we here concentrate on what the two methods converge to, and not on
how fast they do it, some interesting considerations on how they converge can still be done. Indeed, the way
they proceed from one iteration to another is very different. In Fig. 6 we qualitatively illustrate their different
behaviors. While the unrelaxed Kaczmarz method forces the solution, at each iteration, to perfectly correct the
wavefronts coming from one single direction, the iterative layer-oriented approach applies at each iteration the
deformation that best corrects all directions, without being able to perfectly correct none of them, but instead
“going for a compromise”.
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Figure 6. This figure (qualitatively) illustrates the different behaviors of the iterative layer-oriented method (first line of
four panels) and the Kaczmarz iterative method (second line). The two panels on the left represent the initial situation
(the same for the two methods), with three guide stars, whose PSFs are distorted by the seeing effects; they represent how
the telescope sees the three guide stars without the MCAO correction. The other three panels represent, for each method,
the results of their first three iterations, performed considering a time-fixed turbulence (we remind that we here do not
consider their convergence rates, but only their general way of proceeding from one iteration to another). The iterative
layer-oriented approach tries, at each iteration, to correct the three directions in a similar way. The Kaczmarz method
instead selects at each iteration one direction (pointed with an orange circle), and concentrates on perfectly correcting it,
without caring about what happens to the other two. This qualitative analysis of the behaviors of the two methods should
of course be related to an analysis of their convergence rates, in order to be able to illustrate how much the correction in
the three directions is improved at each iteration.

5.1 Kaczmarz approach

We here provide the convergence results that mathematically express what above explained about the solution
reachable with the Kaczmarz method. For each of the proofs we either refer to App. A or to Ref. 10. Let Φk be
the k-th iteration of the Kaczmarz method (28), and let us start by considering system (27) to be a consistent
system. The following theorem is taken from Ref. 11 (Theorem 3.6 of Sec. V.3) and its proof is provided in the
App. A:

Theorem 1. Assume that system (27) has a solution. Then, if 0 < λ < 2 and Φ0 ∈ range(A∗) (e.g. Φ0 = 0),
Φk converges, as k → ∞, to the solution of system (27) with minimum norm.

In the inconsistent case, this Kaczmarz method does not, in general, converge to the minimum norm solution.
The following theorem (Theorem 3.9 of Ref. 11) relates the solution found in the inconsistent case to the
relaxation parameter λ (see App. A for the proof):

Theorem 2. Let 0 < λ < 2. Then, for Φ0 ∈ R(A∗), e.g. Φ0 = 0, the Kackmarz method (28) for an inconsistent
system converges to Φλ = ΦMN +O(λ), where ΦMN minimizes 〈(AΦ−w), (AΦ−w)〉.

A third theorem tells us something more about the reachable solution. In Ref. 10 it is shown that, assigning
to the relaxation parameter λ a different value λk at each iteration, if λk → 0 as k → ∞ the solution reached
approaches the least squares solution of AΦ = w with minimum norm:

Theorem 3. Assume that system (27) has no solutions. Then, if λk → 0 as k → ∞ and Φ0 ∈ range(A∗)
(e.g. Φ0 = 0), Φk converges, as k → ∞, to the minimum norm least squares solution of system (27), i.e. the
minimizer of 〈(AΦ−w), (AΦ−w)〉 that has minimum norm.

For the proof of this theorem we refer to Ref. 10, where the argument is extensively treated and the simpler
case of Φ ∈ RM largely discussed.
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5.2 Layer-oriented approach

In order to study the convergence of the layer-oriented method, we first notice its equivalence to the DROP
algorithm (Diagonally-Relaxed Orthogonal Projection) introduced in Ref. 12 in 2008, a diagonally component-
wise relaxed version of Cimmino’s method. In the DROP method, the diagonal values of S are simple constants
1/sm, where sm is the number of non-zero elements in the m-th column of matrix A. In our layer-oriented
method these diagonal values are functions which equal a different value on different areas of their domain Ωm.
On each point of Ωm, the value of the function sm equals 1/s, s being the number of light beams that overlap
on that point. Even if they may appear different, the two S matrices actually do the same thing: they take
into account the sparsity of the system and replace Cimmino’s constant division by 1/G with more appropriate
component-dependent weights. Actually, by slightly modifying the description of the system we have used so
far, it is easy to show that the layer-oriented method can be written exactly as the DROP method (see App. B).
This simplifies our study of the convergence of method (29), and allows us to use the known convergence results
for the DROP method. We can therefore, from now on, think of matrix S as a diagonal matrix of constants,
and we start with the observation that, if S = I, iteration (29) becomes

Φk+1 = Φk + λA∗(w −AΦk). (30)

This iteration represents the so called Landweber algorithm, which is known to converge to the solution, or the
least squares solution, closest to Φ0 if 0 < λ < 2/ρ(A∗A), being ρ(A∗A) the spectral radius of matrix A∗A,
i.e. its largest, in absolute value, eigenvalue. Given this, and calling for simplicity H1 the Hilbert space LM

2 of
vector Φ0, we can prove the following theorem (Theorem 2.3 of Ref. 12):

Theorem 4. Let λ in algorithm (29) assume a different value λk at each iteration. If each λk satisfies

0 < ε ≤ λk ≤ (2− ε)/ρ(SA∗A),

where ε is an arbitrary small but fixed constant, then any sequence {Φk}∞k=0 generated by algorithm (29)
converges to a least squares solution

Φ∗ = argmin{‖AΦ−w‖2 : Φ ∈ H1}.

If, in addition, Φ0 ∈ R(SA∗), the range of SA∗, then Φ∗ has minimum S−1-norm.

Proof. Using the transformations yk = S− 1
2Φk and Ā = AS

1
2 , the iterative step (29) becomes

yk+1 = yk + λkĀ
∗
(w − Āyk+1).

Assuming that
0 < ε ≤ λk ≤ (2− ε)/ρ(Ā

∗
Ā), (31)

we apply the convergence results for the Landweber algorithm (30) to conclude that

lim
k→∞

yk = y∗ and y∗ = argmin{‖Āy −w‖2 : y ∈ H1},

which implies that

lim
k→∞

Φk = S
1
2y∗ = Φ∗ and Φ∗ = argmin{‖AΦ−w‖2 : Φ ∈ H1}.

Also, if y0 ∈ R(Ā
∗
) then y∗ has minimum norm. Hence, by using

‖y∗‖ = ‖S− 1
2S

1
2y∗‖ = ‖Φ∗‖S−1 ,

it follows that Φ∗ has minimum S−1-norm provided that Φ0 = S
1
2y0 ∈ R(SA∗).

Finally,

ρ(Ā
∗
Ā) = ρ(S

1
2A∗AS

1
2 ) = ρ(S

1
2 (S

1
2A∗AS

1
2 )S− 1

2 ) = ρ(SA∗A).
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6. CONCLUSIONS

The problem of finding the optimal mirror shape for an MCAO system can be written in terms of a system of
linear equations. The known term of this system is given by the wavefront deformations observed in the guide
stars’ directions, while the unknown is the shape to be given to the deformable mirrors in order to correct for
the observed turbulence effects. We wrote the layer-oriented and the star-oriented method proposed in Ref.
6 as two different methods to solve the same MCAO system of linear equations. Considering an atmospheric
turbulence not changing with time, we compared the solutions theoretically achievable by an infinite iteration
of the two different methods. While the star-oriented approach of Ref. 6 is there identified with Kaczmarz’s
iterative method, we showed that the layer-oriented approach corresponds to a weighted form of Cimmino’s
iterative method. Using the theoretical results known for these two methods, we proved that the two MCAO
approaches asymptotically tend to minimize the same quantity, which represents the overall (i.e. considering all
sensed directions) residual wavefront error.

Having the two methods written in the same theoretical framework, allowed us to further investigate their
different behaviors. While the Kaczmarz star-oriented iteratively forces the solution to achieve a perfect matching
in one direction at a time, the layer-oriented performs a solution which does not privileges any direction. Although
this has just a sort of historical perspective, it is interesting to notice that the second method, the layer-oriented,
is better suited for a limited number of iterations. In fact, in its implementation in the sky the number of
iterations performed before commands being applied is actually just one. This single-iteration approach would
turn out to produce largely non uniform effects in the field of view when using Kaczmarz’s method, which,
however, has been introduced assuming a large number of iterations to be performed before applying the mirror
commands. Future works need to provide these considerations with more quantitative convergence studies. The
analysis presented in this work can be used as a theoretical basis for future experimental simulations aimed at
studying and comparing the actual behaviors of the two methods. Our preliminary conclusions in terms of speed
of convergence further suggest that several other approaches invented almost a century ago could be of some
practical interest.

APPENDIX A. MATHEMATICAL PROOFS

We here consider the Kaczmarz iterative algorithm used to solve the system of linear equations

AgΦ = wg g = 1, 2, . . . G. (32)

We remind that bold letters are used for vectors and matrices. Operators are normally indicated with light
letters, except those that are defined as vector of operators, which are instead indicated with bold letters. Let
H1 and HT be Hilbert spaces, and let Ag : H1 → HT be bounded linear operators from H1 to HT . Let wg ∈ HT

for g = 1, . . . , G be given. Let Pg be the orthogonal projection of H1 onto the affine subspace AgΦ = wg, and
let

Pλ
g = (1− λ)I+ λPg, (33)

Pλ = Pλ
G . . . Pλ

1 . (34)

where λ is a relaxation parameter. Then, the Kaczmarz method (with relaxation) for the solution of system (32)
can be written as

Φk+1 = PλΦk, k = 0, 1, . . . (35)

with Φ0 ∈ H1 arbitrary. Follows the proof for Theorem 1, which we here recall:

Theorem 1. Assume that system (32) has a solution. Then, if 0 < λ < 2 and Φ0 ∈ range(A∗) (e.g. Φ0 = 0),
Φk converges, as k → ∞, to the solution of system (32) with minimum norm.
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Proof. Let Qg be the orthogonal projection onto ker(Ag), and let Φ∗ be any solution of (32). Then, for Ψ in
H1, we have that

PgΨ = Φ∗ +Qg(Ψ−Φ∗), (36)

Pλ
g Ψ = Φ∗ +Qλ

g (Ψ−Φ∗), (37)

PλΨ = Φ∗ +Qλ(Ψ−Φ∗), (38)

(Pλ)kΨ = Φ∗ + (Qλ)k(Ψ−Φ∗). (39)

Equation (36) comes from the fact that, since Ag(PgΨ) = wg, we can write Ag(PgΨ) = AgΦ
∗ +Ag(Γ), with

Γ ∈ ker(Ag). It is easy to show that Eq. (37) follows from Eq. (36). Using Eq. (33) we can in fact re-write the
right hand side of Eq. (37) as

Pλ
g Ψ = (1− λ)Ψ+ λPgΨ

and its left hand side as

Φ∗ +Qλ
g (Ψ−Φ∗) = Φ∗ + (1− λ)(Ψ−Φ∗) + λQg(Ψ−Φ∗)

= Φ∗ + (1− λ)Ψ− (1− λ)Φ∗ + λQg(Ψ−Φ∗)

= (1− λ)Ψ+ λΦ∗ + λQg(Ψ−Φ∗).

By equating these new expressions for the two sides of Eq. (37) we obtain

(1− λ)Ψ+ λPgΨ = (1− λ)Ψ+ λΦ∗ + λQg(Ψ−Φ∗),

PgΨ = Φ∗ +Qg(Ψ−Φ∗),

which is Eq. (36). As concerns Eq. (38) and (39), they follow from the fact that, being Φ∗ a solution of the
system, we have that Pλ

g Φ
∗ = Φ∗ and also PλΦ∗ = Φ∗, for every g = 1, . . . , G and every value of λ. We can

now write the Kaczmarz iteration as

Φk = (Pλ)kΦ0 (40)

= Φ∗ + (Qλ)k(Φ0 −Φ∗). (41)

We now need to introduce the following lemma, which tells us what operator (Qλ)k converges to when k → ∞.

Lemma 1. For 0 < λ < 2, (Qλ)k converges strongly, as k → ∞, to the orthogonal projection onto

G⋂
g=1

ker(I−Qg).

Using Lemma 1 we can write

Φk = Φ∗ + (Qλ)k(Φ0 −Φ∗) −→ Φ∗ + T (Φ0 −Φ∗) = (I− T )Φ∗ + TΦ0

as k → ∞, where T is the orthogonal projection onto

A =

G⋂
g=1

ker(Ag).

Now, if Φ0 ∈ range(A∗) = range(A∗
1) + range(A∗

2) + · · · + range(A∗
G), then TΦ0 = 0 and (I − T )Φ∗ is the

solution of system (32) with minimum norm, which ends our proof for Theorem 1.

We now need to proof the lemma we used. In order to do that, we first need to prove the following lemmas,
taken from Ref. 11.
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Lemma 2. Let T be a linear map in the Hilbert space H with ‖T‖ ≤ 1. Then

H = ker(I− T )⊕ range(I− T ).

Proof. For an arbitrary linear bounded map A in H we have

H = ker(A∗)⊕ range(A).

The lemma follows by putting A = I− T and showing that

ker(I− T ) = ker(I− T ∗).

Let Ψ ∈ ker(I− T ), i.e. Ψ = TΨ. Then

(Ψ, T ∗Ψ) = (TΨ,Ψ) = (Ψ,Ψ).

It follows that

‖Ψ− T ∗Ψ‖2 = (Ψ− T ∗Ψ,Ψ− T ∗Ψ)

= (Ψ,Ψ)− 2(Ψ, T ∗Ψ) + (T ∗Ψ, T ∗Ψ)

= −(Ψ,Ψ) + ‖T ∗Ψ‖2

≤ −(Ψ,Ψ) + ‖T ∗‖2‖Ψ‖2

≤ 0.

Hence Ψ ∈ ker(I− T ∗). This shows that

ker(I− T ) ⊆ ker(I− T ∗)

and the opposite inclusion follows by symmetry.

Let now Qg be a linear orthogonal projection in H, and let Qλ
g be defined as

Qλ
g = (1− λ)I+ λQg,

Qλ = Qλ
G . . . Qλ

1 .

Since Qg = Q2
g = Q∗

g one verifies easily that

‖Qλ
g‖ ≤ 1, 0 < λ < 2, (42)

‖Qλ
gΦ‖2 − ‖Φ‖2 = (2− λ)λ(‖QgΦ‖2 − ‖Φ‖2). (43)

Lemma 3. Let (Φk)k=0,1,... be a sequence in H such that

‖Φk‖ ≤ 1, lim
k→∞

‖QλΦk‖ = 1.

Then we have, for 0 < λ < 2,
lim
k→∞

(I−Qλ)Φk = 0.

Proof. The proof is by induction with respect to the number G of factors in Qλ. For G = 1 we have

‖(I−Qλ)Φk‖2 = ‖(I−Qλ
1 )Φk‖2 = ω2‖(I−Q1)Φk‖2

= λ2(‖Φk‖2 + ‖Q1Φk‖2 − 2(Φk, Q1Φk))

= λ2(‖Φk‖2 − ‖Q1Φk‖2)

=
λ

2− λ
(‖Φk‖2 − ‖Q1Φk‖2),
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where we used Eq. (43). If ‖Φk‖ ≤ 1 and ‖Qλ
1Φk‖ → 1, it follows that, for 0 < λ < 2, ‖(I − Qλ)‖ → 0, hence

the lemma for G = 1. Now assume the lemma to be correct for G− 1 factors. We put

Qλ = Qλ
GS

λ, Sλ = Qλ
G−1 . . . Q

λ
1

and we then have

(I−Qλ)Φk = (I− Sλ)Φk + (Sλ −Qλ)Φk (44)

= (I− Sλ)Φk + (I−Qλ
G)S

λΦk. (45)

Now let ‖Φk‖ ≤ 1 and ‖Qλ
1Φk‖ → 1. Because of the inequalities in (42) we have

‖QλΦk‖ = ‖Qλ
GS

λΦk‖ ≤ ‖SλΦk‖ ≤ ‖Φk‖,

hence ‖SλΦk‖ → 0. Applying the lemma for the single factor Qλ
G to the sequence Φ′

k = SλΦk we also obtain
(I−Qλ

G)S
λΦk → 0. Hence, from Eq. (45), it follows that (I−Qλ)Φk → 0.

Lemma 4. For 0 < λ < 2, (Qλ)k converges, as k → ∞, strongly to the orthogonal projection onto ker(I−Qλ).

Proof. Let T be the orthogonal projection onto ker(I − Qλ). From Lemma 2 and inequalities in (42) we know
that

H = ker(I−Qλ)⊕ range(I−Qλ), (46)

hence I− T is the orthogonal projection onto range(I−Qλ). Thus

(I− T )(I−Qλ) = I−Qλ,

(I−Qλ)T = 0.

From the first equation we get T = TQλ, from the second one T = QλT . In particular, T and Qλ commute.
Now let Φ ∈ H. The sequence (‖(Qλ)kΦ‖)k=0,1,... is decreasing, hence its limit c exists. If c = 0 we get, using
T = QλT = TQλ,

TΦ = (Qλ)kTΦ = T (Qλ)kΦ → 0 as k → ∞.

Since TΦ doesn’t depend on k, having TΦ → 0 as k → ∞ implies TΦ = 0. We therefore have

lim
k→∞

(Qλ)kΦ = 0, TΦ = 0,

i.e. (Qλ)kΦ → TΦ. If c > 0 we put
Ψk = ‖(Qλ)kΦ‖−1(Qλ)kΦ.

Then we have
‖Ψk‖ = 1, lim

k→∞
‖QλΨk‖ = 1,

hence we obtain, from Lemma 3,
lim
k→∞

(I−Qλ)Ψk = 0

or
lim
k→∞

(I−Qλ)(Qλ)kΦ = 0.

It follows that (Qλ)k converges strongly to 0 on range(I−Qλ), and this extends to the closure since the (Qλ)k are
uniformly bounded. On ker(I−Qλ), (Qλ)k converges trivially to I. The lemma follows then from Eq. (46).

Lemma 5. For 0 < λ < 2 we have

ker(I−Qλ) =

G⋂
g=1

ker(I−Qg).
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Proof. A fixed point of Qg is also a fixed point of Qλ
g . This settles the inclusion ’⊃’. On the other hand, if QλΦ,

then, using inequalitiy (42),
‖Φ‖ = ‖Qλ

G . . . Qλ
2Q

λ
1Φ‖ = ‖QλΦ‖ ≤ ‖Φ‖.

Hence, ‖QλΦ‖ = ‖Φ‖, and from Eq. (43), ‖Q1Φ‖ = ‖Φ‖. Since Q1 is a projection, Q1Φ = Φ. Since now

Φ = Qλ
G . . . Qλ

2Φ,

we can show in the same way that Q2Φ = Φ and so forth Q3x = · · · = QGΦ = x. This settles inclusion ’⊂ ’.

The proof of Lemma 1 immediately follows from the preceding lemmas.

We now prove Theorem 2, which read:

Theorem 2. Let 0 < λ < 2. Then, for Φ0 ∈ R(A∗), e.g. Φ0 = 0, the Kackmarz method (28) for an inconsistent
system converges to Φλ = ΦMN +O(λ), where ΦMN minimizes 〈(AΦ−w), (AΦ−w)〉.

Proof. To prove this theorem we first write the Kaczmarz method to solve system AΦ = w in the following way:

Φk+1 = BλΦk + dλ, (47)

where

AA∗ =

A1A
∗
1 . . . A1A

∗
G

...
...

AGA
∗
1 . . . AGA

∗
G

 = D +L+L∗,

D =

A1A
∗
1 0

. . .

0 AGA
∗
G

 =

I 0
. . .

0 I

 ,

L =


0 . . . . . . 0

A2A
∗
1 0 . . . 0

...
. . . 0 0

AGA
∗
1 . . . AGA

∗
G−1 0

 ,

Bλ = I− λA∗(D + λL)−1A,

dλ = λA∗(D + λL)−1w.

Since Φ0 and dλ ∈ R(A∗) the iteration takes place in R(A∗) where Bλ is a contraction, according to the
following lemma:

Lemma 6. (Lemma 3.8 of Ref. 11) Let 0 < λ < 2. Then, the restriction B′
λ of Bλ to R(A∗) satisfies ρ(B′

λ) < 1.

Hence the convergence of Φk to the unique (consistent case) solution Φλ ∈ R(A∗) of Φλ = BλΦλ + dλ

follows from the theory of iterative methods. Φλ can equivalently be defined as the unique solution of

A∗(D + λL)−1(w −AΦλ) = 0,

which, since in our case D = I,
A∗(I+ λL)−1(w −AΦλ) = 0. (48)

In the case of inconsistent system the minimum norm solution is determined by

A∗AΦMN = A∗w,

A∗(w −AΦMN ) = 0,

which differs from Eq. (48) by O(λ).
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APPENDIX B. LAYER-ORIENTED AS THE DROP METHOD

We remind that the layer-oriented iterative method reads as

Φk+1 = Φk + λSA∗(w −AΦk), (49)

where the diagonal values of S are functions which equal a different value on different areas of their domain
Ωm. On each point of Ωm, the value of the function sm equals 1/s, s being the number of light beams that
overlap on that point. In the DROP method introduced in Ref. 12 the diagonal values of S are simple constants
1/sm, where sm is the number of non-zero elements in the m-th column of matrix A. Despite this difference in
the matrix S, method (49) is equivalent to the DROP method. To explain this we will now formulate a system
equivalent to AΦ = w and a method to solve it that is equivalent to (49), but with the exact S matrix of the
DROP method. First, imagine to split each m-th component of vector Φ into a vector of pm components, each
being a function of the space L2(Ωm) that equals zero on the whole domain Ωm except for an area delimited
by a change in the value of the function sm. Referring to Fig. 5, for example, component Φ1 remains a single

component, but Φ2 splits into 7 components, each of them being a function of Ωm. The first component, Φ
(1)
2 ,is

a function that equals zero on the whole Ωm except for the light blue area on the left, defined by sm = 1, where

it equals Φ2; component Φ
(2)
2 is a function equal to zero on the whole Ωm except for the light blue area on the

right, where it equals Φ2, and so on until component Φ
(7)
2 , which is different from zero, and equal to Φ2, only

on the dark blue area defined by sm = 1/3. Each vector Φ can then be replaced by the P -dimensional vector
PΦ defined in a new Hilbert space, where P =

∑M
m=1 pm. In the example of Fig. 5, P = 8, which means that

the new vector 8Φ has 8 components. Vector PΦ contains the same information as Φ: it contains the same
M mirror shapes contained in vector Φ, but shuttered and placed on the P components. Indeed, by properly
defining the inner product of the new Hilbert space, the new system operators and their adjoints, it is easy to
think of the following system:

PA PΦ = w, (50)

which represents the problem of finding a vector PΦ from the same data w as before. Operator PA is composed
of G operators PAαg , each itself composed of P (instead of M) shift operators, in such a way that PAαg

PΦ =
AαgΦ. We can now write, for the new system (50), an iterative method similar to the one given by Eq. (49):

PΦk+1 =P Φk + S

G∑
g=1

PA∗
αg

(wαg
−P Aαg

PΦk), (51)

where now matrix S is the P -dimensional diagonal matrix S = diag(1/sm,p), with values sm,p being constants
corresponding to each of the different values that functions sm had on the different parts of their domains Ωm.
Referring to the example illustrated in Fig. 5, the new S matrix would be S = diag(1/3, 1/2, 1/2, 1/2, 1, 1, 1, 1/3).
Solution PΦ∗, obtained by iterating method (51), contains the same mirror shapes contained in the solution Φ∗

obtained by iterating method (49), but divided in P parts, and we can therefore consider iteration (49) to be a
DROP iteration as defined in Ref. 12, i.e. with the “correct” S matrix.
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