

Publication Year	2016
Acceptance in OA@INAF	2020-05-04T12:58:06Z
Title	VizieR Online Data Catalog: HI and 250um images of the Virgo cirrus (Bianchi+, 2017)
Authors	BIANCHI, SIMONE; Giovanardi, C.; Smith, M. W. L.; Fritz, J.; Davies, J. I.; et al.
Handle	http://hdl.handle.net/20.500.12386/24430
Journal	VizieR Online Data Catalog

J/A+A/597/A130 HI and 250um images of the Virgo cirrus (Bianchi+, 2017) The Herschel Virgo Cluster Survey. XX. Dust and gas in the foreground Galactic cirrus. Bianchi S., Giovanardi C., Smith M.W.L., Fritz J., Davies J.I., Haynes M.P., Giovanelli R., Baes M., Bocchio M., Boissier S., Boquien M., Boselli A., Casasola V., Clark C.J.R., De Looze I., di Serego Alighieri S., Grossi M., Jones A.P., Hughes T.M., Hunt L.K., Madden S., Magrini L., Pappalardo C., Ysard N., Zibetti S. <Astron. Astrophys. 597, A130 (2017)> =2017A&A...597A.130B (SIMBAD/NED BibCode) ADC_Keywords: Clusters, galaxy ; Photometry, millimetric/submm ; Interstellar medium Keywords: dust, extinction - radiation mechanisms: thermal infrared: ISM - submillimeter: ISM - radio lines: ISM local interstellar matter Abstract: We study the correlation between far-infrared/submm dust emission and atomic gas column density in order to derive the properties of the high Galactic latitude, low density, Milky Way cirrus in the foreground of the Virgo cluster of galaxies. Dust emission maps from 60 to 850um are obtained from SPIRE observations carried out within the Herschel Virgo Cluster Survey, complemented by IRAS-IRIS and Planck-HFI maps. Data from the Arecibo legacy Fast ALFA Survey is used to derive atomic gas column densities for two broad velocity components, low and intermediate velocity clouds. Dust emissivities are derived for each gas component and each far-infrared/submm band. For the low velocity clouds, we measure an average emissivity {epsilon] {nu}^LVC=(0.79+/-0.08)*10^-20^MJy.cm^2^/sr at 250um. After fitting a modified blackbody to the available bands, we estimated a dust absorption cross-section {tau} {nu}^LVC/N HI = (0.49+/-0.13)*10^-25cm^2^/H at 250um (with dust temperature T=20.4+/-1.5K and spectral index {beta}=1.53+/-0.17). The results are in excellent agreement with those obtained by Planck over a much larger coverage of the high Galactic latitude cirrus (50% of the sky vs 0.2% in our work). For dust associated with intermediate velocity gas, we confirm earlier Planck results and find a higher temperature and lower emissivity and cross-section. After subtracting the modelled components, we find regions at scales smaller than 20' where the residuals deviate significantly from the average, cosmic-infrared-background dominated, scatter. These large residuals are most likely due to local variations in the cirrus dust properties (and/or the dust/atomic-gas correlation) or to high-latitude molecular clouds with average N H2 <~10^20^cm^-2^. We find no conclusive evidence for intracluster dust emission in Virgo. Description: Images of the Virgo cirrus in the atomic gas HI emission and in the dust emission at 250um from Herschel-SPIRE. Two images are provided for HI emission from low velocity (LVC; -20km/s<v<100km/s) and intermediate velocity (IVC; -100km/s<v<-20km/s) clouds. The images are the same presented in the left and mid panels of Fig. 3 in the paper. Three images are provided at 250um: the observations, with large scale offsets removed; the model, obtained from the emissivity values derived in the paper and the two atomic gas maps; the residuals between observations and models. The three images have been obtained

between observations and models. The three images have been obtained from observations/model/residuals for each of the four HeViCS fields, and combined in a single large scale map after removing field-to-field offsets; they are the same presented in Fig. 8 of the paper. In all cases the resolution is 4.8'.

F	il	.e	Summary:	
		_		

FileName	Lrecl	Records	Explanations

ReadMe	80	•	This file
list.dat	94	5	List of fits images
fits/*	•	5	Individual fits images

See also:

J/AJ/90/1681	:	The Virgo Cluster Catalog (VCC) (Binggeli+, 1985)
J/MNRAS/419/3505	:	The HeViCS Bright Galaxy Sample (Davies+, 2012)
J/MNRAS/428/1880	:	FIR properties of VCC galaxies (Auld+, 2013)
J/A+A/552/A8	:	454 VCC galaxies revised coord. (di Serego Alighieri+ 2013)
J/A+A/573/A129	:	HeViCS. SPIRE point-source catalogs (Pappalardo+, 2015)
J/A+A/574/A126	:	HeViCS. XVIII. Star-forming dwarf galaxies (Grossi+, 2015)

Byte-by-byte Description of file: list.dat

Bytes	Format	Units	Label	Explanations
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	F9.5 F9.5 I2 ard I3 I3 I3 A12 A47	deg deg csec/pix Kibyte 	RAdeg DEdeg scale Nx Ny size FileName Title	Right Ascension of center (J2000) Declination of center (J2000) Scale of the image Number of pixels along X-axis Number of pixels along Y-axis Size of FITS file Name of FITS file, in subdirectory fits Title of the FITS file

Acknowledgements:

Simone Bianchi, sbianchi(at)arcetri.astro.it

References:

L.V.	cicicites.				
	Davies et al.,	Paper	I	2010A&A518L48D	
	Cortese et al.,	Paper	II	2010A&A518L49C	
	Clemens et al.,	Paper	III	2010A&A518L50C	
	Smith et al.,	Paper	IV	2010A&A518L51S	
	Grossi et al.,	Paper	V	2010A&A518L52G	
	Baes et al.,	Paper	VI	2010A&A518L53B	
	de Looze et al.,	Paper	VII	2010A&A518L54D	
	Davies et al.,	Paper	VIII	2012MNRAS.419.3505D,	J/MNRAS/419/3505
	Magrini et al.,	Paper	IX	2011A&A535A13M	
	Corbelli et al.,	Paper	Х	2012A&A542A32C	
	Pappalardo et al.,	Paper	XI	2012A&A545A75P	
	Auld et al.,	Paper	XII	2013MNRAS.428.1880A,	J/MNRAS/428/1880
	di Serego Alighieri et al.,	Paper	XIII	2013A&A552A8D,	J/A+A/552/A8
	De Looze et al.,	Paper	XIV	2013MNRAS.436.1057D	
	Baes et al.,	Paper	XV	2014A&A562A.106B,	J/A+A/562/A106
	Davies et al.	Paper	XVI	2014MNRAS.438.1922D	
	Pappalardo et al.,	Paper	XVII	2015A&A573A.129P,	J/A+A/573/A129
	Grossi et al.	Paper	XVIII	2015A&A574A.126G,	J/A+A/574/A126
	Pappalardo et al.,	Paper	XIX	2016A&A589A11P	
=		======	======		

(End) Simone Bianchi [INAF-OAA, Italy], Patricia Vannier [CDS] 20-Oct-2016