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ABSTRACT

If gamma-ray burst prompt emission originates at a typical radius, and if material producing
the emission moves at relativistic speed, then the variability of the resulting light curve depends
on the viewing angle. This is due to the fact that the pulse evolution time-scale is Doppler
contracted, while the pulse separation is not. For off-axis viewing angles 6yiew 2 6ot + r-1,
the pulse broadening significantly smears out the light-curve variability. This is largely inde-
pendent of geometry and emission processes. To explore a specific case, we set up a simple
model of a single pulse under the assumption that the pulse rise and decay are dominated by
the shell curvature effect. We show that such a pulse observed off-axis is (i) broader, (ii) softer
and (iii) displays a different hardness—intensity correlation with respect to the same pulse
seen on-axis. For each of these effects, we provide an intuitive physical explanation. We then
show how a synthetic light curve made by a superposition of pulses changes with increasing
viewing angle. We find that a highly variable light curve (as seen on-axis) becomes smooth and
apparently single-pulsed (when seen off-axis) because of pulse overlap. To test the relevance
of this fact, we estimate the fraction of off-axis gamma-ray bursts detectable by Swift as a
function of redshift, finding that a sizeable fraction (between 10 per cent and 80 per cent) of
nearby (z < 0.1) bursts are observed with 0ie = i + I' ' Based on these results, we argue
that low-luminosity gamma-ray bursts are consistent with being ordinary bursts seen off-axis.

Key words: relativistic processes—gamma-ray burst: general —gamma-ray burst: individ-
ual: GRB980425 — gamma-ray burst: individual: GRB031203 — gamma-ray burst: individual:
GRBO060218 — gamma-ray burst: individual: GRB100316D.

1 INTRODUCTION

Despite more than 40 years of observation and modelling, many
features of gamma-ray bursts (GRBs hereafter) still lack firm and
unanimous explanations. The diversity and complexity of GRB
prompt emission light curves is often used to illustrate the diffi-
culty in the classification of these sources and in the unification of
their properties. A natural approach to get insight into such com-
plexity is to look for global and average properties, like flux time
integral (i.e. fluence), total duration, average spectrum and peak
flux. Alternatively, one can try to break down the light curve into
simpler parts following some pattern. If a fundamental building
block was identified, the analysis of single blocks could be the key
to the unification and disentanglement of properties of the under-
lying processes. Many authors (e.g. Imhof et al. 1974; Golenetskii
et al. 1983; Norris et al. 1986; Link, Epstein & Priedhorsky 1993;
Ford et al. 1995; Kargatis & Liang 1995; Liang & Kargatis 1996;
Preece et al. 1998; Ramirez-Ruiz & Fenimore 1999; Lee, Bloom &
Petrosian 2000; Ghirlanda, Celotti & Ghisellini 2002; Hakkila &
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Preece 2011; Lu et al. 2012; Basak & Rao 2014) performed care-
ful analyses of light curves and time-resolved spectra looking for
patterns and for hints about such fundamental building blocks. As
early as 1983, Golenetskii et al. found evidence of a correlation
between spectral peak energy and photon flux during the decay of
pulses. Such a correlation was later confirmed by Kargatis et al.
(1994), Kargatis & Liang (1995) and Borgonovo & Ryde (2001)
and became known as the hardness—intensity correlation (Ryde
& Svensson 1998). Norris et al. (1986) were presumably the first
to systematically decompose the light curves into pulses and to
look for patterns in the properties of these putative building blocks.
Some years later, Woods & Loeb (1999) developed tools to calcu-
late the emission from a relativistically expanding jet, including the
case of an off-axis viewing angle. Ioka & Nakamura (2001) took
advantage of this formulation to model the single pulse, finding
that the spectral lag—luminosity and variability—luminosity corre-
lations found by Norris, Marani & Bonnell (2000) and Reichart
et al. (2001) can be explained as viewing angle effects. The pulse
model at that stage assumed emission from a unique radius and
from an infinitesimally short time interval (i.e. a delta function in
radius and time). In the following years, other authors proposed in-
creasingly refined models of the pulse (e.g. Dermer 2004; Genet &
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Granot 2009), but neglected the possibility for the jet to be observed
off-axis.

The viewing angle, i.e. the angle between the jet axis and the
line of sight, is usually assumed to be smaller than the jet semi-
aperture, in which case the jet is said to be on-axis. For larger
viewing angles, i.e. for off-axis jets, the flux is severely suppressed
because of relativistic beaming. Nevertheless, it can be still above
detection threshold if the viewing angle is not much larger than
the jet semi-aperture, especially if the burst is at low redshift. In
Pescalli et al. (2015), we have shown that off-axis jets might indeed
dominate the low-luminosity end of the observed population.

The idea that nearby low-luminosity GRBs could be off-axis
events has been a subject of debate since the observation of
GRB980425. Soderberg et al. (2004) rejected such possibility, based
on radio observations of GRB980425 and GRB031203, but soon
later Ramirez-Ruiz et al. (2005) presented an off-axis model for the
afterglow of GRB031203 which seems to fit better the observations
(including radio) with respect to the usual on-axis modelling. Using
the same off-axis afterglow model, Granot, Ramirez-Ruiz & Perna
(2005) extended the argument to two X-ray flashes, thus including
them in the category of off-axis GRBs. Based on prompt emission
properties, an off-axis jet interpretation of X-ray flashes had been
already proposed by Yamazaki, Ioka & Nakamura (2002, 2003),
following the work by Ioka & Nakamura (2001). Ghisellini et al.
(2006) argued that the off-axis interpretation of GRB031203 and
GRB980425 is not practicable, because their true energy would
then be on the very high end of the distribution, implying a very
low likelihood when combined with the low redshift of these two
events. More recently, the idea that such events are members of
a separate class (e.g. Liang, Zhang & Zhang 2007; Zhang 2008;
He et al. 2009; Bromberg, Nakar & Piran 2011; Nakar 2015) has
gained popularity. Our results about the GRB luminosity function
(Pescalli et al. 2015), though, still point towards the unification of
these events with ordinary GRBs based on the off-axis viewing
angle argument. With the present work we address the issue from
another point of view, by focusing on the apparently single-pulsed,
smooth behaviour of prompt emission light curves of these bursts,
trying to figure out if such behaviour is expected in the case of an
off-axis viewing angle.

The structure of the paper is as follows: in Section 2 we explain
why an off-axis GRB is always less variable than the same GRB seen
on-axis; in Section 3 we discuss the main assumptions of our simple
pulse model and we present the predictions for an on-axis (Section
3.3) and an off-axis observer (Section 3.4). In Section 4, we build
a superposition of pulses (to represent a synthetic prompt emission
light curve) and show how its properties change with increasing off-
axis viewing angle, comparing them with those found in light-curve
time-resolved spectral analysis. As expected, the model predicts
that variability is suppressed in off-axis GRBs because of pulse
broadening and overlap. In Section 5, off-axis GRBs are shown to
be a significant fraction of nearby observed GRBs. Based on the
obtained results, we conclude (Section 5.1) that light curves of low-
luminosity GRBs are consistent with the off-axis hypothesis. We
then summarize and draw our conclusions in Section 6.

2 PULSES: BUILDING BLOCKS OF GRB
LIGHT CURVES

2.1 Pulse overlap and light-curve variability

In a highly variable light curve, pulses must be short and not overlap
too much. If pulses are produced at a typical radius by material
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Figure 1. Upper-left panel: two point sources (blue and red dots) move at
equal constant speed along the z-axis, separated by a distance fcAT. Each
starts emitting at z = Ry, and stops emitting at z = Ryg. The blue and red
circles represent wavefronts of the emitted light. The first blue wavefront
and the first red wavefront reach any observer with a time difference AT.
Upper-right panel: close-up. Depending on the viewing angle 6, a distant
observer sees the blue and red signal separated (6, < 6oy) or overlapped
(6y > Ooy). The angle 6,y is the angle between the z-axis and the normal to
a plane tangent to both the first red wavefront and the last blue wavefront.
Lower panel: sketch of the bolometric light curve as seen by on-axis (6, = 0)
and off-axis (0, > Oy) observers. Letting b = (1 — Bcos6y)/(1 — B), the
single pulse flux as measured by the off-axis observer is decreased by a
factor b* with respect to the on-axis one, while the duration is increased by
a factor b. The pulse separation AT, though, does not depend on the viewing
angle, being the emission time difference at a fixed radius. This causes the
pulses to overlap as seen by the off-axis observer.

moving close to the speed of light, then the amount of overlap can
depend on the viewing angle. To see this, consider two point sources
moving at equal constant speed Sc along the z-axis, separated by
a distance BcAT, as in Fig. 1. Each source starts emitting at radius
R, and stops emitting at Rog. An observer along the z-axis (viewing
angle 6, = 0) sees two separated pulses of equal duration At and
peak flux Fjy, the second starting a time AT after the start of the
first. Because of relativistic Doppler effect, an observer with another
6, # 0 measures a lower (bolometric) peak flux F = F,/b* and a
longer pulse duration At = b Aty, where b = (1 — fcosb,)/(1 —
B) is the ratio of the on-axis relativistic Doppler factor §(0) = I'~!
(1 — B)~! to the off-axis one §(9,) = I'"'(1 — Bcos@,)~! (Rybicki
& Lightman 1979; Ghisellini 2013). The difference in pulse start
times AT, on the other hand, is not affected by the viewing angle,
because the emission of both pulses begins at the same radius:
it can be thought of as emission from a source at rest (for what
concerns arrival times). The pulses overlap if Ar > AT, which
corresponds to 6, > 6,, &~ I'"'\/AT/At; — 1. Consider the case
in which the pulse separation is equal to the pulse duration, i.e. AT
=2Aty and 0, ~ I'"!. Increasing the viewing angle, the amount of
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Figure 2. Example light curves constructed by superposition of pulses. All
pulses are equal. The pulse shape is a double-sided Gaussian (Norris et al.
1996), which is a common phenomenological description of GRB pulse
shapes. The peak flux is Fp, and the rise to decay time ratio is 1:3. The
start times of the pulses are the same for the two light curves and have been
sampled from a lognormal distribution with mean 20 s and sigma 0.35 dex.
Pulses in the lower light curve are broadened by a factor of 4 and their
flux is lowered by a factor of 256 with respect to the upper light curve,
which corresponds to the effect of an off-axis viewing angle 6, = +/3I"~!
as discussed in the text.

pulse overlap increases, reaching half of the pulse width as soon as
b = 4, which corresponds to 6, & +/3I"~'. With this viewing angle,
the flux of the single pulse is reduced by b* = 256, but the flux in
the overlapped region is higher by a factor of 2, so that the peak flux
effectively decreases by 128.

The purpose of this simple argument is to show that if pulses are
produced by material moving at relativistic speed, and if a typical
emission radius exists, then the apparent variability of the light
curve can be significantly smeared out by pulse overlap as seen by
an off-axis observer (see also Fig. 2). The viewing angle needed for
this to happen is still small enough for the flux not to be heavily
suppressed by relativistic (de-)beaming. One may argue that the
probability to have a viewing angle in the right range for this to
happen without falling below the limiting flux of the instrument is
vanishingly small. To address this point, in Section 5 we give an
estimate of the rate of such events, showing that a significant fraction
(~40 per cent) of nearby bursts (z < 0.1) are likely observed with
0y > Ojer + r-L

Being based solely on geometry and relativity, the above argu-
ment does not rely on a specific scenario, e.g. internal shocks. Any
model in which photons are produced at a typical radius, being
the photospheric radius (e.g. subphotospheric dissipation models
like those described in Rees & Mészaros 2005; Giannios 2006;
Beloborodov 2010) or beyond (e.g. magnetic reconnection models;
Lazarian et al. 2003; Zhang & Yan 2010), eventually must take into
account the pulse overlap as seen by off-axis observers.

2.2 Pulses in the internal shock scenario

The pulse width in GRB light curves is roughly constant through-
out the burst duration (Ramirez-Ruiz & Fenimore 1999). The in-
ternal shock scenario (Rees & Meszaros 1994) provides a natural
framework for the understanding of this kind of behaviour. In this
scenario, discontinuous activity in the central engine produces a se-
quence of shells with different Lorentz factors. When faster shells
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catch up with slower ones, shocks develop and particles are heated.
If the plasma is optically thin and some magnetic field is present, the
energy gained by the electrons is promptly and efficiently radiated
away by synchrotron (and inverse Compton) emission. Each pulse is
thus the result of the merger of two shells beyond the photospheric
radius Ryy. The strength of the shock, and thus the efficiency of
the electron heating, depends strongly on the relative Lorentz fac-
tor of the merging shells (a radiative efficiency of a few per cent
is achieved only for I';,; 2 3; Lazzati, Ghisellini & Celotti 1999).
Shell pairs with small relative Lorentz factors merge later (they need
more time to catch up with each other); thus, the highest efficiency
is achieved for shells merging just after the photospheric radius.
This explains, within this framework, why the typical pulse width
is not seen to grow with time: the bulk of the emission happens at a
fixed radius, regardless of the expansion of the jet head.

2.3 Time-scales
Three main time-scales arise in the internal shock scenario:

(i) the electron cooling time 7., i.€. the time needed by elec-
trons to radiate away most of the energy gained from the shock;

(ii) the angular time-scale T,yg, i.e. the difference in arrival time
between photons emitted at different latitudes;

(iii) the shell crossing time 7, i.e. the time needed for the two
shells to merge.

The electron cooling time-scale, as measured in the lab frame, is
Teool ~ "'y /¥, where T is the bulk Lorentz factor, y is the typical
electron Lorentz factor as measured in the comoving frame and y
is the cooling rate. For synchrotron emission, it is of the order of
Teool ~ 1077 s for typical parameters' (Ghisellini et al. 2000).

The angular time-scale arises when one takes into account the
arrival time difference of photons emitted at the same time by parts
of the shell at different latitudes. It is defined as the arrival time
difference between a pair of photons, one emitted at zero latitude
and the other at I'"! latitude. Given a typical photospheric radius
(Daigne & Mochkovitch 2002) Ry, ~ 10'2 cm, this difference is
Tang ~ R/T?c ~ 3 x 1073 s R12/ '3 (we adopt the notation Q, =
Q/10" in cgs units).

The shell crossing time is 7. ~ w/c, where w is the typical shell
width. Being linked to the central engine activity, one may assume w
to be of the order of a few Schwarzschild radii. The Schwarzschild
radius of a 5 M black hole is Ry ~ 1.5 x 10° cm; thus, an estimate
might be 7, ~ 5 x 107> s we. In this case, we have Tang > Tsco
i.e. the effect of shell curvature dominates over (i.e. smears out)
intrinsic luminosity variations due to shock dynamics, which take
place over the T time-scale or less.

Temporal analysis of GRB light curves, though, along with simple
modelling of internal shocks (Nakar & Piran 2002a,b), seems to
indicate that the shell width must be comparable to the initial shell
separation. Taking the two as equal, the time needed for two shells
to collide is the same as the shell crossing time, and thus the shell
merger is completed within a doubling of the radius. In this case,
the shell crossing time and the angular time-scale are the same
(Piran 2005). This means that details of the pulse shape and spectral
evolution cannot be explained as just being due to the shell curvature

! By typical parameters we mean I' = 100, I're] = a few, Uryq = Up, a
typical synchrotron frequency of 1 MeV and we assume equipartition. See
Ghisellini, Celotti & Lazzati (2000) and references therein for a complete
treatment.

MNRAS 461, 3607-3619 (2016)
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effect. Indeed, discrepancies between predictions based on shell
curvature only and observations have been pointed out (e.g. Dermer
2004).

Nevertheless, the description of the pulse in terms of shell curva-
ture qualitatively reproduces the main features of many long GRB
pulses, namely the fast rise and slower decay, the hard-to-soft spec-
tral evolution and the presence of a hardness—intensity correlation
(Ryde & Petrosian 2002). For this reason, since we focus on the
effect of the viewing angle rather than on details of the pulse, in
what follows we set up a simple model of the pulse based on the
shell curvature effect only.

3 PULSE LIGHT CURVES AND
TIME-DEPENDENT SPECTRA

3.1 Main assumptions

Based on the arguments outlined in Section 2.3, we assume that the
variation of the flux seen by the observer during a single pulse is due
only to the angular time delay described above. The luminosity L
of the shell is assumed constant during an emission time 7 and zero
before and after this time interval. The emitting region is assumed
geometrically and optically thin. The emitted spectrum, as measured
by a locally comoving observer, is assumed to be the same for any
shell fluid element.

Woods & Loeb (1999) and other authors already provided the
necessary formulas for the computation of the pulse shape in this
case. For the ease of the reader, and for the purpose of developing
an intuitive physical description of the results, though, we will go
through some details of the derivation anyway, hereafter and in
Appendix A.

Let the radius of the shell be R at the beginning of the emission
and R + AR at the end of it. The bolometric flux F(f) (specific
flux F,(?)) is computed by integration of the intensity / (specific
intensity /,) over the appropriate equal arrival time surface (EATS)
S(#), namely

F(t) = / I(s)ds/r?, (D
S(t)

where r is the distance between the element ds of S(¢) and the
observer.

Assuming isotropic emission in the comoving frame, in the ap-
proximation of infinitesimal shell thickness, the intensity is re-
lated to the comoving one (primed quantities throughout the pa-
per will always refer to the comoving frame) through I = §*I' [or
I1,(v) = 83I'(v/8) for the specific intensity]. Note that the constant
luminosity assumption implies ' o« R~2: this is consistent if the
number of emitting particles is constant despite the increase of the
surface area with the expansion. It would not be appropriate e.g.
for external shocks, where the number of emitting particles instead
increases with increasing surface area.

3.2 Equal arrival time surfaces

3.2.1 A sphere

Consider a sphere of radius R. The surface of the sphere starts
emitting electromagnetic radiation at ¢ = #, and stops suddenly at
t =ty + T (as measured in the inertial frame at rest with respect to
the centre of the sphere). Emitted photons reach a distant observer
at different arrival times. Let the line of sight be parallel to the
z-axis (as in Fig. 3). The first photon to reach the observer is the

MNRAS 461, 3607-3619 (2016)

to observer to observer

cT

Figure 3. A sphere starts emitting radiation at 7 = 7y and stops att =t + 7.
The line of sight of a distant observer is parallel to the z-axis. Left: a time
t < T after the arrival of the first photon, the observer has received radiation
from the portion of the sphere with z > R — ¢t = Rcos6,,. Right: later
when ¢t > T, the observer has stopped receiving radiation from the portion of
the sphere with z > R — ¢(t — T) = Rcos 0. Thus, the effective emitting
surface is the portion of the sphere with R cos 6oy < z < Rcos 0.

one emitted at # = #, from the tip of the sphere at z = R. Lett =0
be its arrival time as measured by the observer. A photon emitted
at the same time ¢ = £y by a point of the surface at z = Rcos 8,
reaches the observer at a later time t = R(1 — cosf,,)/c. Thus,
despite the surface turned on all at the same time 7 = £y, at a given
time ¢ the observer has received radiation only from the portion
with z/R > cosf,, = 1 — ct/R (left-hand panel of Fig. 3). This
can be visualized as each point on the sphere being turned on by
the passage of a plane travelling in the —z direction with speed c,
starting from z = R at + = 0. The same reasoning applies to the
turning off of the sphere: each point is turned off by the passage of
a plane travelling in the —z direction with speed c, starting from
z=Rattr=T. Asaresult, if T < R/c, at some time 7 the observer
will ‘see’ only the portion of sphere comprised between cos 6., =
1 — ct/R and cos O = 1 — (¢t — T)/R (right-hand panel of Fig. 3).
Thus, the EATS at time ¢ is this portion of the sphere.

3.2.2 An expanding sphere

If the sphere is expanding, the above argument is still valid, with
some modification. The radius now is R(f) = R + Bc(t — ty) so
that the lighting up takes place at R(0) = R and the turning off at
R(T) = R + BcT = R + AR. Since the lighting up happens all at
the same radius, the angle 6., up to which the observer sees the
surface on is still given by cos 6,, = 1 — ct/R (the photons emitted
at t = 1y all come from the sphere with radius R). Since the sphere
is expanding, its surface ‘runs after’ the emitted photons, causing
the arrival time difference between the first and the last photon to
contract. In particular, for the first and last photon emitted from z =
R(t), the arrival time difference is o = T(1 — B) = T/(1 + B)I'?,
where I' = (1 — B2)7!/2 is the Lorentz factor of the expansion.
For this reason, the angle up to which the observer sees the surface
turned off is given by cos O = 1 — c(t — toir) /(R + AR).

The resulting geometry is not spherical (see Fig. 4), but the as-
sumption of constant luminosity greatly simplifies the mathematical
treatment in that it allows one to perform all integrations over an-
gular coordinates only.

3.3 On-axis jet

A radially expanding (homogeneous) jet seen on-axis is indistin-
guishable from an expanding sphere as long as its half-opening
angle 0 is much larger than 1/I" (e.g. Rhoads 1997). As a corol-
lary, the same holds if the viewing angle 6, is small enough so that
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Front view Top view

EATS

Figure 4. The shaded regions represent the EATS of the expanding sphere
at t > fofr. The line of sight is parallel to the z-axis. The sphere started
emitting when its radius was R, and stopped when it was R + AR.
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Figure 5. Bolometric light curves of three pulses from an expanding sphere.
The flux is normalized to Fy,x and the observer time is in units of t (see
the text for the definition of these quantities). The ratio of AR to R is given
near each curve. The black dashed line represents the saturation flux, which
is reached if 7> R/c, or equivalently if AR > R.
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Figure 6. Bolometric light curves of three pulses from an on-axis jet with
Ojec = 1/T". The ratio of AR to R is reported near each curve. The black
dashed line represents the time fje; at which the jet border first comes into
sight. In this case, fje; equals 7.

the angular distance 6, — 6, of the line of sight from the jet bor-
der is still much larger than 1/T". Since the typical expected Lorentz
factor of GRB jets is I" ~ 100, this means that a viewing angle a few
0.01 rad smaller than 6j.; allows one to consider the jet practically
on-axis. On the other hand, if the jet is very narrow, or if the Lorentz
factor is low enough (i.e. if 8j. is comparable with 1/T"), then the
finite half-opening angle must come into play. Fig. 5 shows light
curves (equations 2 and 3) of pulses from an expanding sphere, or
equivalently from a jet with 6, > 1/I"; Fig. 6 instead shows light
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curves (equations A14 and A15) of pulses from an on-axis jet with
Ojer = 1/T.

Such light curves can be computed analytically within the as-
sumptions stated in Section 3.1. Some natural scales emerge during
the derivation:

(i) the angular time-scale

R .

Be(l + B)r?’
(i) the pulse peak time

AR )
Be(l + pr’

(iii) the pulse saturation flux
_2mR*(1+B)

max — 3d2 ﬂ

T =

Tpeak =

r2,

where I is the comoving bolometric intensity and d is the distance
of the jet from the observer. In the spherical case, before the peak
(t < tpeax), the bolometric flux rises as

-3
F(’)zl—(1+5) )

Fmax T

then (¢ > fyea) it decreases as

F(t t—toe \ 7
()=(1+7Pe“k) —<1+7) : 3)
Fmax f+tpeak T

When the finite jet half-opening angle 0} is taken into account,
the light curve is given instead by equations (A14) and (A15).

3.3.1 Spectra and hardness—intensity correlation

Since we are mainly interested in how the peak of the observed spec-
trum evolves with time, we assume a simple form of the comoving
spectral shape, namely

I/ /N —a /N —b -1
aw5=Mmm?{(?) +<?> }, @)
Yo Yo Vo

where n(a, b) is a normalization constant which depends upon the
high and low spectral indices a and b; clearly I, o< v for v < v,
and I’ oc v for v/ 3> v{. If a > 0 and b < —1, the normalization
n(a, b) can be defined so that

gz/xquu (5)
0

The break frequency vy is related to the comoving V' F; peak energy
E . through

I
’ a +l ab ’
Epsak = <_m) hvy, (6)

where £ is the Planck constant. All the examples in this paper
will assume the above comoving spectral shape, with a = 0.2 and
b = —1.3, which represent average high and low spectral indices of
Fermi GRB spectra (Nava et al. 2011).

Fig. 7 shows spectra from an on-axis jet at six representative
times, computed using equation (A32). The evolution is clearly
hard-to-soft (i.e. the peak energy decreases monotonically with
time), and the low- and high-energy spectral indices are the same as
those of the comoving spectrum. Fig. 8 shows that after the peak of
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Figure 7. Spectra at different times of a pulse from a jet seen on-axis, with
I' = 100 and AR = R. The comoving spectral shape is given in equation
(4). The coloured circles in the inset show at which point in the pulse each
spectrum (identified by the colour) was calculated.
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Figure 8. Peak of the observed spectrum versus the bolometric flux, for a
pulse with I' = 100 and AR = R. A clear hardness—intensity correlation is
present. The slope of the black dashed line is 1/3. The inset is the same as
in Fig. 7.

the light curve the peak energy Ej, of the observed vF, spectrum
varies with the bolometric flux F following roughly Epexx o F'/3,
i.e. the model predicts a hardness—intensity correlation with index
1/3 during the decay of the pulse. Let us interpret these results.

(i) Pulse rise: the maximum of Ep.,(?) is at the very beginning
of the pulse, when only a small area pointing directly towards the
observer (the ‘tip’ of the jet at zero latitude) is visible. As the visible
area increases, less beamed contributions from parts at increasing
latitude come into sight, reducing Ej, slightly.

(ii) Pulse decay: after the pulse peak, the tip of the jet turns off,
causing Ep., to drop. At this time, the visible part of the jet is
an annulus (see Fig. 4): the spectral peak is determined mainly by
the maximum Doppler factor 8, (f) = [ ~'[1 — B cos ()] " of
the visible area, which corresponds to the innermost circle of the
annulus, so that Epeax ™~ Smax E The flux F in turn decreases
approximately as 8}, times the angular size of the annulus. The
latter is proportional to cos 6,5 — c0s 0,,, Which can be shown to
be

’
peak*

AR 1
R IBF‘Smax.

@)

€OS By — €OS Oy =~
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to observer

L actual emitting gl
ct surface —

Figure 9. The off-axis jet can be thought of as being part of an expanding
sphere. For simplicity, the EATS of the expanding sphere (hatched area) is
represented as in Fig. 3, but it is actually the same as in Fig. 4. The actual
EATS of the jet is the interception between the jet surface and the sphere
EATS.

3

As a result, we have that F' o« §; .,

F'3,

which explains why Epc,

3.4 Off-axis jet

Also the off-axis jet (9, > ;) can be treated using the formalism
introduced by Woods & Loeb (1999). In Appendix A3, we give an
alternative derivation based on the idea that the off-axis jet can be
thought of as being part of an expanding sphere, and that we can
work out the proper EATS as the intersection between the expanding
sphere EATS and the jet surface.

3.4.1 A longer pulse duration

If the jet is off-axis, relativistic beaming of the emitted radiation
causes both the flux and E,., to be much lower than the on-axis
counterparts. For the same reason, the duration of the pulse becomes
longer. This can be understood intuitively as follows: as in the on-
axis case, the jet surface is not seen to turn on all at the same time,
but progressively from the nearest-to-the-observer point (point A
in Fig. 9) down to the farthest. The same holds for the turning off.
Thus, point A is the first to turn on, and also the first to turn off.
As a consequence, the effective emitting area increases as long as
point A is seen emitting, then it decreases. In other words, the peak
time equals the emission time of point A, which is given by

tpCZlk(6V7 jSt) =T [1 - ﬁ cos(0, — Qjcl):l (8)
thus its ratio to the on-axis peak time is
lpeak(gw ejet) _ 1 — ,3 COS(@V — Gjet)
tpeak 1- ﬂ '
Fig. 10 shows a plot of this ratio as a function of 6, — ;¢ for
different values of I". The off-axis pulse is thus intrinsically broader
than its on-axis counterpart. The effective duration as seen by the

observer, though, depends on the limiting flux and on the amount
of overlap with other pulses.

®

3.4.2 A lower peak flux

The decrease of the pulse peak flux F, with increasing viewing
angle can be understood as follows:

(i) when the jet is observed on-axis, the bulk of the flux comes
from a ring of angular radius 1/I" centred on the line of sight. Let
us indicate this peak flux with F*;
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Figure 10. Ratio of the off-axis pulse peak time fpeak (6, Ojer) to the on-axis
pulse peak time fpeak. The jet half-opening angle is 0jer = 5°. Each curve
refers to a different value of the Lorentz factor, from I' = 50 to 300 with a
step of 50.

(ii) as long as 6, < Oj —
equal to F*;

(iii) if 6, = 6Oje(, about half of the ring is still visible, thus F, is
reduced to about F*/2;

(iv) if 0, is only slightly larger than 6j, the flux is dominated
by the contribution of the jet border, whose Doppler factor is ég =
Il — Beos By — Bje)] ™, thus F, o 85 F*;

(v) as 6, increases towards 6, >> 6j, the relative difference
in Doppler factor between different parts of the jet is reduced,
and the flux contributions of parts other than the border become
increasingly important. This compensates in part the de-beaming
of the jet border, the effect being more pronounced for larger jets,
because the effective emitting surface area is larger.

1/T", we have that F), is essentially

Based on these considerations, an empirical analytical formula can
be constructed to describe how the peak flux depends on the viewing
angle 6, and on the jet half-opening angle 6;... An example of such
an empirical formula is

1 6, <6,
F/F* ~ 1 —-T0, — 9;;)/2 Gj”;t <0y < Ot (10)
1/3
1 5 (47&91& )
2 ((1+%)r) Oy > Oyt
where Gj*gt = Oj — 1/ T". The definition for 9;& < 6y < B is justa

linear decrease from F* to F*/2; the exponent of §g in the definition
for 6, > 0 is 4 reduced by an amount? which depends on 6 et I
order to take into account the flux loss compensation explained in
point (v) above.

In Appendix A3, we show that the flux at time ¢ of the pulse from
an off-axis jet is given by the integral in equation (A25), which
however has no analytical solution for 6, > 0. The coloured solid
lines in Fig. 11 represent F}, as computed by numerical integration
of equation (A25) at t = tpea(6v, Oje), for five jets with different
half-opening angles. The orange dashed lines are plots of equation
(10) for the corresponding parameter values, showing that the best
agreement is for half-opening angles 5° < ;e S 10°.

2 The coefficient and exponent of 8je; in equation (10) have been chosen to
get a good agreement with the results from the semi-analytical formulation
developed in Appendix A.
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Figure 11. Peak fluxes of pulses from jets with four different half-opening
angles, namely 0 = 3°, 5%, 10° and 15° (indicated by the thin vertical
dotted lines), assuming I' = 100 and AR = R. The orange dashed curves
represent the corresponding empirical parametrization given in equation
(10).

LOg[Epeak(tpeak)/ 21—‘Eypeak]
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Figure 12. Epc.x at the pulse peak time for three jets with R = 1013 cm,
Ojer = 5° and three values of I', namely (from red to green) I' = 30, 100
and 300. The black dashed lines are plots of §g/2I" for the corresponding
values of I'".

3.4.3 Spectral peak energy, hardness—intensity correlation

With the same assumptions as in the on-axis case, we computed the
spectra from the off-axis pulse at different times. The spectrum at
each time is dominated by the part of the EATS with the strongest
beaming. At time #,c.x, such part is the border of the jet nearest to
the observer; thus, one expects Epca(fpeak) to decrease with 6, as
the Doppler factor of the jet border, i.e. Epcak (fpeax) o< 8. Fig. 121is a
plot of Epeqi (fpeax) for three values of T, obtained by using equation
(A32) to compute the spectra, and it shows that indeed Epc.x is
approximately proportional to §g. In general, E, is a little lower
than dg E,,c because of the ‘blending in” of softer spectra from less
beamed parts of the jet.

Fig. 13 shows the evolution of Ej. as a function of the flux
F during the pulse, for four different off-axis viewing angles. A
‘hardness—intensity’ correlation during the pulse decay is still ap-
parent, with a slightly steeper slope (~0.5) just after the pulse peak,
getting shallower as the flux decreases and eventually reaching
~1/3 as in the on-axis case.

MNRAS 461, 3607-3619 (2016)
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Figure 13. Logarithmic plot of Epeax versus flux of the same pulse seen
at different off-axis viewing angles. The jet has 0je = 5°, I' = 100 and
R = 10" cm. The four series of points (from green to red) correspond to
0y =5°1, 575, 6° and 7°. The inset shows the slope of the relation during
the decay of the pulse for each viewing angle.
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Figure 14. Light curves of a pulse from a jet with 0je; = 5° and I" = 100.
Each curve refers to a different viewing angle in the sequence (from green
tored) 0y = 5°,5%2,5%4, 526, 528 and 6°. Fp,x refers to the on-axis jet. The
inset shows the same curves plotted with logarithmic axes.

3.4.4 Light curves

Fig. 14 shows plots of bolometric light curves of the same pulse seen
at different viewing angles, computed by numerical integration of
equation (A25) using a Runge—Kutta fourth-order (RK4) scheme.
Both the peak flux decrease and the duration increase discussed in
Sections 3.4.1 and 3.4.2 are apparent. The overall shape is qualita-
tively insensitive of the viewing angle, apart from the peak being
sharper in the on-axis case.

4 MULTI-PULSE LIGHT CURVES

Now that we have a detailed (though simple) model of the single
pulse, we can proceed to construct a ‘synthetic’ GRB light curve
by superposition of pulses. Some non-trivial features emerge from
such superposition. Fig. 15 shows four light curves of the same
series of N = 100 pulses seen at four different viewing angles. All
pulses are equal in duration and peak flux. Their starting times have
been sampled from a uniform distribution within a 2 s time span.

MNRAS 461, 3607-3619 (2016)

The jet parameters are I' = 100, 0;, = 5°, R= 10" cmand AR=R.
The viewing angles are 6, = 0, ;e + 1/T", Oie( + ﬂ/ I" and 6, +
2/T". The comoving spectral shape is the same as before (equation
4). The resulting light curves have been binned at 32 ms resolution
for a better comparison with actual GRB light curves. For each light
curve, the Epqy of the spectrum in each time bin is also given (thin
orange histograms). The following features should be apparent:

(i) as the viewing angle increases, variability is smeared out by
the pulse broadening;

(ii) the shape of the overall light curve tends to resemble a (long)
single pulse when the viewing angle is large enough;

(iii) the superposition of pulses masks the hard-to-soft spectral
evolution of the single pulses, turning it into an intensity-tracking
behaviour: this is due to the superposition of spectra with different
peak energies;

(iv) the variation of E,.q leads slightly the variation in flux,
because of the hard-to-soft nature of the single pulses;

(v) there is a general softening of E, in time over the entire
light curve.

These features are strikingly similar to those found in time-resolved
spectral analysis of real GRBs (e.g. Ford et al. 1995; Ghirlanda
et al. 2002). We do not advocate this as a proof of the correctness
of our model, which is certainly oversimplified, but rather as a
further indication that some features of GRB light curves might be
explained admitting that the jet is seen at least slightly off-axis. The
off-axis viewing angle favours the broadening and superposition of
pulses, which is the necessary ingredient to some of the features
enumerated above. It can also contribute in a simple way to explain
why the slope of the hardness—intensity correlation changes from
burst to burst, being influenced by the viewing angle (Section 3.4.3).

Fig. 15 shows that the simple arguments outlined in Section 2.1
are valid not only if pulses are produced by point sources, but also
in the presence of an extended geometry.

5 THE NUMBER OF OFF-AXIS GRBS

We can obtain an estimate of the number of off-axis GRBs over
the observed population by the simplifying assumption that all jets
share the same intrinsic properties, and that their flux in an observer
band is uniquely determined by the viewing angle and the redshift.
We assume that the majority of GRBs are observed on-axis, and we
choose the following parameters in an attempt to match the average
properties of the on-axis population:

(1) Epeak,0 = 560keV as the typical (on-axis, rest-frame) peak
spectral energy, chosen to match the average value of the
Fermi/GBM sample (Eo% ) ~ 186keV (Nava et al. 2011) mul-
tiplied by a typical redshift (1 + z) ~ 3;

(ii) « = —0.86 and B = —2.3 as typical low- and high-energy
spectral indices (Nava et al. 2011);

(iii) W(z) = (0.0157 + 0.1182)/(1 + (z/3.23)*°) as the redshift
distribution, i.e. the GRB formation rate as given in Ghirlanda et al.
(2015);

(iv) Ly = 2.5 x 107 ergs~" as the typical (on-axis) luminosity,
which corresponds to the break of the broken power-law luminosity
function (model with no redshift evolution) of the BAT6 complete
sample (Salvaterra et al. 2012). This choice is motivated by the
fact that if GRBs can be observed off-axis, then their luminosity
function is indeed well described by a broken power law, with the
break around the average on-axis luminosity (Pescalli et al. 2015);
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Figure 15. Light curves (thick histograms) and spectral peak evolution (thin orange histograms) of a sequence of 100 pulses from a jet with 0jef = 5°,
I' = 100, R = 10" cm and AR = R. The peak of the vF, comoving spectrum is EI/J = 1 keV. The pulse start times are randomly distributed within the first

2 s of the observer time. Each panel refers to a different viewing angle in the sequence 6y = 0, je + 1/T", Ojer + V3T, Ojet + 2/T" (from left to right, top to

bottom). Ly, refers to the peak luminosity of the on-axis light curve.

(v) since the result is sensitive to the assumed typical Lorentz
factor I' and half-opening angle 6;;, we explore the cases I' = 50,
100 and 300, and 0 = 5° and 10°.

We then define the effective luminosity L(6,) following equation
(10), namely

1 Oy < 0,
1T (ev - 9;;[) /2 65 <6, <0
L(®,) = Lo x (11)
1 5p (47*@9116{3)
2 (<1+ﬂ>r) Oy > Ojet
with ej’g[ = Ojet — I'!, and the effective peak energy
E cak,0 1 gv = Qjet
Epeak(6y) = =52 x s (12)
pe 1+z ﬁ 0y > Ojet

as in Section 3.4.3. With these assumptions and prescriptions, we
can compute the observed rate of GRBs with a viewing angle in the
range (6, 0, + db,), in the redshift range (z, z + dz), assuming a
limiting photon flux py;;, in a given band, as

dN W(z) d
o, dz = (@) dv
do, dz I+zdz
where P(0y, z, pim) is the viewing angle probability, dV/dz is the

differential comoving volume and the factor 1 + z accounts for
cosmological time dilation. The viewing angle probability is

POy, z, pim)do, dz, 13)

sin 6, 6y < 60y 1im(Z, Prim
P8y, z, pim) = i Pin) (14)
0 9v > ev,lim(L plim)~

The limiting viewing angle 6, i, corresponds (through equation
11) to the limiting luminosity Ly, computed as

% dN
fO g E dE

(142)Enigh dN ’
(I4+2)Elow  dE dE

Lim = 47t} piim (15)

where Ejo,, (Epign) is the lower (upper) limit of the observer band, dy.
is the luminosity distance and dN/dE(Ep, a, B) is the rest-frame
spectrum.

We define the total rate le(<z) of observable GRBs within
redshift z as the integral of equation (13) over redshift from O to z
and over 6, from O to 7t/2; similarly, the rate Noff(<z) of off-axis
GRBs within redshift z is the integral over redshift from 0 to z
and over the viewing angle from 6, + I'"! to 7t/2. Since we are
interested in the ratio of these two quantities, we do not need to
bother about the normalization.

In Fig. 16, we show the fraction of bursts with 6, > 0 +
I'~' at redshift lower than z for various choices of ' and Ojets
assuming a limiting flux pjy, = 0.4 photonss~' cm~2 in the 15—
150keV band, to reproduce the Swift/BAT band and limiting flux.
Standard flat A cold dark matter cosmology was assumed, with
Planck parameters Hy = 67.3kms™' Mpc™!' and €, = 0.315
(Planck Collaboration XVI 2014). These results clearly indicate
that at low redshift a significant fraction of GRBs are likely seen
off-axis.
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Figure 16. Fraction of off-axis GRBs over the total within a given red-
shift. The curves represent an estimate of the fraction of GRBs with
redshift lower than z observable by Swift/BAT (i.e. with photon flux
p > 0.4 photons s~'cm~? in the 15-150 keV band) whose viewing angle is
larger than Oje + r-

5.1 Low-luminosity GRBs

Recently, some authors (e.g. Liang et al. 2007; Zhang 2008; He
et al. 2009; Bromberg et al. 2011) argued that a unique population
of low-luminosity GRBs exists, based on some common features of
GRB060218, GRB980425, GRB031203 and GRB100316D. These
features include, apart from the low inferred isotropic equivalent
luminosity, an apparently single-pulsed, smooth light curve (low
variability), and a low average Ejc.. Since all such bursts were at
a low redshift (z < 0.1), the rate of like events per unit comoving
volume in the Universe is very high (higher than the rate of ‘normal’
GRBs), but we do not see the majority of these events because of
selection effects. The results discussed in this paper suggest that
the apparently peculiar features of these GRBs can be interpreted
instead as being just the indication that they were observed off-axis.
Moreover, in Pescalli et al. (2015) we have shown that the observed
rate of low-luminosity GRBs is consistent with what one would
expect if they were just ordinary bursts seen off-axis. Based on
these considerations, we argue that there is no need to invoke a new
separate population of low-luminosity GRBs.

6 DISCUSSION AND CONCLUSIONS

In this work, we set up a simple physical model of a single GRB
pulse based on shell curvature only, as a tool to explore the effect
of the viewing angle on GRB light curves. Compared to other sim-
ilar (and more refined) models (e.g. Dermer 2004; Genet & Granot
2009), our model includes the effect of an off-axis viewing angle.
We show that the inclusion of such effect is important because a sig-
nificant fraction (from 10 per cent up to 80 per cent) of nearby bursts
(z < 0.1) are likely observed off-axis. Admittedly, the assumptions
behind the pulse model are at best a very rough approximation of re-
ality. The general trend of the effect of the viewing angle, though, is
largely insensitive of the simplifications adopted: a slightly off-axis
viewing angle is enough to produce a significant pulse broadening,
without affecting the pulse separation. This in turn leads to pulse
overlap, which smears out variability at all frequencies, resulting in
a smoother light curve and spectral evolution.

This is mainly a consequence of two assumptions: (i) that the
emission is isotropic in the comoving frame and (ii) that all pulses
are produced around a typical radius. By relaxing (i), i.e. allowing
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for a strongly anisotropic emission in the comoving frame, one
could reduce (in case the anisotropy favours forward emission)
or enhance (in case the anisotropy favours backwards emission)
the flux received by off-axis observers. By relaxing (ii), on the
other hand, one may have that the pulse separation depends on the
viewing angle as well. One would then need to explain, though,
why the observed pulse width distribution does not vary in time
(Ramirez-Ruiz & Fenimore 1999; Piran 2005), despite the change
of the emission radius.
Given the above considerations, we conclude that

(1) if the GRB jet is seen off-axis, single pulses appear longer
and their spectrum appears softer than in the on-axis case;

(ii) if aburstis made up of a superposition of pulses, its variability
is smeared out by pulse broadening if the jet is observed off-axis,
with respect to the on-axis case;

(iii) if single pulses feature an intrinsic hard-to-soft spectral evo-
lution, pulse overlap can turn it into an intensity-tracking behaviour.

As discussed in Section 5.1, the results support the idea that
prompt emission properties of so-called low-luminosity GRBs can
be interpreted as indications that they are just ordinary bursts seen
oft-axis.
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APPENDIX A: DERIVATION OF THE PULSE
LIGHT CURVE AND SPECTRUM

For the ease of the reader, and for notational clarity, in what follows,
we reproduce some passages of the derivation of the formulas used
for the pulse light curves and time-dependent spectra. Such formulas
are special cases of the more general formalism developed in Woods
& Loeb (1999).

A1 Light curve of the pulse from an expanding sphere

In general, the flux from a time-varying source can be defined as
F() =/ I(s)cosa ds/r?, (A1)
S(t)

where S(¢) is the ‘t EATS’, i.e. the locus of points of the source
whose emitted photons reach the observer at ¢, r is the distance
between the observer and the element ds of the EATS, and « is
the angle between the normal to the detector surface and the di-
rection of the photon incoming from the ds surface element. For
most astrophysical applications cosa ~ 1, because the source is
sufficiently far away to have a negligible angular size in the sky.
Here the intensity /(s) is allowed to vary both in time and in space
(s indicates the coordinates of a point on the EATS, which is a
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surface in space—time), so this formulation is applicable to inhomo-
geneous sources as well.

In our situation, it is convenient to use spherical coordinates cen-
tred on the emitting sphere, so that (assuming cylindrical symmetry
of the intensity) we have ds = 27rsin6 d6 R(z.)*, where t, =t —
r/c is the emission time. The distance r of the point (6, ¢, f.) from
the detector is r ~ d — R(t.)cos 8, where d is the distance of the
sphere centre from the detector, thus

R(.)°

(d — R(t.)cos0)? (A2)

F(t) = 27[/ 16, 1,)sin 6 d6
S()

Since d > R(t.), the last term is well approximated by R(t.)*/d*;

thus, we can write

21 2 .
F()=— 1(6,1t.) R(t)” sin6 db. (A3)
d S()

Let us now assume that the luminosity L of the sphere is constant
in the time interval 7y < ¢ <ty + 7. This is different from assuming
that the intensity is constant, in that it prevents the expansion of the
surface area from causing a rise in the luminosity (this alternative
assumption would be more appropriate in the description of an
external shock). In terms of intensity, this assumption implies that
I < R2, which we write as

2
R(te)
Inserting this definition into equation (A3) allows us to bring the
radius outside the integral. In Sections 3.2.1 and 3.2.2, we found

that the EATS are the portions of the sphere comprised between
cos 0., and cos ¢, so that we have, for t > 0,

10, 1) = 1o(0) (A4)

27t RZ BOon (1)
F@) = 7/ 1p(0) sin6 db. (AS)
(2

ofif (1)

Now, since the sphere is expanding, in the approximation of in-
finitesimal shell thickness, the intensity is related to the comoving
one by Io(8) = §*(9) I}, where §(8) = [['(1 — Bcosh)]~! is the
Doppler factor, and I is the comoving intensity, assumed isotropic.
The flux is then

2 R? I dcos®
da> 1 [ 0) (1 - ,8 CoS 0)4

which yields, after substitution of the expressions for cos 6,, and
cos 0 derived above, the light curve of the pulse

cos Boff (1)

F(t) = (A6)

-3

1—(141%) 1 < lof A7)
F(t)szaxX e \73 - (7
(l+58m) = (+5)7 >t
where
2nR? (1 I
max — T d+4 - (A8)
3d? B
is the (saturation) peak flux if the pulse lasts 7> R/c,
R
T=———— A9
Bell 1 )T A2
and
toff = T = AR =t (A10)
off = (1—|—ﬁ)F2 - ﬂc(l +5)F2 = lpeak-

The fluence, i.e. integral of the flux over time, from r=0tot — oo
is

3 R (1+8) ,
F = Frax X Etoff = TT IOT. (A1)
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It is worth noting that the light-curve parameters are three, i.e.
T, toi and Fp,y, while the underlying physical parameters are four,
namely R, 7, T" and /. This degeneration leads to the impossibility
to determine all the physical parameters by fitting the pulse shape
to an observed light curve.

A2 Light curve of the pulse from an on-axis jet with ;. < 1/T

To compute the pulse light curve of a jet of semi-aperture 6;c;, we
can just take the pulse of the sphere and ‘trim’ the unwanted part. If
the jet is seen on-axis, this amounts to limit the integral of equation
(A6) to angles 6 < 0. It is straightforward to work out at what
time the EATS borders reach the jet border, i.e.

Oon(t) = et = t = R(1 — €08 Ojer)/C = by (A12)
and similarly
Oofi (1) = Ojer = t = togt + Rogr(1 — €08 Ojer) /€ = Fiet off» (A13)

where R, = R + AR. It is then easy to see that the light curve
becomes

F(t int, i)\

®_ (1 MLLIGL S Je‘)) (Al4)
Fmax T
for t < t,, then
F(t t—togr\ in(t, fie) \

( ) — (1 + )ff> _ (1 + mln( Jcl)) (AIS)
Fmax Toff T

for to < t < fjey, off>, and zero for ¢ > fq, ofr. This light curve is the
same as that of the expanding sphere up to 7 = fj;. After that, if
fiew < lofr, the flux saturates (the whole jet is visible) until # = g,
then it drops and reaches zero at f = fieq, of¢. If £jet > Zo5r, DO saturation
is reached. The difference between the expanding sphere and the
on-axis jet is relevant only if #iy S 7, 1.e.if @i, S 1/T, as expected.

A3 Off-axis jet

If the jet is off-axis, it is still possible to compute an expression for
the light curve. We propose here an approach to the computation,
based on geometrical arguments. Let us call 6, the angle between
the jet axis and the line of sight, 6, the jet half-opening angle, and
let us set the coordinate system so that the jet axis lies in the z—x
plane, as in Fig. Al. This is what one would obtain by rotating an
on-axis jet anticlockwise by an angle 6, around the x-axis. Let us
now consider the ring-shaped part of the sphere surface (‘annulus’
hereafter) comprised between 6 and 6 + df. If 0 > |0, — 0.,
a portion § of the annulus lies on the jet surface (shaded part in
Fig. A1). Since the annulus width d@ is infinitesimal, the ratio of
the area of S to the total annulus area is equal to the ratio between
the length / of S and the total annulus length 27t R cos . Moreover,
this is also equal to the ratio of the flux dFs from S to the flux dF,
from the whole annulus, namely

dFs(6) 1)
dF,(0) ~ 2mRcosb’
The flux due to the annulus is easily obtained by deriving the flux
of the sphere, equation (A6), with respect to 8, which gives
dr 27t R? I in60 do
dF,(0) = S-do = o PT
do d> T*(1 —pBcosh)
To compute the length /(6), we must first find the interceptions

between the annulus and the jet border. Both are circles on the
sphere surface, i.e. they lie on the surface x> + y> + z> = R>. The

(A16)

(A17)
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Front view Top view

X annulus

Figure Al. The off-axis jet can be thought of as being part of an expanding
sphere. The axes in the figures above are chosen so that the jet axis lies
on the z—x plane. Jet surface elements in the S shaded part all share the
same Doppler factor §, and thus they all give the same contribution (per
unit emitting area) to the flux. For this reason, the ratio of the flux from the
annulus to the flux from S is just equal to the ratio of the corresponding
surface areas. Left: the jet is seen from the z-axis. The y-coordinate y; of the
interceptions between the annulus and the jet border is shown. Right: the jet
is seen from the x-axis. Angles 6y, ;e and ¢ are reported.

annulus is the circle given by the interception between the plane
z = Rcos@ and the sphere; in a coordinate system K where the
Z’-axis coincides with the jet axis, the jet border is the circle given
by the interception between the plane z' = R cos 0, and the sphere.
Applying a rotation of an angle 6, around the x-axis, this plane
becomes z cos 6§, — ysin 6, = R cos 8. The interceptions between
the two circles are then found by solving the linear system
24242 =R
z = Rcosf (A18)
zcos6, — ysinf, = R cos .
The y-coordinate of the interceptions (see Fig. A1) is found to be
cos 6 cos 0, — cos Oi

yi = - R. (A19)
sin 6y

Consider now the annulus as a circle whose centre lies on the z =
R cos 0 plane. Its radius is Rsin 6, and the angle « that subtends S
is @ = 2 arccos (—y; /R sin@). The length /() is then
€08 B¢y — cos 0 cos 6
sin @ sin 6, ’

[(0) = 2R sin O arccos ( (A20)

Substituting equations (A17) and (A20) into equation (A16), we
conclude that

(A21)

dF 1 cos Bie; — cos 6 cos 6,
dFg(0) = —df x — arccos .
do s

sin @ sin 6,

This is valid as long as the interceptions between the annulus and
S exist, i.e. for [0, — Oje] < 6 < 6, + 6. Let us work out the
remaining cases:

(i) if 6, < Bj¢, i.e. if line of sight is inside the jet border, then for
0 < 0 — 0, also the annulus is inside the jet border, thus dFs(60)
= dF,(0);

(i) if 0y > Bje, i.e. if line of sight is outside the jet border, then
for 6 < 6, — 6j the annulus is too small to intercept the jet border,
thus dFs(9) = 0; in either case, if 6 > 6, + 0} the annulus is too
large to intercept the jet border, thus again dFs(6) = 0.

Summing up, we can define the function a(@, 6., 6jc.) by

H(ejet - ‘9v) 0 < |9v - ejetl

a=1¢0 0 > 6, + O (A22)
1 €08 Bjet—C0s 0 cos Oy .
7 arccos | —g e —— otherwise
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where H(x) is the Heaviside function, i.e.

0 x<0
H(x):{1 x>0 (A23)
and write
dF
dFs(9, 0y, Oie) = a(@, 0., Qja)@d@- (A24)

The light curve of the pulse from the off-axis jet is then obtained by

integration of this expression between 60, (¢) and 6 (), namely

27t Rz I(’) Bon (1)
d> 1 Ootr (1)

sin6 do
(1 — BcosO)*
Note that here ¢ = 0 is the arrival time of the first photon from the
sphere; thus, if 6, > 0}, the actual light curve of the off-axis jet

starts a little later. The actual start time of the off-axis light curve
is

F(2,0y, 0ie) = a(®, 0y, Oie) (A25)

R
Istare By, ejet) = ; (1 — cos(by — gjet)) . (A26)

Equation (A25) can be easily integrated with a simple numerical
procedure. Some example light curves computed using an RK4
integration scheme are given in Fig. 14.

A4 Spectra

All the above arguments can be also applied to the derivation of
the observed spectrum. All we need to do is to compute the flux
density

dF d/ 2
—W,t)y=F,(v,t) = —(v,t)cosads/r (A27)
dv S(1) dv

over the same EATS as before, using the transformation

Ly =5 s (A28)
—W) =86 —©

dv dv’

to express the intensity density in terms of the comoving one. It is
convenient to write dI’/dv’ as follows:

dr’
dv’

1/
W) = v—?f (v'/v)) (A29)
0
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where 1 is the total intensity, v is some frequency and fix) is a
function which describes the comoving spectral shape, and whose
integral is normalized to unity. As an example, we can set a power-
law spectral shape

fOW /) =0 —-a) (:—) (A30)

0

for v’ > v and zero otherwise, with « > 1. Since the integral of
f(x) is normalized to unity, we have

/mdl’(,)dr Ié/oof( dy =1
vHdy = v/vH)dy = I,
0 dl)/ l)(/) 0 0 0

(A31)

The equation for the observed spectrum of an off-axis jet is then

dF 2nR? I [ ® v/8 v})sin6 do

T, D= 0 / a(, oy, %a)M
" )

odr vy S (1 — Bcosh)’
(A32)

For the simplest case of an on-axis jet, with power-law comoving
spectral shape, the integral is analytic and it gives

dF 27R? [ (1 + By I'i+e
7(”7 t) = 1—
dv d? vy ¢

—2—a —2—a
t — tor t
x (1 + 7“> - (1 + 7)
T + Lot T

which reproduces the well-known 2 4 « decay slope due to high-
latitude emission (Kumar & Panaitescu 2000; Dermer 2004). For
more general spectral shapes, a numerical approach is necessary
to compute the integral in equation (A32). For this paper, in most
cases an RK4 method has been used to compute separately the
specific flux light curve at a number of frequencies. The values of
the specific fluxes at a certain time then constitute the spectrum at
that time.

1—a)v™

(A33)
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