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ABSTRACT

The Point Spread Function (PSF) is a key figure of merit for specifying the angular resolution of optical systems
and, as the demand for higher and higher angular resolution increases, the problem of surface finishing must
be taken seriously even in optical telescopes. From the optical design of the instrument, reliable ray-tracing
routines allow computing and display of the PSF based on geometrical optics. However, such an approach
does not directly account for the scattering caused by surface microroughness, which is interferential in nature.
Although the scattering effect can be separately modeled, its inclusion in the ray-tracing routine requires
assumptions that are difficult to verify. In that context, a purely physical optics approach is more appropriate
as it remains valid regardless of the shape and size of the defects appearing on the optical surface. Such a
computation, when performed in two-dimensional consideration, is memory and time consuming because it
requires one to process a surface map with a few micron resolution, and the situation becomes even more
complicated in case of optical systems characterized by more than one reflection. Fortunately, the computation
is significantly simplified in far-field configuration, since the computation involves only a sequence of Fourier
Transforms. In this paper, we provide validation of the PSF simulation with Physical Optics approach through
comparison with real PSF measurement data in the case of ASTRI-SST M1 hexagonal segments. These results
represent a first foundation stone for future development in a more advanced computation taking into account
microroughness and multiple reflection in optical systems.
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1. INTRODUCTION

The Point Spread Function (PSF) is a key figure of merit to characterize optical systems, and it is highly
dependent on the optical design, quality of optical components and their alignment. While computing the optical
performances of an optical system, one has to simulate the real PSF including fabrication errors such as shaping
errors and surface finishing. Regarding the former, well-established ray-tracing routines allow computing and
display of the PSF based on geometrical optics1 but do not directly account for the scattering caused by surface
microroughness. In fact, scattering is a typical interferential effect and cannot be described via geometrical
methods. Although the scattering effect can be separately modeled, its inclusion in the ray-tracing routine
requires assumptions (e.g., that the scattering and the geometry work independently from each other; that
mid-frequency errors can be treated with geometric methods) that are difficult to verify. Therefore, adopting a
purely physical optics approach is safer, because its validity is unrestricted. More exactly, it can be applied to
any defect appearing on the optical surface, incidence angle, and light wavelength.

The problem of computing the PSF of a focusing mirror including the roughness effect has been treated
extensively in2,3 for the case of grazing incidence mirrors. In that approach, the computation of the Fresnel
integral in single or double reflection was simplified because the effects of mirror imperfections in grazing
incidence are concentrated in the incidence plane, and also the impact of profile errors in the sagittal plane
is usually negligible. For near-normal incidence mirrors, such as Cherenkov telescopes, these approximations
are no longer applicable and the formalism has to forcedly be two-dimensional. Unfortunately, the numerical
computation of Fresnel integrals in 2D leads to an unbearable computational complexity if the mirror surface
is sampled at a few micron step. As a possible way out, however, we can limit ourselves to the case of a PSF
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evaluated at a distance that is much larger than the linear size of the mirror (far-field approximation). In these
conditions, the PSF computation is sped up since the expression for the diffracted electric field reduces to the
Fourier Transform of the Complex Pupil Function (CPF). This result was also found when dealing with the far-
field PSF for grazing incidence mirrors,2 and can be applied to mirrors of any profile, characterized by any kind
of surface error, and to any light wavelength. In this paper, we put in place the foundation stone for generalizing
this approach to the two-dimensional case. Indeed, on the basis of physical optics, we theoretically derive the
PSF after a single reflection and prove the validity of the corresponding off-axis PSF computation (PO) by
comparing the results to Ray Tracing (RT) approach and experimental data for the aspherical ASTRI-SST M1
hexagonal segments. ASTRI-SST is a prototype of a Small Sized Telescope (SST) for the international CTA4

project dedicated to the study of gamma ray sources. This prototype was entirely designed, manufactured and
integrated by INAF-OAB5 who adopted a Schwarzschild-Couder configuration.

For optical telescopes’ applications, the formalism has also to be extended to multiple reflections taking into
account a source that could be off-axis and not at infinite distance such as for ASTRI-SST.6 Such a computation
will be described in a subsequent work.

2. SINGLE-REFLECTION OPTICAL SYSTEMS: POINT SPREAD FUNCTION
COMPUTATION IN FAR-FIELD APPROXIMATION

Following the procedure based on the Huygens-Fresnel principle and developed2 for the case of grazing-incidence
mirrors, we adopt a reference frame as in Fig. 1, with the mirror profile described by the function z1(x1, y1), over
a pupil M1 of generic shape and size. For example, for the ASTRI panels, M1 is hexagonal. We select the origin
of the reference frame setting z1(0,0)=0. The source S, located at (xS, yS, zS), is assumed to be point-like and
perfectly monochromatic of wavelength λ; hence, spatially and temporally coherent. The diffracted intensity is
recorded at the position P(x2, y2, z̄2), which may represent a location of either a detector array or the surface
of the secondary mirror, if included in the optical layout. The detection array is parallel to the xy plane, at
a constant height z̄2. We now assume that z̄2 � z1, zS � z1 over the entire mirror map, and finally that z̄2

and zS are much larger than the mirror lateral size. This approximation will enable us to reduce the Fresnel
integrals to the Fourier Transform.

Figure 1. Scheme of computation for the electric field from the source S, diffracted by a mirror described by the profile
z1(x1, y1) at the (x2, y2, z̄2) location on the detection plane (or the secondary mirror surface). Polarization effects are
not considered. The polar angles that locate the position of the detector are omitted to simplify the drawing.
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As per the Fresnel diffraction theory, the electric field at (x2, y2, z̄2) is

E2(x, y, z̄2) =

∫
M1

E0q12

λd2
e−

2πi
λ (d1+d2) dr2

⊥, (1)

where E0 is the electric field amplitude at the mirror surface, assumed to be constant. We also assume the
amplitude reflectivity to be constant everywhere, in order to take it out of the integral sign; to simplify the
notation, we assume it equal to 1. The obliquity factor q12 depends on the angle between the scattered and
the incident directions and, in near-normal geometry, can be assumed to be approximately 1. The orthogonal
surface element term can be written as dx1dy1 cos θ2, where θ2 is the angle between the surface normal and
the d2 direction. This angle is usually assumed to be constant if the mirror curvature is not too pronounced.
Finally, we denote with d1 and d2 the distances of the generic mirror point from S and P, respectively:

d1 =
√

(xS − x1)2 + (yS − y1)2 + (zS − z1)2, (2)

d2 =
√

(x2 − x1)2 + (y2 − y1)2 + (z̄2 − z1)2. (3)

At a large distance from the mirror, we can approximate the roots in the two previous equations at the first
order:

d1 ' (zS − z1) +
(xS − x1)2 + (yS − y1)2

2(zS − z1)
, (4)

d2 ' (z̄2 − z1) +
(x2 − x1)2 + (y2 − y1)2

2(z̄2 − z1)
. (5)

This definition of d1 diverges to infinity in the case of a source at infinite distance. To remove this singularity, we
arbitrarily set the reference wavefront passing by the reference frame origin. Approximating the denominators
with zS and z̄2, and removing unessential phase constants, we remain with

d1 ' −z1 +
x2

1 − 2xSx1 + y2
1 − 2ySy1

2zS
, (6)

d2 ' −z1 +
x2

1 − 2x2x1 + y2
1 − 2y2y1

2z̄2
+
x2

2 + y2
2

2z̄2
. (7)

In the last equation, we have maintained and isolated the dependence on x2 and y2 to preserve the information
on the phase of the diffracted wavefront. This will enable diffraction calculation in a future development of the
work. Substituting the expressions we obtain:

E2(x, y, z̄2) =
E0

λz̄2
cos θ2 e

− πi
λz̄2

(x2
2+y2

2)
∫

M1

e
2πi
λ 2

(
z1−

x2
1
+y2

1
4zR

)
e2πi(fxx1+fyy1) dx1dy1, (8)

where we have defined
1

zR
=

1

zS
+

1

z̄2
, (9)

and the spatial frequencies via the equations:

fx =
1

λ

(
x2

z̄2
+
xS

zS

)
, fy =

1

λ

(
y2

z̄2
+
yS

zS

)
. (10)

The specular direction of the source is correctly defined as x2/z̄2 = −xS/zS, and similarly for y2. We notice
that the case of a source at infinity is easy to treat, replacing the coordinate ratios of the source with

f∞x =
1

λ

(
x2

z̄2
+ sin θS cosϕS

)
, f∞y =

1

λ

(
y2

z̄2
+ sin θS sinϕS

)
, (11)

where θS and ϕS are the zenithal and the azimuthal angle of the source, with respect to the origin of the
reference frame (see Fig. 1).
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The result above shows that the electric field at z̄2 is the Fourier Transform of the Complex Pupil Function,

CPF(x1, y1) = χM1
(x1, y1) e

4πi
λ ∆z1 , (12)

where χM1 is the characteristic function of the pupil, and ∆z1 is defined as:

∆z1 = z1(x1, y1)− x2
1 + y2

1

4zR
, (13)

i.e., the difference between the true mirror profile and a parabola with focal length zR, which acts as a reference
surface.

We note that the expression of the reference surface does not include xS. This is quite surprising because
one would expect to have as a reference surface the profile that exactly images the source into the center
of the detector plane. For example, for a source at finite distance the surface to be removed from z1 would
expectedly be an ellipse, as done in grazing incidence mirrors under the same approximations.2 However, in
grazing incidence the mirror defect direction is essentially parallel to the coordinate on the detector. Therefore,
in far-field approximation executing a Fourier Transform of the profile errors is the natural choice. In near-
normal incidence, in contrast, the mirror profile error ∆z is orthogonal to the x2, y2 detector coordinates: hence,
we may expect a change in the reference surface when we perform the Fourier Transform of the CPF.

The intensity on the detector plane is represented by the square module of the electric field at z̄2:

I(x2, y2, z̄2) = |E2(x2, y2, z̄2)|2 , (14)

and the power intercepted by the mirror from the source can be written as:

I0 = E2
0 cos θSAM1,⊥, (15)

where AM1,⊥ = AM1
cos θS is the projection of the pupil area in the direction orthogonal to the incidence

direction. The additional factor of cos θS in Eq. 15 accounts for the intensity spread as per Lambert law. We
obtain the PSF normalizing the Eq. 14 to I0, and substituting the expression of E2(x2, y2, z̄2) (Eq. 8) we obtain:

PSF(x2, y2, z̄2) =
1

λ2z̄2
2AM1

∣∣∣∣∫
P1

e
2πi
λ 2∆z1e2πi(fxx1+fyy1) dx1dy1

∣∣∣∣2 , (16)

where we have assumed that the PSF is observed in the vicinities of the specular direction, and therefore θS ' θ2.
The multiplicative factor ensures that the integrated PSF is normalized to 1:∫ +∞

−∞
dy2

∫ +∞

−∞
PSF(x2, y2) dx2 = 1. (17)

Except for a few cases, the Fourier Transform in Eq. 16 has to be computed numerically. To this end, a
proper spatial sampling of the pupil, ∆x1, is requested to avoid aliasing in the PSF within a detector field of
lateral size L2. This is obtained by a straightforward extension of the monodimensional case,2

∆x1 =
λz̄2

2πL2 cos θS
. (18)

The mirror pupil can have any shape, but it should always be contained in a square of side twice as large as
the maximum diameter of the pupil, L1. The z1 map is therefore a N ×N square matrix, with

N =
4πL2L1 cos θS

λz̄2
. (19)

In the next section, this PSF derivation is applied to the particular case of ASTRI-SST segmented primary
mirror for validation.
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3. CASE STUDY: ASTRI-SST M1 HEXAGONAL SEGMENTS

3.1 ASTRI-SST M1 optical design

ASTRI (Fig. 2, A) is a prototype for CTA-SST fully developed by INAF-OAB.5 Its optical design is based on a
Schwarzschild-Couder configuration with a F# of 0.5 and an equivalent focal length of 2150 mm. The M1 mirror
diameter is 4.02 m in diameter, tessellated into hexagonal mirrors which face-to-face dimension is 849 mm. The
M1 mirror is divided into 3 sections or 3 coronae, according to the distance of the center of the segment to the
center of M1 (Fig. 2, B). Therefore, the closest segments (857 mm from the center of M1) belong to corona 1,
mirrors placed 1485 mm from the center of M1 are in corona 2, and the farthest segments (1715 mm from the
center of M1) are in corona 3.

A) B)

Figure 2. Optical design of ASTRI-SST (after5). A) 3D optical layout for ASTRI-SST 2M telescope. B) ASTRI-SST
M1 tessellation. Green: corona 1. Blue: corona 2. Yellow: corona 3.

The M1 mirror of ASTRI-SST is an aspherical mirror defined as:

z(r) =
cr2

1 +
√

1− (cr)2
+

N∑
i=1

air
2i (20)

where z(r) is the surface profile, r the surface radial coordinate, c the curvature and αi the coefficients of
asphericity detailed in Tab. 1.

3.2 Experimental setup for PSF acquisition

The experimental PSF is acquired using a setup developed at INAF-OAB and described in details in.1 The
setup consists of:

• An optical bench hosting the light source at 8430 mm from the center of the mirror.

• A mirror support composed of a mechanical support on top of a rotary table where the ASTRI-SST M1
panels are mounted, and where tip and tilt could also be adjusted. The rotary table allows the rotation
of the mirror toward the optical bench and the screen. For our study, an hexagonal segment from corona
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IMirror segment

Screen placed at
different positions
for PSF acquisition

i α
1 0
2 9.61060 ∗ 10−13

3 −5.6550110−20

4 6.7798410−27

5 3.8955810−33

6 5.2803810−40

7 −2.9910710−47

8 −4.39153 ∗ 10−53

9 −6.1743310−60

10 2.73586 ∗ 10−66

Table 1. Coefficients of asphericity for ASTRI-SST M1 mirror

3 area of ASTRI-SST M1 (Fig. 2,B) was mounted and oriented at 8.79 deg angle between the normal of
the mirror at its center and the axis passing by the light source and the center of the mirror.

• A screen is mounted on a stage that allows moving the screen at different distances from the mirror.
PSF acquisition have been performed placing the screen at 4761 mm, 5794 mm, 7059 mm, 8183 mm, and
8840 mm from the mirror. The stage direction is aligned with the center of the rotary table at the basis
of the mirror support by using a laser. The center of the rotary table is positioned on the barycenter of
the obtained pattern.

The facility uses a folding mirror to acquire distances perpendicularly to the optical axis and a camera is
used to acquire pictures of the images reflected on the screen. Fig. 3 shows the setup configuration in 3D for
experimental PSF acquisition.

Figure 3. Setup for the experimental PSF acquisition of ASTRI-SST corona 3 segment (after1): a light source is placed
at 8430 mm from the center of the mirror panel that is rotated at 8.79 deg off-normal, the reflected image generated by
the mirror is acquired at various distances from the center of the mirror (4761 mm, 5794 mm, 7059 mm, 8183 mm, and
8840 mm)
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3.3 Comparing PSF obtained from physical optics (PO), ray tracing (RT) and
experimental data

3.3.1 Physical Optics

The PSF obtained from Physical Optics (PO) approach is computed via a Matlab code that applies the theory
expounded in Sect. 2. In order to validate this approach, the results are compared to the Ray Tracing program
TraceIT7 and to experimental data obtained for ASTRI-SST M1 corona 3 segment as illustrated in Fig. 4. To
decrease the computation time, the PO simulation considers the incoming light at λ = 100 µm which is much
higher than the light source used in the experience. This does not change the shape or the size of the PSF but
introduces diffraction fringes clearly noticeable in Fig. 4(b). Thence not only does the PO approach perfectly
reproduces the Ray Tracing (or geometrical optics) PSF prediction but takes also in consideration diffraction
effect in the computation that manifests itself as diffraction fringes in the images shown here. Obviously, those
fringes will be less extended and narrower for shorter wavelengths.

dDM= 5794 mm dDM= 8183 mm

Figure 4. Comparison of PSF images on the same scale obtained from (a) Experimental image, (b) Physical Optics
computation at λ = 100 µm and (c) Ray Tracing computation. The mirror was oriented at 8.79 deg, from a light source
located at 8430 mm from the center of ASTRI-SST M1 corona 3 mirror segment and a varying distance of the detector
dDM

3.3.2 Comparing different approaches: PO, RT and experimental data

In order to quantify the agreement between the three PSFs obtained using three independent methods, we
compare the size of the PSF in both x and y direction. At the edges, the experimental PSF is blurred, mainly
due to defects on the mirror, this introduces uncertainty on the real PSF size. This uncertainty is estimated
at 5% and 10% respectively in x and y direction. As the defects on the mirrors, since geometrical defects or
roughness are not taken into account in the PO or RT simulations shown in this paper, the dimension of the
experimental PSF appearing in Tab. 2 and 3 do not take into account the blurs at the edges of the PSF as
shown in Fig. 5.

Hence, Fig. 6 and 7 show very good agreement between the PO simulation and the experimental data.
For each considered case, the size of the PSF found using PO remains within the existing size uncertainty for
experimental data. Moreover, although Ray Tracing data are slightly overestimating the size of the PSFs in
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Figure 5. Definition of PSF sizes along x and y

the x direction, given the various sources of error (experimental setup, PSF measurement accuracy, different
simulation approaches, ...), the differences between each of the method is negligible as one can see in Tab. 2
and 3. The prediction between PO, RT and real experimental data give self-consistent results giving confidence
in the validity of the Physical Optics computation approach for single reflection.

Figure 6. Comparison of the PSF size obtained using Physical Optics (red squares) and Experimental images (green
triangles) for a mirror oriented at 8.79 deg from the source located at 8430 mm from the center of the mirror with a
± 5% error bar on experimental data

Distance RT (mm) PO (mm)
Exp

(mm)
PO/Exp RT/Exp

4761 1033.5 976.4 969.4 1.01 1.07

5784 1061.5 1008.3 977.4 1.03 1.09

7059 1097.2 1031.0 1007.8 1.02 1.09

8183 1120.0 1068.5 1024.4 1.04 1.09

8840 1143.4 1113.7 1076.7 1.03 1.06

Table 2. PSF size along x comparison.
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Figure 7. Comparison of the PSF size along y obtained using Physical Optics (red squares) and Experimental images
(green triangles) for a mirror oriented at 8.79 deg from the source located at 8430 mm from the center of the mirror with
a ± 10% error bar on experimental data

Distance RT (mm) PO (mm)
Exp

(mm)
PO/Exp RT/Exp

4761 524.2 518.8 500.0 1.04 1.05

5784 426.4 416.2 397.5 1.05 1.07

7059 304.3 299.6 287.1 1.04 1.06

8183 207.5 194.0 194.0 1.00 1.07

8840 156.2 142.0 141.4 1.01 1.10

Table 3. PSF size along y comparison.

4. CONCLUSION
In this paper, we have shown that a 2D PSF prediction, for mirrors working also close to normal incidence,
based on Physical Optics considering a single reflection was feasible and accurate. This result is a foundation
stone for the development of a complete tool to predict PSF with multi-reflection and mirror surface defects
consideration in the study of scattering introduced by optical surfaces. The main advantage of such an approach
is that it does not require any frequency regime separation consideration to study the scattering effects on a
mirror. Indeed the different regimes are unified in the physical optics domain. Applied to X-ray optical systems
at grazing incidence, this approach has already been successfully adopted in the 1D domain2 but has never been
extended to the 2D domain. However, as we want to include surface defects of a few microns in meters scale
optics, the resolution of matrices considered are strongly increased. A real computational challenge is rising,
and it becomes even more daunting as we are considering complex systems (aspheric components and multiple
reflection systems) for which the far-field approximation is not always verified. Solving those issues is currently
under progress.

ACKNOWLEDGMENTS

This work is supported by the Italian National Institute of Astrophysics (INAF) and the TECHE, T-REX
programs funded by the Ministry of Education, University and Research (MIUR).

REFERENCES

[1] Sironi, G., Canestrari, R., Pareschi, G., Pelliciari, C., ”Deflectometry for optics evaluation: free form
segments of polynomial mirror,” Proc. SPIE 9151, 91510T (2014)

Proc. of SPIE Vol. 9577  957709-9

Downloaded From: http://spiedigitallibrary.org/ on 06/27/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



[2] Raimondi, L., Spiga, D., ”Mirrors for X-ray telescopes: Fresnel diffraction-based computation of Point
Spread Functions from metrology,” Astronomy & Astrophysics, 573, A12 (2015)

[3] Spiga, D., Raimondi, L., ”X-ray optical systems: from metrology to Point Spread Function,” Proc. SPIE
9209, 92090E (2014)

[4] The CTA Consortium, ”Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for
ground-based high-energy gamma-ray astronomy,” Experimental Astronomy 32, 193 (2011)

[5] Canestrari, R., Bonnoli, G. et al.,”The ASTRI SST-2M prototype for the Cherenkov Telescope Array:
manufacturing of the structure and of the mirrors,” Proc. SPIE 9145, 91450M (2014)

[6] Pareschi, G., et al., ”The dual-mirror Small Size Telescope for the Cherenkov Telescope Array”, Procs. 33rd
ICRC (2013)

[7] Sironi,G., Citterio, O., Pareschi, G., ”X-Ray optics shape error evaluation: synergy between innovative
shape metrology and the TraceIT 3D ray-tracing,” Proc. SPIE 8141, 81410P (2011)

Proc. of SPIE Vol. 9577  957709-10

Downloaded From: http://spiedigitallibrary.org/ on 06/27/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx


