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ABSTRACT

We present a numerical study of turbulence and dynamo action in stratified

shearing boxes with both finite and zero net magnetic flux. We assume that

the fluid obeys the perfect gas law and has finite thermal diffusivity. The latter

is chosen to be small enough so that vigorous convective states develop. The

properties of these convective solutions are analyzed as the aspect ratio of the

computational domain is varied, and as the value of the mean filed is increased.

For the cases with zero net flux, we find that a well defined converged state is

obtained for large enough aspect ratios. In the converged state the dynamo can

be extremely efficient and can generate substantial toroidal flux. We identify

solutions in which the toroidal field is mostly symmetric about the mid-plane

and solutions in which it is mostly anti-symmetric. The symmetric solutions are

found to be more efficient at transporting angular momentum and can give rise

to a luminosity that is up to an order of magnitude larger than the corresponding

value for the anti-symmetric states. In the cases with a finite net flux, the system

appears to spend most of the time in the symmetric states.

Subject headings: accretion disc - MRI - MHD - dynamos - turbulence

1. Introduction

The turbulence driven by the magneto-rotational instability (MRI) is largely responsible

for the enhanced transport of angular momentum in hot accretion disks (Balbus & Hawley
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1991). Remarkably, the magnetic fields necessary for the MRI to develop can either be

externally imposed or internally generated within the disk. In this latter case, the magneto-

rotational turbulence also acts as a dynamo. Consequently, much effort has been devoted

to the study of dynamo action within accretion disks (Hawley et al. 1996, Fromang & Pa-

paloizou 2007, Pessah et al. 2007, Käpylä & Korpi 2011, Bodo et al. 2011, Riols et al. 2013).

These studies seek to determine which factors control the dynamo processes and under what

conditions can the dynamo be sufficiently effective to generate the magnetic fields necessary

to account for the inferred accretion rates. Several recent studies have incorporated some

form of vertical stratification within the disk, and have shown that the operation of the dy-

namo depends crucially on how the disk is stratified (Davis et al. 2010, Shi et al. 2010, Oishi

& Mac Low 2011, Gressel 2010, Guan & Gammie 2011, Simon et al. 2012, Bodo et al. 2012,

2013). The stratification, in turn, depends on the microscopic properties of the material

in the disk, like, for instance, its equation of state or its thermal transport properties. For

pressure dominated, optically thick disks with a perfect gas equation of state, Bodo et al.

(2012) (henceforth Paper I) have shown that depending on the efficiency of thermal conduc-

tion two regimes of operation are possible with dramatically different dynamo properties. In

particular, if thermal conduction is inefficient, the disk becomes unstable to overturning mo-

tions that lead to a vertical structure in which the density is nearly homogeneous across the

layer. In this “fully convective” regime the dynamo appears to be much more efficient–and

consequently, so is the angular momentum transport–than in the case in which the thermal

conduction is efficient and the disk remains stable to convection. In this latter case, and

similarly to a disk with an isothermal equation of state, the density decreases rapidly with

height.

In Paper I, simple thermal boundary conditions were adopted in which the temperature

was fixed on the horizontal boundaries, and set to be equal to that of the initial isothermal

hydrostatic equilibrium. In a subsequent paper, Bodo et al. (2013) (henceforth Paper II)

have shown that the fully convective regime, and its associated dynamo action, persists even

when more realistic radiative boundary condition are applied. In this case, the operating

temperature of the disk is no longer “pinned” by the initial value, rather it is determined

self-consistently by the balance between energy production and energy losses by radiation.

Ultimately, the factor determining whether the disk becomes fully convective or not is the

Peclét number–the ratio between thermal relaxation time and the orbital period, say–thus,

these results establish an interesting relationship between the opacity within the disc and its

accretion rate.

Because the convective motions play such a crucial role in determining the vertical

structure of the disk, and control the dynamo efficiency, it is important that the convection be

properly captured by the numerical models. It is well known that the convective efficiency is
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influenced both by the aspect ratio of the convective domain and by the presence of large-scale

magnetic fields. If the aspect ratio is too small the convective structures might not be able to

form with their natural size thereby affecting the convective transport (Chandrasekhar 1981).

Also, the presence of a uniform magnetic field can affect both the morphology and transport

property of the convection with possible consequences for the accretion rate (Cattaneo et al.

2003). In papers I and II, only cases with zero net flux were considered, and the aspect

ratio was fixed. Its value was modest, and chosen so that the exploration of a wide range of

parameters remained computationally affordable. We return to these issues in the present

work and consider the effects of imposing a net (vertical) flux threading the layer and of

varying the aspect ratio of the computational domain. In both cases, the main objective is

to asses how variations in convective planform induced by changes in aspect ratio, and by

the presence of a uniform magnetic field affect the convective efficiency, the disk structure,

and ultimately the accretion rate. Recently the cases with net magnetic flux have attracted

particular interest because of the possibility of driving outflows from their surface layers.

The presence of outflows has been shown in isothermal simulations (Lesur et al. 2013, Bai &

Stone 2013, Fromang et al. 2013) and critically depends on the choice of boundary conditions.

Because we are primarily interested in the convective properties of the interior we confine

our study to cases with small thermal conductivity (large Peclet number) and boundary

conditions that do not allow the formation of outflows.

2. Formulation

We extend our analysis of fully convective MRI driven turbulence in shearing boxes by

considering domains with different aspect ratios and both cases with zero and net magnetic

flux. The formulation is similar to those in Papers I and II. We perform three-dimensional,

numerical simulations of a perfect gas with finite thermal conduction in a shearing box with

vertical gravity. The Magneto-Hydro-Dynamics (MHD) shearing-box equations, including

vertical gravity and thermal conduction can be written in dimensionless form as:

∂ρ

∂t
+∇ · (ρv) = 0, (1)

∂v

∂t
+ v · ∇v + 2êz × v =

B · ∇B

4πρ
− 1

ρ
∇PT + 3xêx − zêz, (2)

∂B

∂t
−∇× (v ×B) = 0, (3)
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∂E

∂t
+∇ · [(E + PT )v +

(v ·B)B

4π
− γ

γ − 1
ρ
1

µ

1

Pe

∇T ] = 0, (4)

P =
1

µ
ρT, (5)

where B, v, ρ and P denote, respectively, the magnetic field intensity, the velocity, the

density and the thermal pressure; E is the total energy density, PT is the total (thermal

plus magnetic) pressure, µ is the mean molecular weight and γ is the ratio of specifice

heats. In Equation (5) we have absorbed the perfect gas constant, R, in the definition of the

temperature. The dimensionless form has been obtained by choosing the half thickness of the

disk D as unit of length, the inverse of the rotation rate 1/Ω as unit of time and the average

density ρav as unit of density. With these choices, the unit of temperature is Ω2D2, the unit of

magnetic field intensity is
√

ρavΩ2D2 and the unit of pressure, energy density, Maxwell and

Reynolds stresses is ρavΩ
2D2. The equations depend only on one nondimensional number;

the Péclet number, defined as

Pe =
ΩD2

κ
, (6)

where κ is the thermal diffusivity that we assume to be constant. Since we are primarily

interested in the convective regimes in which κ only plays a role in the thermal bound-

ary layers, this assumption is not too restrictive. An additional nondimensional number is

introduced by the vertical thermal radiative boundary conditions that are given by

ρ

Pe

dT

dz
± ΣT 4 = 0 at z = ±1. (7)

The radiation parameter Σ, up to a factor of 2(γ − 1)/γ, is the ratio of two energy fluxes:

the radiative flux of a black body at temperature T – measured in units of Ω2D2 – divided

by the kinetic energy flux of a fluid of density ρav moving at the isothermal sound speed.

Substitution of the dimensional quantities in 7 gives

Σ =
γ − 1

γ

σΩ5D5µ

R4ρav
. (8)

where σ is the Stefan-Boltzmannn constant. We notice that this definition is slightly different

from that adopted in Paper II. The reason is that in Papers I and II we were interested in

making contact with the isothermal cases, and thus we chose a slightly different definition

and non-dimensionalization than the one adopted here.

Additionally, as it is customary in shearing box simulations, we assume periodic bound-

ary conditions in the y direction and shear periodic conditions in the x direction. In the
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vertical direction, in addition to the radiative thermal boundary condition, we assume that

the upper and lower boundaries (z = ±1), are impenetrable and stress free, giving vz = 0 ,

∂vx/∂z = ∂vy/∂z = 0, and also that the magnetic field is purely vertical, giving ∂Bz/∂z = 0,

Bx = By = 0. Additionally, we assume that the boundaries are in hydrostatic balance. We

briefly comment on this particular choice of boundary conditions, for a lengthier discussion

we refer the reader to Paper II. Impenetrable, stress-free boundary conditions, like the ones

we adopt here, are commonly used in numerical studies of convetive layers. They represent

an idealization of a region in which the collisional thermal transport properties of the plasma

change dramatically, like, for instance a transition from an optically thick to an optically

thin medium. In general, a realistic treatment would require that both regions be taken

into account and simulated concurrently. Though possible, this approach is, in general very

expensive since the transition introduces strong numerical stiffness into the equations. If one

is primarily interested in the interior solution, as we are in the present paper, replacing the

transition layer with an stress free, impenetrable boundary is not unreasonable. We should

mention however the recent work of Gressel (2013) in which two cases are compared one with

impenetrable, stress-free boundaries and one with open boundaries and homogeneous ther-

mal diffusivity. Not surprisingly the convection is greatly suppressed in the open boundary

case. As we noted in Paper II, this is not a very meaningful comparison. A sensible study

should contrast different cases in which the transition from low to high thermal conductiv-

ity occurs more or less abruptly. Actually, the results of such a study have recently been

presented by Hirose et al. (2014) who incorporate a realistic treatment of opacity variations

at temperatures around the hydrogen ionization range. The results show that, indeed, con-

vection sets in the dense opaque regions near the disc center exactly as anticipated by the

arguments based on the idealized boundary conditions.

We start our simulations from a state with a uniform shear flow, v = −3/2xêy, and

density and pressure distributions that satisfy vertical hydrostatic balance with constant

temperature. The initial density has a Gaussian profile given by

ρ =
1

H erf (1/H)
exp(−z2/H2), (9)

where H is the the isothermal scale-height measured in units of D, erf is the error function.

Equation (9) satisfies the normalization condition

1

2

∫ 1

−1

ρdz = 1. (10)

For numerical reasons (see Paper II), we do not apply the radiative boundary conditions

from the beginning of the simulations but, instead, we proceed in two phases. In the first
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phase we keep the temperature at the boundaries fixed at the initial value until the system

reaches a stationary state (typically the first phase lasts 1000 time units), then we start

the second phase by imposing radiative boundary conditions and follow the evolution for a

sufficiently long time to have reasonable statistics. Typically this is achieved in another 1000

time units. We note that the form of initial conditions introduces the additional parameter

H. However, the final convective state is independent of this choice. Furthermore, for large

Péclet numbers, the solution in the convective interior becomes independent of the Péclet

number, thus in the convective regime the final steady-state depends only on Σ.

The size of the computational domain is given by 2[Ax, Ay, 1]. All the simulations were

carried out with the PLUTO code (Mignone et al. 2007) with a second order accurate linear

reconstruction, HLLD Riemann solver, an explicit treatment of thermal conduction and a

uniform resolution of 64 grid-points per unit length.

3. Results

We perform two series of simulations: one with zero mean magnetic flux and different

values of the aspect ratios Ax and Ay, the other with a net magnetic flux threading the box

and with different values of the magnetic field strength. We consider only fully convective

solutions and fix the Péclet number at 1000, and the mean molecular weight µ = 0.5 (fully

ionized hydrogen). We choose Σ = 4, for all the simulations; this is the value appropriate to

the continuations of solutions presented in paper II. Variations of the solutions with Σ will

be considered elsewhere.

Table 1 summarizes the values of the aspect ratios Ax and Ay and the number of grid

points Nx and Ny used in the first set of simulations with no net flux. Each solution was

integrated with the radiative boundary conditions for 1000 time units except for case D that

was integrated for twice as long.

The initial magnetic field was of the form

B = B0 sin (2πx) êz, (11)

where B0 corresponds to a ratio of thermal to magnetic pressure of 1600.

The second set of simulations was carried out with the largest domain size and with a

net vertical magnetic flux threading the box. The initial magnetic field was given by

B = B0êz, (12)

where the values of B0, are specified in Table 2. The choice of computational domain with
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the largest aspect ratio for the cases with net flux was dictated by the fact that in smaller

boxes the solutions are dominated by spurious channel flows (Bodo et al. 2008). When

stratification is present these flows can lead to strong numerical instabilities (Miller & Stone

2000). The length of the simulations with radiative boundary conditions was 1000 time units

for all three cases.

3.1. Convergence for the cases with zero flux

The first series of simulations was aimed at investigating how the properties of the

turbulent state depend on the values of the aspect ratios and whether they converge as the

latter are increased. For case A we choose values of the aspect ratios similar to those used

in Papers I and II to facilitate a comparison. More precisely, here we have Ax = 0.25 and

Ay = 0.75, while in Papers I and II we had Ax = 0.167 and Ay = 0.75. In all the other cases

we vary Ax, keeping Ay = 3.

It is helpful to introduce some notation: if f is a generic function of space and time, we

indicate a volume average by f̄ , an average over horizontal planes by f̃ and a time average

by ⟨f⟩. For comparison purposes, in this subsection, in order to have the same time interval

for all the cases, in case D we make use of the second half of the simulation.

Fig. 1 shows the vertical profile of ⟨T̃ (z)⟩, for the different cases. It is immediately

obvious that the case with the smallest aspect ratio (case A) is way off relative to the other

cases. As we move to larger aspect ratios the overall temperature increases and the profile

becomes flatter. Also, there is a clear indication that the curves converge to an asymptotic

profile as Ax becomes large. The corresponding density profiles are flat in all four cases. The

Maxwell stresses also show a sharp increase between case A and the other three cases. This

is illustrated in Fig.2 where the volume averaged Maxwell stresses are shown as a function of

time. The differences between cases C and D is relatively small, again indicating an approach

Case Ax Ay Nx Ny

A 0.25 0.75 32 96

B 1 3 128 384

C 2 3 256 384

D 4 3 512 384

Table 1: Aspect ratios and number of computational cells used in the simulations with zero

net flux.
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to a converged state.

−1.0 −0.5 0.0 0.5 1.0
z

0.0

0.5

1.0

1.5

2.0

2.5

<
~ T

> Case A
Case B
Case C
Case D

Fig. 1.— Horizontally and time averaged profiles of the temperature as functions of z for

the cases A, B, C and D, with zero net flux and different aspect ratios. The corresponding

averaged surface heat fluxes for cases A, B, C and D are respectively 0.012, 0.18, 0.26 and

0.29.

The differences in angular momentum transport, as measured by the Maxwell stresses,

can be related to differences in the efficiency of the dynamo processes. One of the distinctive

features of dynamo action in the convective regime is that it can lead to the generation of a

substantial amount of toroidal flux. Thus the production of toroidal flux can be used as a

measure of dynamo efficiency. Fig 3 shows the space and time distribution of the azimuthal

component of the horizontally averaged magnetic field B̃y(z, t), for the same three cases

shown in Fig. 2. In Case A (top panel), the average B̃y shows changes in sign over small

intervals both in time and in the vertical spatial direction. The episodes in which the entire

layer becomes magnetized are of short duration. With the increase in aspect ratio in case

Case B0 β Ax Ay Nx Ny

E 0.02 1250 4 3 512 384

F 0.04 312 4 3 512 384

G 0.1 50 4 3 512 384

Table 2: Magnetic field strength, plasma β at the midplane, domain size and number of

computational cells used in the simulations with net magnetic flux.
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Case D

Fig. 2.— Time histories of the Maxwell stresses averaged over the computational box for the

cases A, B and D with zero net flux and different different aspect ratios. The time history

for case D covers the second half of the simulation, the full time history for this case is shown

in Fig. 5

C (middle panel), we observe the emergence of two kinds of dominant z distribution: a

symmetric one, in which B̃y has the same sign, positive or negative, over the whole vertical

extent and an antisymmetric one, in which B̃y changes sign. The system switches between

these states with an average persistence time in any one state of about 100 time units. In

addition, there is a substantial increase in the overall amplitude of the generated field with

respect to case A. In the bottom panel, corresponding to case D, the magnetic field strength

is similar to case C , but the system locks into a symmetric state and keeps it for about 1000

time units. It can be argued that a large scale dynamo appears to be at work in all cases

however its efficiency depends on the aspect ratio.

.

The reason for the large differences between case A and the other three cases is, perhaps,

most apparent in Fig. 4 where we plot the temperature distribution on a horizontal plane at

the top of the computational box for case D. The figure shows that the convective pattern

consists of a network of cells with wide warmer upflows and concentrated colder downflows.

The pattern evolves rapidly on a timescale of approximately 10 time units and shows an

overall structuring along diagonal lines. The green rectangle in the lower left corner of the

figure shows the extent of the computational grid for case A. Although it is difficult to assign
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Fig. 3.— Space-time diagrams of average azimuthal field. The horizontally averaged value of

By is plotted as a function of z and t. The three panels refer to cases A, B and D, with zero

net flux and different aspect ratios. The diagram for case D covers the second half of the

simulation, the diagram for the full simulation length is shown in Fig. 6. The corresponding

values of the plasma β are ∼> 1.
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a precise measure for the size of the convective cells, it is clear that the green box is too

small adequately to capture the spatial structure of the convection.

−4 −2 0 2 4
 x

−3

−2

−1

0

1

2

3

 z

0.

0.5
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1.5
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Fig. 4.— Typical temperature planform at the upper boundary of the computational box

for case D, with zero net flux and the largest aspect ratio. The green rectangle in the lower

left corner of the figure shows the extent of the computational grid for case A.

3.2. The converged solution with zero net flux

In the previous subsection we presented evidence that the properties of the turbulent

state appear to converge as the aspect ratio is increased. Here we look at case D as good

representation of the eventual asymptotic state. As remarked earlier, we evolved this simu-

lation for a longer time interval than the other cases; in Fig 5 we plot the volume averaged

Maxwell stresses as a function of time for the entire length of the simulation. The figure

clearly shows the existence of two states with higher and lower values of the stresses, with

an evident predominance of the higher state.

If we compare Fig. 5 with Fig. 6 in which we display the space and time distribution

of the azimuthal component of the horizontally averaged magnetic field B̃y(z, t), it appears

that the episodes with higher and lower transport efficiency correspond respectively to the

symmetric and antisymmetric states introduced earlier. Also, we note that the antisymmetric

state may mark the transition between two symmetric states of opposite polarity.

The symmetric and antisymmetric nature of the two solutions is made clearer in Fig. 7,

where we plot ⟨B̃y(z)⟩ as a funtion of z. The different curves correspond to the different time



– 12 –

0 500 1000 1500 2000
time

0.1

0.2

0.3

0.4

−
 B

xB
y

__
_

Fig. 5.— Time history of the Maxwell stresses averaged over the computational box for case

D. The time history covers the full simulation length of 2000 time units.

Fig. 6.— Space-time diagram of average azimuthal field for case D. The horizontally averaged

value of By is plotted as a function of z and t. The diagram covers the full simulation length

of 2000 time units. Above the diagrams we have marked four time intervals, denoted by

the letters a, b, c and d, during which we have alternatively low and high states. The time

averaged vertical profiles of azimuthal field shown in Fig. 7 refer to these four time intervals.



– 13 –

intervals on which the averages are taken; the corresponding time intervals are marked on top

of Fig. 6. The two symmetric states have opposite polarity and similar field strength, while

the second of the two antisymmetric states (curve c) is somewhat stronger than the first.

The total length of time in which the solution is antisymmetric is about 1/4 of the length of

time in which it is symmetric, however, to obtain a statistically meaningful estimate of this

fraction, a much longer simulation is needed. The differences in transport efficiency between

the symmetric and antisymmetric states also manifest themselves in changes in luminosity

that almost exactly track the changes in the Maxwell stresses and can vary up to one order

of magnitude.

d

b

c

a

−2 −1 0 1
z

−0.5

0.0

0.5

 <
B

y>

Fig. 7.— Vertical profile of time averaged azimuthal field as functions of z. The four curves

refer to the four time intervals a, b, c and d, marked in Fig. 6, for which we have alternatively

low and high states.

3.3. The cases with finite net flux

Having established the properties of the turbulent state in the zero flux case, character-

ized by the presence of vigorous convective motions and by an efficient large scale dynamo

action, we may now turn to cases with net magnetic field threading the box and ask if and

how the presence of a net flux changes the properties of the solutions and how the efficiency

of angular momentum transport scales with the value of the magnetic flux.

In Fig. 8 we compare the vertical distribution of ⟨T̃ (z)⟩ for case D (zero flux, black

solid curve) with those of cases E (orange dotted curve), F (red dashed curve) and G (blues
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dot-dashed curve), with increasing magnetic flux. The shapes of the distributions are quite

similar but the temperature values show a small increase in case E and more marked vari-

ations for cases F and G. In a similar way also the volume averaged Maxwell stresses, that

we plot as a function of time in Fig. 9, are slightly higher in case E and much higher for

cases F and G.

−1.0 −0.5 0.0 0.5 1.0
z

0

2

4

6

8

10

<
~ T

>

Case D
Case E
Case F
Case G

Fig. 8.— Horizontally and time averaged profiles of the temperature as functions of z for

the cases E, F and G with net magnetic flux and different initial vertical field strengths. For

comparison we show also case D, with zero net flux and the same aspect ratio.

The space-time distributions of B̃y(z) for cases E, F and G are shown in Fig. 10. Again

we observe that the entire layer is magnetized with sporadic inversions of sign, sometimes

at the transition we observe the appearance of the antisymmetric state. The strength of

B̃y increases with the value of the magnetic flux. The corresponding changes in Maxwell

stresses are summarized in Fig. 11 where the horizontal line correspond to the stresses for

case D, and we have also indicated the value of B0 necessary to stabilize the MRI. If we

assume that the stresses behave linearly with B0 near the origin, the intercept with the red

line gives a critical value Bmin of the mean field below which it makes no difference if it is

present or not. For the system under consideration Bmin ≈ 0.02. To get some feeling for

the magnitude of this field strength, we note that the associated wavelength of maximum

growth rate in linear theory is approximately 1/20 of the vertical domain size. By contrast

the corresponding quantity for case G is close to 1/3.
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Fig. 9.— Time histories of the Maxwell stresses averaged over the computational box for

the cases E, F and G with net magnetic flux and different initial vertical field strengths. For

comparison we show also case D, with zero net flux and the same aspect ratio.

4. Conclusions

We have analyzed the solutions of the stratified shearing-box equations in the convective

regime–large Péclet number–as the aspect ratio of the computational domain is varied. We

find that for shearing-boxes that are about twice as wide as they are tall, or wider, the

solution rapidly approaches a “converged” state with a well defined temperature profile

that depends only on the radiation parameter Σ. Smaller boxes are unable adequately

to contain the natural convective pattern with the result that the convective efficiency is

reduced and the solution operates at a correspondingly lower temperature. The striking

characteristic of convective MRI driven turbulence is that it can drive an extremely effective

large-scale dynamo capable of generating substantial amounts of toroidal flux. The dynamo

itself appears to be similar to that presented in Käpylä & Korpi (2011), and most likely relies

on an efficient transport of magnetic helicity through the boundaries. It is likely that the

role of the convection is not so much to drive the dynamo itself, rather to homogenize the

density thereby producing a more suitable environment for the dynamo to work. Two broad

classes of dynamo solutions can be identified: the ones in which the toroidal flux is symmetric

about the mid-plane and the others in which it is anti-symmetric. The symmetric solutions

have higher Maxwell stresses and correspondingly higher luminosity. The system appears

to swap between these states randomly but, typically, spend more time in the symmetric,

higher-efficiency solutions. The amount of time spent in the symmetric state increases if a
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Fig. 10.— Space-time diagrams of average azimuthal field. The horizontally averaged value

of By is plotted as a function of z and t. The three panels refer to cases E, F and G with

net magnetic flux and different initial vertical field strengths. The corresponding values of

the plasma β are ∼< 1.
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Fig. 11.— Box and time averaged values of the Maxwell stresses for cases E, F and G as

a function of the initial vertical field strength B0. The horizonthal line corresponds to the

average stress value for case D, with zero net flux, in the high state. The vertical line shows

the linear stability boundary for a state with constant density.

net (vertical) magnetic flux is present as does the amplitude of the Maxwell stresses–provided

the strength of the mean magnetic field is much less than the critical value needed to stabilize

the MRI.

It should be noted that in the present paper we have often remarked about the efficiency

of various solutions but have resisted the temptation to measure it by the parameter α

(Shakura & Sunyaev 1973). This was deliberate and it should, to some extent, be justified.

In the original formulation by Shakura & Sunyaev (1973), a transport coefficient, namely

the effective viscosity was defined in terms of a characteristic length–the disc thickness, and

a characteristic velocity–α times the sound speed. For an isothermal gas, it is customary

to replace the disc thickness with the pressure scale-height, which, in turn is related to the

isothermal sound speed, thereby giving a definition of α in terms of the ratio between the

stresses and the temperature. This makes perfect sense for an isothermal gas in which the

temperature is prescribed. Here, on the other hand, the temperature is determined self

consistently by the solution of the shearing-box equations. Nevertheless, we can still ask

what kind of values of α are obtained. If we revert to the original formulation in terms of the

disc half thickness, and recalling that with our system of units the latter is unity, a definition
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of α can be obtained by

α =
−⟨BxBy⟩√

Tmax

, (13)

where Tmax is the maximum of the temperature, and we have neglected the contributions

from the Reynolds stresses, which are typically small. A more accurate choice would be to

use the average temperature in the denominator, however, since the temperature profile is

so flat anyway, definition (13) gives a pretty tight lower bound. For cases D, E, F, and G,

the values of α are 0.18, 0.25, 0.35, 0.5, respectively. It should be noted that the difference

in α between cased D and G is a factor of 2.8 while their luminosities differ by a factor of 5.

Somehow, one feels that the luminosity should be a better measure of transport efficiency,

since ultimately is the one directly related to the accretion rate.

This raises an interesting question: all other things being the same, does a disc with

an isothermal equation of state accrete faster or slower than a corresponding convective disc

with a perfect gas equation of state? The problem is to decide under what conditions “all

other things are the same”. Let us restrict our discussion to shearing-boxes, and let us assume

that we consider computational domains large enough that we obtain converged solutions

in terms of the aspect ratios. Then the isothermal cases are defined by a single parameter

nH ; the number of scale heights per unit length. The perfect gas cases are, instead, defined

by two parameters, the Péclet number, Pe, and the radiation parameter, Σ. The problem is

that the radiation parameter is related to the thermal boundary conditions that are absent

in the isothermal cases. However, for any Σ a convective solution can be transformed into a

conductive one by decreasing the Péclet number until the solution approaches an isothermal

one. If this procedure were repeated for all value of Σ it would establish a relationship–

hopefully a single-valued one–between nH and Σ, thereby allowing a direct comparison

between isothermal and perfect-gas solutions. Having said that, we should note that for all

the cases that have been studied, the efficiency, measured in terms of the luminosity, say,

always increases when the Péclet number is increased and the solution becomes convective.

Thus one concludes that a convective disc is always more luminous than a corresponding

isothermal one, according to the procedure outlined above. Interestingly, the reason for the

higher efficiency is not because the convection in itself gives rise to a higher transport of

angular momentum, rather because the convection allows a much more efficient dynamo to

operate that generates a strong, coherent toroidal magnetic field that gives rise to a higher

angular momentum transport by Maxwell stresses.
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Käpylä, P. J., & Korpi, M. J. 2011, MNRAS, 413, 901

Lesur, G., Ferreira, J., & Ogilvie, G. I. 2013, A&A, 550, A61

Mignone, A., Bodo, G., Massaglia, S., Matsakos, T., Tesileanu, O., Zanni, C., & Ferrari, A.

2007, ApJS, 170, 228

Miller, K. A., & Stone, J. M. 2000, ApJ, 534, 398

Oishi, J. S., & Mac Low, M.-M. 2011, ApJ, 740, 18

Pessah, M. E., Chan, C., & Psaltis, D. 2007, ApJ, 668, L51

Riols, A., Rincon, F., Cossu, C., Lesur, G., Longaretti, P.-Y., Ogilvie, G. I., & Herault, J.

2013, Journal of Fluid Mechanics, 731, 1

Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 24, 337

Shi, J., Krolik, J. H., & Hirose, S. 2010, ApJ, 708, 1716

Simon, J. B., Beckwith, K., & Armitage, P. J. 2012, MNRAS, 422, 2685

This preprint was prepared with the AAS LATEX macros v5.2.


