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ABSTRACT
We investigate the dynamics of bow shock nebulae created by pulsars moving supersonically
through a partially ionized interstellar medium. A fraction of interstellar neutral hydrogen
atoms penetrating into the tail region of a pulsar wind will undergo photoionization due to the
ultraviolet light emitted by the nebula, with the resulting mass loading dramatically changing
the flow dynamics of the light leptonic pulsar wind. Using a quasi-1D hydrodynamic model of
both non-relativistic and relativistic flow, and focusing on scales much larger than the stand-off
distance, we find that if a relatively small density of neutral hydrogen, as low as 10−4 cm−3,
penetrate inside the pulsar wind, this is sufficient to strongly affect the tail flow. Mass loading
leads to the fast expansion of the pulsar wind tail, making the tail flow intrinsically non-
stationary. The shapes predicted for the bow shock nebulae compare well with observations,
both in Hα and X-rays.
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1 IN T RO D U C T I O N

It has been estimated that between 10 and 50 per cent of pulsars
are born with kick velocities VNS � 500 km s−1 (Cordes & Cher-
noff 1998; Arzoumanian, Chernoff & Cordes 2002). These pul-
sars will escape from their associated supernova remnants into the
cooler, external interstellar medium (ISM) in less than 20 kyr (Ar-
zoumanian et al. 2002). As this time-scale is sufficiently short, the
pulsars are still capable of producing powerful relativistic winds.
Furthermore, comparison with typical sound speeds in the ISM,
cs,ISM = 10-100 km s−1, shows that the pulsars are moving with
highly supersonic velocities. The interaction of the pulsar’s wind
with the ISM produces a bow shock nebula with an extended tail.
If a pulsar is moving through a partially ionized medium, the bow
shock nebula can be detected by the characteristic Hα emission re-
sulting from the collisional and/or charge-exchange (CE) excitation
of neutral hydrogen atoms in the post-shock flows and the subse-
quent emission via bound–bound transitions (Chevalier, Kirshner &
Raymond 1980). To date, nine such bow shock nebulae have been
discovered, including three around γ -ray pulsars (Brownsberger &
Romani 2014).

Hydrodynamic (HD; and hydromagnetic) models (e.g. Buc-
ciantini 2002a) of bow shock nebulae predict the formation of a
smooth two-shock structure schematically shown in Fig. 1: a for-
ward shock in the ISM separated by a contact discontinuity from
a termination shock in the pulsar wind. In the head of the nebula
the shock and the contact discontinuity are situated at a distance

� E-mail: giovanni.morlino@gssi.infn.it

given by equation (1), corresponding to the position where the ram
pressure of the ISM balances the pulsar wind pressure. The flow
structure in the head of the nebula is reasonably well understood,
especially in the limit of strong shocks (i.e. when the pulsar veloc-
ity is much larger than the ISM sound speed) and neglecting the
internal structure of the shocked layer (Wilkin 1996).1

These models further predict that the pulsar wind terminates at
a Mach disc located approximately at a distance dback = MNSd0

behind the pulsar (where MNS = VNS/cs,ISM is the Mach number of
the pulsar moving through the ISM). At approximately the same
distance the oblique forward shock turns into a Mach cone with
an opening angle ∼1/MNS. For distances larger than dback the flow
in the tail of the nebula is smooth and nearly cylindrical, although
some models predict the development of shear flow instabilities
(e.g. Kelvin–Helmholtz instabilities).

In contrast to these numerical models, H α, radio and X-rays
observations show that the morphologies of bow shock nebulae
are significantly more complicated. More specifically, observations
reveal that the tails of bow shock nebulae have a highly irregular
morphology, with Fig. 2 showing four such examples. All these
nebulae have a characteristic ‘head-and-shoulder’ structure, with
the smooth bow shock in the head not evolving into a quasi-conical
or quasi-cylindrical shape, but instead showing a sudden sideways
expansion(s). Arguably the most famous example is the Guitar
nebula powered by the pulsar PSR B2224+65 (top left-hand panel
in Fig. 2). As the name suggests, this nebula has a guitar-like shape

1 This model is very realistic when the system cools efficiently, otherwise
the pressure of the shocked ISM needs to be taken into account.
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Figure 1. Schematic illustration of a bow shock nebula propagating through
fully ionized ISM, as seen in the rest frame of the pulsar. The dot–dashed
rectangle shows the region zoomed in Fig. 3.

Figure 2. Montage of H α images of optical bow shocks associated with
PWNe. Shown are J2224+65, the so-called Guitar nebula (Chatterjee &
Cordes 2002), J0742−2822, J2030+4415 and J2124−3348 (Brownsberger
& Romani 2014).

with a bright head, a faint neck and a body consisting of several
larger bubbles.

Although the morphologies of these nebulae vary from source to
source, there are a number of common features which, in our view,
not only reflect the intrinsic dynamical properties of the flows, but
which are also independent of the subtle details of both the pulsar
winds (e.g. the relative orientation of the velocity and spin axis) and
of the ISM. We stress the fact that all bow shock nebulae show qual-
itatively similar morphological features not expected from simple
fluid models. In the X-ray and radio bands the tails show highly non-
trivial morphologies with quasi-periodic variations in the intensity
(e.g. Kargaltsev & Pavlov 2008). For example, in the case of the
Guitar nebula the tail shows quasi-periodic bubble-like structures
(van Kerkwijk & Ingle 2008).

These peculiar tail shapes have been interpreted as the result
of density variations in the ISM (Romani, Cordes & Yadigaroglu

1997; Vigelius et al. 2007). However, based on the following con-
siderations, we find this explanation unsatisfactory: (i) all tails show
similar morphological variations (see Fig. 2); (ii) a common char-
acteristic of these bow shock nebulae is that they are all highly
symmetric with respect to the direction of motion of the pulsar –
this is not expected if variations are due to the external medium; (iii)
morphological features in H α, radio and X-rays are quasi-periodic
– this is also not expected from random ISM density variations.
From these observations we conclude that the peculiar morpholog-
ical features result from the internal dynamics of the pulsar wind,
rather than through inhomogeneities in the ISM.

van Kerkwijk & Ingle (2008) have also previously proposed that
the morphology of the Guitar nebula could be explained by (uniden-
tified) instabilities in the jet-like flow of pulsar material away from
the bow shock. Alternatively, Bucciantini & Bandiera (2001) and
Bucciantini (2002b) have suggested that the mass loading of pulsar
wind nebulae (PWNe) may strongly affect their dynamics. These
authors have shown that a non-negligible fraction of neutral atoms
can cross the shocked ISM behind the bow shock without undergo-
ing any interaction, thereby enabling these atoms to propagate into
the pulsar wind region. Once inside the wind, neutral hydrogen can
be ionized by UV or X photons emitted by the nebula, and possibly
by collisions with relativistic electrons and positrons, resulting in a
net mass loading of the wind.

In order to study this scenario, Bucciantini & Bandiera (2001) and
Bucciantini (2002b) extended the thin-layer approximation used to
model cometary nebulae (Bandiera 1993; Wilkin 1996, 2000). The
thin-layer approximation is conceptually analogous to a 1D model
as it neglects the thickness of the nebula, while all quantities depend
only on the distance from the apex. Despite the above-mentioned
simplifications, these models provide a good description of the head
region of the nebulae in terms of shape, hydrogen penetration length
scale and H α luminosity, as was later confirmed by more accurate
2D axisymmetric simulations, both in the HD regime (Bucciantini
2002a; Gaensler et al. 2004) and in the relativistic magnetohydro-
dynamic (MHD) regime (Bucciantini, Amato & Del Zanna 2005).
Using a 3D model, Vigelius et al. (2007) were able to extend the
study of these systems by also taking into account either a non-
uniform ambient medium, or the anisotropy of the pulsar wind
energy flux. However, none of these models is able to explain the
peculiar morphology of the H α emission often observed in the tail
regions of bow shock nebulae.

While the above-mentioned studies focused primarily on the head
of bow shock nebulae, the aim of the present paper is to investigate
the effect of neutral hydrogen on the tail region of these nebulae. The
question we would like to investigate is whether the mass loading
of neutral hydrogen in the pulsar wind can explain the peculiar
morphology observed at H α, radio and X-ray energies. In order to
focus on the effect of mass loading on the evolution of bow shock
nebulae, complications introduced by magnetic field pressure (and
topology) are neglected in the present paper. These aspects are
indeed necessary for a comprehensive and realistic treatment of the
problem, and will be the subject of a future study.

At this point the question arises as to whether one can use obser-
vations of the heliosphere to understand the problem formulated in
the previous paragraph. Although mass loading plays an important
role in the dynamics of the solar wind (Baranov, Krasnobaev &
Kilikovskii 1971; Baranov 1990; Zank 1999), there are a number of
key differences between this scenario and the pulsar wind scenario.
First, the velocity of the Sun through the ISM is, most likely, weakly
subfast magnetosonic (McComas et al. 2012), whereas the pul-
sar’s motion is highly supersonic; secondly, the pulsar wind is very
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3888 G. Morlino, M. Lyutikov and M. Vorster

Table 1. Tabulated quantities, in order of appearance: pulsar name, spin-down power, non-thermal X-ray emis-
sion from the pulsar, non-thermal X-ray flux from nebula, photon index of nebula X-ray emission, ISM den-
sity. References: 1 – Brownsberger & Romani (2014); 2 – Abdo et al. (2013); 3 – Hui & Becker (2007);
4 – Romani et al. (2010); 5 – Stappers et al. (2003); 6 – Hui & Becker (2006). The values of LX marked with
an ∗ are calculated using the relation log10LX,pwn = 1.51 log10Ė − 21.4 derived by Kargaltsev et al. (2012) from
Chandra observations.

Pulsar Ė34 LX, pul LX, pwn �X, pwn nISM Reference
(erg s−1) (erg s−1) (erg s−1) (cm−3)

J0437−4715 0.55 2.4 × 1030 3.5 × 1029 ∗ – 0.21 1, 2
J0742−2822 19.0 <9.6 × 1030 7.4 × 1031 ∗ – 0.28 1, 2
J1509−5850 68.2 2.4 × 1032 (1.3–2.7) × 1032 1.3+0.8

−0.4 6.14 1, 2, 3
J1741−2054 12.6 3.5 × 1030 4.0 × 1031 ∗ 1.6 ± 0.2 1.44 1, 2, 4
J1856−3754 3 × 10−4 – 4.2 × 1034 ∗ – 0.05 1, 2
J1959+2048 21.9 5.2 × 1031 1.9 × 1031 1.5 ± 0.5 0.02 1, 2, 5
J2030+4415 2.90 2.7 × 1031 4.3 × 1030 ∗ – 2.69 1, 2
J2124−3358 0.68 8.6 × 1029 1029 2.2 ± 0.4 0.47 1, 2, 6
J2225+6535 0.16 – 5.5 × 1028 ∗ – 1.43 1, 2

light–composed of lepton pairs – and one would therefore expect
mass loading to have a greater effect; thirdly, most of the research
related to mass loading in the solar wind concentrated on flow in
the head region, while we are interested in the large-scale dynamics
of the tail flows.

The outline of the rest of the paper is as follows. In Section 2
we discuss how neutral hydrogen penetrates into the pulsar wind,
summarizing the possible interaction processes (CE, photoioniza-
tion and collisions). In particular, we show that the ionization of
neutrals inside the wind is mainly due to ultraviolet (UV) photons
emitted by the nebula. We stress here that in the whole paper with
‘neutrals’ we will always refer to neutral hydrogen, even if, in prin-
ciple, neutral helium can play a similar role. We will also briefly
argue at the end of Section 2 why ions from the ISM should play
no role in mass loading. The analytical, non-relativistic HD model
used for the study is presented in Sections 3 and 4, while in Section
5 we develop a similar model but for a relativistic wind. In Section
6 we provide a simple visual model fit to the bow shock nebula
PSR J0742−2822, while we qualitatively discuss in Section 7 how
the presence of a magnetic field inside the wind can modify the
wind dynamics. Lastly, a summary of the main results can be found
in Section 8.

2 ST RU C T U R E A N D R E L E VA N T S C A L E S O F A
P W N E C O N F I N E D B Y A PA RT I A L LY I O N I Z E D
M E D I U M

Fig. 1 shows the typical structure produced by a pulsar (or a normal
star) moving supersonically through the ISM, as seen in the rest
frame of the pulsar, when the effect of neutrals is not taken into
account. Such bow shock structures are preferentially produced
when the pulsar propagates through the warm phase of the ISM,
whose typical temperature is T ∼ 6 × 103–104 K. In this case the
sound speed is cs ∼ 10 km s−1, hence the pulsar’s Mach number is
�1. Conversely, the hot phase of the ISM has T ∼ 106 K and cs ∼
100 km s−1, implying a Mach number close to 1. In the hot phase
the ISM is totally ionized, while in the worm one the presence of
neutral hydrogen cannot be neglected. In fact the typical density of
the warm ISM is 0.2–0.5 cm−3 and the ionized fraction is estimated
to range between 0.007 and 0.05 for the warm neutral medium
(WNM), and 0.6 and 0.9 for the warm ionized medium (WIM; see
e.g. Jean et al. 2009, Table 1).

The distance, d0, between the pulsar and the contact discontinuity
(CD; formed between the shocked ISM and the shocked wind) is
obtained by equating the wind pressure with the bulk pressure of
the ISM:

d0 =
( Lw

4πV 2
NSρISMc

)1/2

= 1.3 × 1016L1/2
w,34 V −1

300 n
−1/2
ISM,−1 cm, (1)

where Lw = 1034Lw,34 erg s−1 is the pulsar luminosity, VNS =
300 V300 km s−1 is its peculiar velocity and ρISM = mpnISM is the den-
sity of the dragged component of the ambient medium, expressed
in units of nISM = 0.1 nISM, -1 cm−3.

In order for mass loading to play a role in the dynamic evolution
of bow shock nebulae, neutrals are required to cross � (the distance
between the bow shock and the contact discontinuity) and penetrate
into the wind region. Hence the interaction length inside the shocked
ISM, λ, must be larger than �. Chen, Bandiera & Wang (1996)
estimated that � = 5/16 d0, a value that was later confirmed by
Bucciantini et al. (2005) using numerical simulations (note that �

is smaller than d0).
At this stage it is important to note that different physical pro-

cesses will lead to the interaction of neutrals in the shocked ISM
than in the pulsar wind. In the next section it will be shown that a
significant amount of neutrals can undergo CE with protons in the
shocked ISM and collisional ionization with electrons (specifically
in the head of the bow shock system), while the collisional ionization
of neutrals by protons can be neglected when VNS � 300 km s−1.
Despite the neutrals undergoing CE and ionization, it will further
be shown that a dynamically important fraction of neutrals can still
penetrate into the pulsar wind in their original state.

The pulsar wind most likely consists of only electrons and
positrons (Ruderman & Sutherland 1975), and CE is therefore not
possible. Rather, ionization of neutrals can only occur through pho-
toionization or through the collision with relativistic electrons and
positrons. The former process is discussed in Section 2.3 where it
is shown that a significant amount of neutrals can be photoionized
through the non-thermal emission emitted by the pulsar wind, while
in Section 2.4 we show that collisional ionization can be neglected.
As photoionization is important for the pulsar wind, one may ask
whether this process is also important for the shocked ISM in the
head of the nebula. Section 2.2 will therefore be used to discuss
when photoionization in the shocked ISM can be neglected. Lastly,
for the sake of completeness, we will discuss in Section 2.5 why
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the ionization of neutrals inside the unshocked pulsar wind can be
neglected.

One may wonder whether ions from the ISM, rather than neu-
trals, can penetrate inside the wind directly, resulting in a net mass
loading of the wind. The main issue of this hypothesis is that ions
are attached to magnetic field lines which do not cross the contact
discontinuity. In principle ions could diffuse perpendicular to the
field lines and enter inside the wind. Nevertheless a simple estimate
excludes this possibility: using the Bohm diffusion coefficient, DB

= vrL/3, as an upper limit for the perpendicular diffusion, we can
estimate the time needed for a thermal proton to cross the typical
distance d0, which is given by tcross = d2

0 /DB. Using B = 1 μG, d0

= 1016 cm and v = 100 km s−1, we get tcross ≈ 109 yr. Hence the dif-
fusion of ions is too slow and can be neglected. An alternative way
for ions to penetrate inside the wind is through shear flow instabili-
ties that can develop at the contact discontinuity. Nevertheless, the
effects of instabilities will not be limited to the simple injection of
ions, but will mix the ISM materials with the pulsar wind resulting
in a complex tale structure and probably to its disruption. In our
knowledge this scenario has never been studied in details, and it is
far beyond the aim of the present paper.

2.1 Interaction of neutrals in the shocked ISM

After crossing the bow shock, neutral atoms can interact with the
shocked protons. The interaction length is given by

λ = VNS

XionnISMrc〈σ (vrel)vrel〉 , (2)

where Xion is the ionization fraction of the ISM, rc is the compression
ratio of the bow shock, σ (vrel) is the relevant cross-section of the
process under consideration and 〈σvrel〉 is the collision rate averaged
over the ion distribution function. When the ion distribution is a
Maxwellian, 〈σvrel〉 is well approximated (within 20 per cent) by
the expression (Zank et al. 1996; Blasi et al. 2012)

〈σvrel〉 ≈ σ (U ∗)U ∗, (3)

where

U ∗ =
√

8

π

2kBT

mp
(4)

is the average, relative speed between the incoming hydrogen atom
and ions (T is the temperature of the shocked ISM determined by the
Rankine–Hugoniot jump conditions, assumed to be �TISM). Using
the fiducial values nISM = 0.1 cm−3 and VNS = 300 km s−1, together
with an ionization fraction of 90 per cent and rc = 4 (the typical
value for strong shocks), leads to the following estimates for the
mean free paths:

λion,p ≈ 3.0 × 1020 cm, (5)

λion,e ≈ 2.2 × 1016 cm, (6)

λCE ≈ 1.5 × 1015 cm (7)

for the ionization due to collisions with protons, electrons and CE,
respectively. Note that λion, e has been calculated under the assump-
tion that the electrons downstream of the shock equilibrate rapidly
with protons, thereby acquiring the same temperature. If this as-
sumption does not hold, the collisional length scale for ionization

due to electrons can become much larger than the value reported in
equation (6). In addition, the values (5)–(7) are to be taken as lower
limits as they are valid just ahead of the nebula, where the compres-
sion ratio and the temperature obtain their maximum values.

From these estimates it follows that only a negligible fraction
of the neutral hydrogen will be collisionally ionized by electrons,
whereas a significant fraction of neutrals will undergo CE. The
neutrals resulting from a CE event will have a bulk speed and a
temperature that are close to that of the protons in the shocked ISM.
This implies that the newly formed neutrals tend to be dragged
with the shocked protons along a direction parallel to the contact
discontinuity. Nevertheless, the CE process produces a diffusion of
neutrals in the nose of the nebula and it may still be possible for
the newly formed neutrals to enter the wind region, provided that
their diffusion velocity perpendicular to the contact discontinuity is
of the same order or larger than their velocity parallel to the contact
discontinuity. This is a complication that will not be addressed in
the present paper but is essential to estimate the correct amount of
neutrals that can penetrate into the wind.

Although a large number of neutrals will be lost due to CE, a
minimum fraction of neutrals proportional to exp [ − �/(λCE +
λion)] will cross the shocked ISM region without suffering any in-
teraction and will enter the pulsar wind in their original state. These
neutrals will not influence the wind structure until they are ionized,
either through collisions with relativistic electrons and positrons, or
through photoionization with photons emitted by the nebula or by
the pulsar. In Section 2.3 we show that photoionization is the dom-
inant process in PNWe, while we demonstrate in Section 2.4 that
collisional ionization can be neglected. However, we first discuss
the photoionization ahead of the nebula and in the shocked ISM.

2.2 Photoionization outside the pulsar wind

There are three different sources of photons to account for: thermal
and non-thermal radiation from the pulsar, and non-thermal radia-
tion from the nebula. The thermal radiation from the pulsar has been
shown to be negligible (see Bucciantini & Bandiera 2001, equation
(25) and discussion below). On the other hand, non-thermal emis-
sion from both the pulsar and the nebula can play a role as the
non-thermal pulsar luminosity is generally comparable to the lumi-
nosity of the nebula.

When the radiation emitted by the nebula has a sufficient lumi-
nosity, incoming neutrals can be ionized before crossing the bow
shock, and one would consequently not expect any effect from mass
loading. Conversely, the requirement that hydrogen atoms are not
fully ionized at the bow shock imposes an upper limit on the total
ionizing luminosity. We derive this limit closely following a similar
derivation given by van Kerkwijk & Kulkarni (2001).

Assuming a spherical symmetry for the emission emitted by the
nebula, the ionization fraction ξ+ at a distance r from the centre of
the nebula is

dξ+(r)

dt
= (1 − ξ+)σ̄ph

Nphe−τ (r)

4πr2
− ξ+neαrec, (8)

where Nph is the number of ionizing photons emitted by the nebula
per unit time, and σ̄ph = N−1

ph

∫ ∞
I

σph(ν)nph(ν)dν is the photoion-
ization cross-section averaged over the photon distribution. The
photoionization cross-section is

σph(ν) = 64α−3
fin σT (I/hν)7/2 = 10−16(hν/Ryd)−7/2 cm2, (9)

with σ T the Thompson cross-section and I = 1 Ryd the ionization
potential. As σ ph decreases rapidly with photon energy, the only
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relevant photons are those with energy � I. Solving equation (8)
in the rest frame of the pulsar where the plasma is moving in the
positive direction along the x-axis with velocity VNS, one may write
dx = VNSdt. If the extinction and recombination of protons are
neglected, equation (8), written in cylindrical coordinates (x, ρ),
simplifies to

dξ+
1 − ξ+

= σ̄phNph

4πVNS

dx

ρ2 + x2
. (10)

The solution is straightforward and reads

ξ+(x) = 1 − (1 − ξ+,0) exp

{
− r0

ρ

[
π

2
− arctan

(
x

ρ

)]}
, (11)

where ξ+, 0 is the original ionization fraction of the ISM far from the
nebula and r0 ≡ σ̄phNph/(4πVNS) defines the typical distance where
ionization is effective. As pointed out by van Kerkwijk & Kulkarni
(2001), equation (11) describes an ionization fraction which, for
fixed impact parameter ρ, smoothly increases as one approaches
the nebula from the left in Fig. 1, strongly increases for ρ ∼ r0,
before approaching the asymptotic value 1 − (1 − ξ+,0)e−πr0/ρ as
one moves away from the pulsar towards the right.

In order to estimate the value of r0, it is useful to express the
product σ̄ph · Nph using the X-ray luminosity of the nebula, LX,
which we define as the luminosity in the Chandra energy range,
i.e. between ε1 = 0.5 keV and ε2 = 8 keV. Assuming that the non-
thermal emission from the nebula ranging between UV and X-ray
energies is a single power law with a photon index �, the value of
r0 can be written as

r0 = σ̄phNph

4πVNS
= 1.33 × 1016F (�)LX,30V

−1
300 cm, (12)

where LX,30 is the X-ray luminosity in units of 1030 erg s−1 and V300

is the pulsar speed in units of 300 km s−1, whileF is a dimensionless
function that depends only on the photon index,

F (�) = I 9/2 2� − 4

2� + 5

[ε−5/2−�]ε2
I

[ε2−�]ε2
ε1

. (13)

The typical values of � inferred for PWNe detected in X-rays are
� ≥ 1.52 (see also e.g. Kargaltsev & Pavlov 2008). It follows that
F ≥ 2 × 10−3, withF reaching unity when � = 2.55. Equation (12)
shows that r0 can easily be smaller than the stand-off distance, d0,
implying that the majority of neutrals reach the bow shock without
having been ionized. It is useful to express the condition r0 < d0

in terms of an upper limit for the X-ray efficiency of the nebula,
defined as ηX ≡ LX/Lw:

r0 < d0 ⇒ ηX < 10−4 F (�)−1 L−1/2
w,34 n

−1/2
ISM,−1. (14)

Typical measured values for PWNe are ηX ≈ 10−3, although large
deviations from this value are observed. For H α emitting bow shock
nebulae it is known that hydrogen atoms are present at the position
of the bow shock, therefore, the inequality (14) has to be satisfied.
In fact, for PWNe emitting both H α bow shock and X-ray radiation,
the estimated value of ηX is closer to 10−4 (see values reported in
Table 2), and the inequality (14) is thus satisfied.

2 It should be kept in mind that a value of � ∼ 1.5 is expected if the
particles responsible for the non-thermal X-rays are produced through Fermi
acceleration.

Table 2. Summary of the parameter values used for scenarios A and B.

nISM Xion TISM V0 u1 M1 Lw

(cm−3) (K) (km s−1) (erg s−1)

0.1 0.9 104 300 c 1 1034

2.3 Photoionization inside the pulsar wind

The photoionization of atoms inside the wind determines the rate of
mass loading. In order to estimate this rate, the value of the photon
density inside the nebula is required. For simplicity it is assumed
that the wind is a cylinder with a cross-section πd2

0 and a length R,
emitting radiation uniformly. The photon number density inside the
wind is then given by

nph,w = Nph〈l〉
πd2

0 Rc
. (15)

The value of R can vary greatly from one bow shock nebula to
another, but in general R � d0. The quantity 〈l〉 is the mean length
traversed by a photon before escaping the nebula. When the presence
of neutrals is neglected, PWNe are transparent to UV radiation
because the e+/e− pair density is very small and the Compton
scattering mean free path is greater than the size of the nebula.3

Hence for geometrical reasons we can assume 〈l〉 ∼ d0. If we
account for the presence of neutrals inside the wind, the mean free
path of photons due to ionization is lmfp = 1/(σ phnN), where σ ph is
given by equation (9) and nN is the neutral density inside the wind.
We do expect nN < nN,ISM ∼ 0.1 cm−3, hence lmfp > 1017 cm. In
conclusion, also when we account for the presence of neutrals, the
assumption 〈l〉 ∼ d0 remains a good estimate and the ratio R/〈l〉 is
�1. Using equation (15), the ionization length of neutrals inside
the wind is estimated to be

λph = VNS

nph,w σ̄phc
= 3.2 × 1015 R

〈l〉
( ηX

10−4

)−1

V −1
300 n−1

ISM,−1 F (�)−1 cm, (16)

where the second equality has been obtained using equations (1)
and (12). One important comment is in order: the ionization length
scale, λph, is ultimately not the length scale that determines whether
neutrals will influence the dynamics of the wind. λph is an estimate
of the length scale required to ionize the largest fraction of neutrals.
The quantity more pertinent to the dynamics of the wind is the rel-
ative change in the density of the wind induced by mass loading.
Since the pulsar wind is light, consisting of electron–positron pairs,
only a small fraction of neutrals are required to be ionized in order
for these neutrals to become dynamically important. The more im-
portant parameter is therefore the length scale where the dynamics
of the wind is dominated by the ionized protons rather than by the
electron–positron pairs. Thus, we define λML, ph as the length scale
where the loaded mass is equal to the initial mass of the wind, i.e.

λML,ph = ρe

ρN

Vwind

nph,wσ̄ph c
= neme

nNmp

Vwind

VNS
λph. (17)

A numerical estimate of λML, ph can be found using equations (16)
to evaluate λph, and estimating the electron density of the wind, ne,
by equating the luminosity of the pulsar with the energy flux in the

3 This conclusion could be different only for very young PWNe which have
a larger e+/e− density (see Atoyan & Aharonian 1996, for details).
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shocked wind, i.e. Ṁ ≡ Lw/(γ c2) = nemeπd2
0 c. The result reads

λML,ph = 1.32 × 1016 Vwind

c

R

〈l〉
( ηX

10−4

)−1
n−1

N,−4 F (�)−1γ −1 cm.

(18)

It is seen that λML, ph can be much smaller than d0 due to the fact
that its value is inversely proportional to the electron Lorentz factor,
whose typical value is γ ≈ 105–106. Even for Lorentz factor as low
as 103, a value estimated from the modelling of some pulsars (see
e.g. Dubus, Lamberts & Fromang 2015), λML, ph remains smaller
than d0. It will be shown in Section 3 that equation (17) is the
correct definition of the length scale that determines whether mass
loading will influence the dynamics of a non-relativistic wind. On
the other hand, for a relativistic wind the definition of λML has
to be modified as it becomes necessary to take into account the
relativistic inertia of the wind. We will discuss this issue in Section
5 where we will derive the relativistic version of equation (17) using
a relativistic HD model. Moreover, we will show that there is no
significant difference between the relativistic and non-relativistic
results, apart from the different definition of λML.

2.4 Collisional ionization inside the pulsar wind

The collisional ionization length scale depends on the Bethe cross-
section (Kim, Santos & Parente 2000):

σBethe(γ ) = 4πa2
0α

2

β2

[
M2

(
ln(γ 2β2) − β2

) + CR

]
, (19)

where γ is the Lorentz factor of the electrons (and positrons) and
β = (1 − γ −2)1/2. The two constants M2 and CR are related to
the atomic form factors of the target, and are independent of the
incoming particle energy. For hydrogen atoms M2 = 0.3013 and CR

= 4.3019 (Kim et al. 2000). Using the expression above, together
with the typical value γ = γ 5105, furnishes the collisional ionization
mean free path in the pulsar wind:

λcol = VNS

neσBethe(γ ) c
= 3.86 × 1023 V 3

300 nISM,−1 γ5 cm. (20)

As discussed in the previous section, the electron density of the
wind is estimated by equating the luminosity of the pulsar with the
energy flux in the shocked wind, i.e. Ṁ ≡ Lw/(γ c2) = nemeπd2

0 c

(thereby ensuring that the dynamics of the pulsar wind is not
dominated by the magnetic field). Using the same values for the
parameters as those used in equation (1) leads to the estimate
ne ≈ 8 · 10−9 γ −1

5 nISM,−1 cm−3. Note that in the relativistic regime
(γ � 1) σ Bethe increases only logarithmically with energy, and that
increasing γ from 103 to 106 implies a decrease in λcol of only
∼40 per cent.

Similar to the case of photo-ionization, (see the discussion after
equation 16) we define λML, col as the typical mass loading scale
where the loaded mass density is equal to the initial mass density
of the wind, i.e.

λML,col = ρe

ρN

Vwind

neσBethe(γ ) c
= 2.7 × 1019 Vwind

c

1

nN,−4
cm. (21)

It is again stressed that the above expression is for a non-relativistic
wind and that the correct expression for the enthalpy should be
used for a relativistic wind. Comparison of equation (21) and equa-
tion (18) shows that photoionization is considerably more effective
than collisional ionization, even for very low luminosity nebulae.
Collisional ionization can thus be safely neglected in all realistic
cases.

2.5 Ionization inside the free wind region

There is a finite probability that neutrals can be ionized inside the
region of the unshocked wind (shaded region in Fig. 1). These
ions could change the wind dynamics but, as we argue below, this
process can be neglected. In fact, for parameters typical to bow
shock nebulae, the Larmor radius of these ions, calculated in the
rest frame of the wind, is comparable or larger than the size of the
unshocked wind region.

To show that this is, indeed, the case, an expression relating
the termination shock radius and the wind luminosity is required.
Assuming that the energy fluxes of the magnetic field and particles
are similar, the wind luminosity can be estimated as Lw = B2R2

t c,
where Rt is the radius of the termination shock and B is the magnetic
field strength at the termination shock. In the rest frame of the wind
the newly formed ion have a bulk Lorentz factor equal to the wind
Lorentz factor, γ w, hence the Larmor radius is

rL = γwmpc
2

eB
= γwmpc

5/2Rt√Lw
, (22)

and the ratio between rL and the size of the free wind region can be
expressed as

rL

Rt
= mpc

5/2γw√Lw
≈ 5 γ6 L−1/2

w,34 . (23)

The ionization of neutrals in the unshocked wind can produce ions
with rL > Rt that will escape the free wind region, suffering only a
small deflection. The requirement for the production of ions in the
free wind regions is a high bulk Lorentz factor and a low spin-down
power Lw. Consequently we neglect the role of these ions and we
will only account for neutrals ionized in the shocked wind.

3 H Y D RO DY NA M I C M O D E L FO R
NON-RELATI VI STI C WI ND

To study the effect of mass loading in the tails of bow shock neb-
ulae, the steady-state conservation equations for mass, momentum
and energy are solved in a quasi-1D approximation. Fig. 3 shows
a sketch of the model and represents an idealization of the region
enclose in the dot–dashed rectangle of Fig. 1. The quasi-1D ap-
proximation implies that the transverse cross-section, A, of the flow
can change, but that all the characteristic quantities of the wind,
i.e. the velocity, u, density, ρ, and pressure, P, are assumed to be a
function of the position x only. This approach further implies that
any internal structures are neglected, in particular the free wind
region and the termination shock shown in Fig. 1. For the sake of
simplicity the presence of the bow shock is also neglected, but note
that possible effects of mass loading on the shape of the bow shock
will be discussed in Section 4. It is further assumed that the external
medium has a spatially independent velocity, V0, pressure, P0, and
density, ρ0. Lastly, it is assumed that both the ISM and the wind
are non-relativistic with an adiabatic index γ g = 5/3. In the next
section we will develop the model for a wind with a relativistic tem-
perature moving with a non-relativistic bulk speed. The latter case
is the more realistic scenario for a pulsar wind, whereas the former
case applies more to stellar winds.4 We anticipate that the main dif-
ference between these two cases lies solely in the different values

4 For stellar winds it is necessary to also take into account the CE that
occurs between neutral hydrogen coming from the ISM and protons inside
the wind.
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3892 G. Morlino, M. Lyutikov and M. Vorster

Figure 3. Sketch of the simplified model used to study the effect of mass
loading in the tail of the bow shock nebula. This figure represents a zoom
in of the dot–dashed rectangle of Fig. 1. Note that the presence of the bow
shock is neglected. The dash–dotted arrows show the regions where the
neutrals in scenario B penetrate into the wind from the side of the contact
discontinuity. This is in contrast to scenario A where neutrals only penetrate
into the wind in a cylindrical region with cross-section A1.

used for the enthalpy. While this changes the dynamical length-
scale significantly, it does not change the qualitative behaviour of
the solution. Finally, note that the steady-state nature of the system
is not guaranteed. In fact, we will show that scenarios exist where
the steady-state assumption is most likely violated.

The conservation equations for mass, momentum and energy for
a quasi-1D system, written in the rest frame of the pulsar, are

∂x [ρuA] = qA′, (24)

∂x

[
ρu2A

] + A∂xP = qA′V0, (25)

∂x

[(
1

2
ρu2 + γg

γg − 1
P

)
uA

]
= qA′V 2

0 /2. (26)

Note that ρ = ρe + ρp is the total density of the wind and that the
quantities on the right-hand side of equations (24)–(26) represent the
mass, momentum and energy flux due to the ionization of neutrals,
respectively. The mass loading term is given by

q = ṅ(me + mp). (27)

As we showed in Section 2.3, ṅ is determined predominantly by
photoionization, allowing one to write

ṅ = nNnphσ̄phc, (28)

where nN is the local density of neutrals, nph is the photon density
as seen in the rest frame of neutrals and σ̄ph is the photoionization
cross-section averaged over the photon distribution. For the sake
of simplicity we assume that both nN and nph are constant along x.
The spatial independence of nN is a good approximation when x
� λph (i.e. the photoionization length scale given in equation 16),
while it becomes necessary to include the spatial dependence of nN

when x � λph. This can be done with a simple change of variables
as we show in Appendix A. Conversely, a correct evaluation of the
spatial dependence of the photon density is non-trivial and requires
a detailed analysis of the specific object one wants to study. Here
we avoid such a complication by assuming a constant value.

It is also assumed that the incoming neutrals have the same tem-
perature as the ISM (≈104 K), and they can thus be considered as
being cold with respect to the wind in the nebula. As a result of this
assumption, the momentum and energy injection terms on the right-
hand side of equations (25) and (26) only contain the contribution
due to the bulk motion.

The variable A′ represents the effective area crossed by neutrals.
In Section 2 it was noted that neutrals can penetrate into the wind by
crossing the head of the nebula. It is thus required that the effective
area should be A′ ≈ A1 = πd2

0 . However, in reality the situation
is more complicated. We also noted that the CE process produces
a diffusion of neutrals in the shocked ISM and that this can lead
to neutrals penetrating into the wind from the side of the contact
discontinuity. A rough estimate of this process, considering a con-
stant diffusion coefficient, would result in a mass loading that is
proportional to A(x)1/2. Moreover, it will subsequently be shown
that the effect of mass loading is to expand the cross-section of
the wind. When this happens the distance between the bow shock
and the contact discontinuity is reduced, thereby further increasing
the probability of neutrals penetrating from the side of the contact
discontinuity, specifically in the tail region of the pulsar wind. This
results in a mass loading that is proportional to the total area A(x). A
realistic solution therefore requires a description of the bow shock
geometry and how the neutrals interact in the shocked ISM. Such a
complication necessitates the use of a 2D simulation, and is beyond
the scope of the present work. In this study the two opposite situa-
tions, A′ = A1 (scenario A) and A′ ∝ A (scenario B), are investigated
as we expect a realistic situation to be bracketed between these two
scenarios.

A consequence of the steady-state assumption is that the pressure
is required to be constant everywhere, i.e. P = P0 and ∂xP = 0,
and it is thus possible to simplify equations (25) and (26).

As a first step to finding the solution, equation (24) can be sub-
stituted into the right-hand side of equations (25) and (26), leading
to

∂x [ρuA(u − V0)] = 0, (29)

∂x

[
1

2
ρuA

(
u2 − V 2

0

) + γgP0 uA

γg − 1

]
= 0. (30)

These equations define two constants of the system which can be
used to write down two expressions, one for ρ and the other for A,
as functions of the velocity u only. Evaluating the constants of the
system at the position x = x1 = 0, where the boundary conditions
are defined as u = u1, A = A1 and ρ = ρ1, the following expression
for the area is obtained:

A(u)

A1
= u1

u
+ (u1 − u)(u1 − V0)(γg − 1)M2

1

2 uu1
, (31)

and the following expression for the density:

ρ(u)

ρ1
=

[
u − V0

u1 − V0
+ (u1 − u)(u − V0)(γg − 1)M2

1

2u2
1

]−1

, (32)

where M1 = u1/cs1 is the initial Mach number of the wind and
cs = √

γgP/ρ is the sound speed. Note that all quantities with the
subscript 1 refer to values at the boundary x1.

The next step requires finding an expression for the velocity.
Differentiating equation (25) by parts, and using equation (24) leads
to

∂xu = −q
A′(u − V0)

ρuA
. (33)
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This differential equation can easily be integrated by parts from x1

= 0 to x, after the quantity ρuA has been substituted using equation
(29). The solution for scenario A, where A′ = A1, is straightforward
and reads

u(x) = λu1 + xV0

λ + x
, (34)

where we have introduced the length scale λ = u1ρ1/q. If q is
calculated using the photoionization cross-section, λ corresponds
exactly to the definition provided in equation (17). An important
and noteworthy result is that the solution (34) does not depend on
the initial Mach number of the wind. Equation (34) further shows
that u(x) decreases monotonically from u(0) = u1 to u(∞) = V0,
and that the typical length scale for this transition is λu1/V0. The
solution for scenario B (i.e. A′ = A) is slightly more complicated
but can be expressed in an implicit form as follows:

x

λ
= F1

u1 − u

u − V0
+ F2 ln

[
u1 − V0

u − V0

2u2
1 + α(u1 − u)

2u2
1

]
, (35)

where

F1 = 2u1V0

2u2
1 + α(u1 − V0)

, (36)

F2 = 2u2
1(u1 − V0)(2u1 + α)[
2u2

1 + α(u1 − V0)
]2 (37)

and

α = M2
1 (u1 − V0)(γg − 1). (38)

The solution (35) also shows that u(∞) = V0. This can be readily
understood: when the amount of mass loaded is much larger than the
initial mass of the wind, the final state of the wind will be the same
as the initial state of the neutrals. This is confirmed by the behaviour
of cs, which is also a monotonic decreasing function of x, as well
as by the result u → V0⇒cs(u) → 0, which one expects from the
assumption of cold neutrals. The continual process of mass loading
therefore decelerates the wind from u1 to V0. The main difference
between solutions (34) and (35) is the typical length scale where
this transition occurs: in the former case it is λA ∼ λu1/V0, whereas
in the latter case it is λB ∼ λ. This result once again has a simple
explanation: the amount of mass loaded in scenario A is a factor
A1/A smaller compared to the amount of mass loaded in scenario
B. For x → ∞ the solution (31) shows that the cross-section of the
flow increases asymptotically to the value

lim
x→∞

A(u) = A1
u1

V0

(
1 + γg − 1

2
M2

1

)
, (39)

where this asymptotic value is the same for both scenarios A and
B. As we expect the transition length scale to be proportional to the
loaded mass, we have λA � λBA∞/A1 � λBu1/V0.

The solutions for u(x), M(x) and A(x) corresponding to scenario
A are shown in Fig. 4, and the solutions corresponding to scenario
B in Fig. 5. For the latter case three panels are presented showing
the results for three different values of the Mach number, while for
scenario A only the case M1 = 1 is shown as the solution depends
only weakly on the value of M1. All these solutions are obtained by
using the benchmark values summarized in Table 2. These values
lead to an asymptotic expansion of A∞/A1 ≈ 1000, which, in turn,
translates into a radial expansion of a factor of ∼30.

Comparison of Figs 4 and 5 confirms that the transition in scenario
B occurs much faster than in scenario A. However, apart from the
different scale lengths of the transition, the two scenarios are very

Figure 4. Structure of the wind when mass loading occurs in scenario A, as
calculated using the non-relativistic model. The plot shows, as a function of
the position, the wind velocity divided by V0 (solid line), the Mach number,
M (dashed thin line), and the expansion velocity ur normalized to ur1, as
given by equation (44) (dot–dashed line). The plot also shows the normalized
area, A/A1 (dotted line) and the ISM sound speed normalized to V0 (thin
dot–dashed line). The initial wind velocity is u1/V0 = 1000 and the initial
Mach number of the wind is M1 = 1. Note that the spatial coordinate, x, is
normalized to the mass loading length scale λ.

similar. Fig. 5 further shows that when the initial Mach number
increases from 0.3 to 3, the transition occurs faster by a factor of
∼3.5.

A salient feature of Figs 4 and 5 is that there is no qualitative
difference between the solutions of a supersonic and a subsonic
wind. This is a remarkable result given that the state of the wind
downstream of the termination shock is not well known: the post-
shock wind in the head of the nebula, more specifically in the nose
region between the termination shock and the contact discontinuity,
is re-accelerated to supersonic speeds, while the wind crossing the
backward spherical shock is subsonic (see e.g. Bucciantini et al.
2005). The average state of the wind is thus not well defined. This
result seems to be at odds with mass loading models developed in a
pure 1D geometry (see e.g. Szegö et al. 2000, section 2, for a review).
More specifically, the solution in the 1D model generally predicts
that mass loading in a supersonic flow leads to the deceleration
and heating of the flow, while mass loading in a subsonic flow
causes acceleration and cooling. The reason why this behaviour is
not observed in the present model is due to the fact that the flow
in a quasi-1D model can expand in the radial direction while the
pressure remains constant, and therefore no acceleration in the flow
direction is possible. On the other hand, if the radial expansion were
limited for some reason (e.g. due to hoop stresses caused by to a
toroidal magnetic field), then an acceleration of the flow would be
possible. This specific point will be developed in more detail in a
subsequent paper.

4 POSSI BLE I MPLI CATI ONS OF MASS
L OA D I N G F O R TH E B OW SH O C K

One of the limitations of the present, quasi-1D model is that the
bow shock which separates the unshocked ISM from the shocked
ISM is neglected. It is therefore useful to compare the results of the
present model with the expected structure of the bow shock when
mass loading is absent. In Fig. 6 the expansion profiles for scenarios
A and B presented in the previous section are compared with the
profile of an ideal bow shock. The bow shock profile is calculated
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3894 G. Morlino, M. Lyutikov and M. Vorster

Figure 5. The same as Fig. 4 but for scenario B. From top to bottom:
solutions are calculated for the initial Mach number equal to 3, 1 and 0.3,
respectively, while the initial wind velocity is identical for all panels, i.e.
u1/V0 = 1000.

using the thin-shock approximation (see Wilkin 1996, equation 9)
close to the head of the nebula. When the distance from the head
becomes large, the thin-shock approximation is no longer valid, and
we therefore replace this solution with the Mach cone, where the
inclination angle, θ , between the bow shock and the pulsar velocity
is such that sin θ = 1/MNS. For the bow shock profile the benchmark
values summarized in Table 2 are again used. For the mass loaded
wind profiles three different cases are plotted: scenario A with λ/d0

= 1, and scenario B with λ/d0 = 5 and λ/d0 = 30. Fig. 6 shows that
for all mass loaded cases the pulsar wind in the tail of the nebula
expands beyond the position of the unperturbed bow shock, and one

Figure 6. Comparison between three mass loaded wind profiles, calculated
using the non-relativistic model (solid lines for scenario B and dashed line
for scenario A), and the profile of the unperturbed bow shock, calculated
using the thin-shock approximation (dot–dashed line; Wilkin 1996). The
results for scenario B are shown for two different values of the mass loading
distance, λ = 5d0 (thin lines) and λ = 30d0 (thick lines), while scenario A
is plotted only for λ = d0. All cases have an initial Mach number M1 = 1.
The shaded region, with radius r = d0, shows the mass loading region for
scenario A.

Figure 7. Sketch of the generation of a secondary shock inside the first
bow shock due to the mass-loading-induced expansion of the wind. The
shaded region behind the secondary shock shows where one would expect
an enhancement of the H α emission.

would thus expect the geometry of the bow shock to be affected.
However, while the expanding wind profile in scenario A closely
follows the profile of the bow shock, the expansion of the wind
profile in scenario B is much faster, and is capable of producing
the head-shoulder shape observed in some H α bow shock nebulae.
It should also be noted that the wind profile in scenario A never
crosses the bow shock when λ � d0, and one would therefore not
expect such a configuration to affect the bow shock profile.

We note that neglecting the primary bow shock (i.e. neglecting the
ram pressure of the ISM) leads to an incorrect prediction for the wind
profile when this profile increases beyond the Mach cone. We show
in Appendix B that when this occurs the formation of a secondary
shock in the region between the primary bow shock and the contact
discontinuity is expected. Such a situation is schematically shown
in Fig. 7. Behind the secondary shock the pressure will increase,
resulting in a bending of the contact discontinuity towards the axes
of the wind. Consequently the rapid expansion predicted in scenario
B will probably be attenuated by the presence of the secondary
shock.

An interesting consequence related to the presence of the sec-
ondary shock is that the increase in temperature will lead to an
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enhancement of Balmer emission just behind this shock. However,
the enhancement of the emission will strongly depend on the inclina-
tion angle of the secondary shock: if the inclination angle is close to
the Mach cone, the temperature and Balmer emission will increase
only slightly, while for a larger inclination angle the temperature
will increase significantly, resulting in a strong enhancement of the
Balmer emission.

Although the quasi-1D model has limitations, it is nevertheless
interesting to compare the expansion speed of the pulsar wind with
the sound speed of the external ISM. This expansion speed along
the radial coordinate r, as seen by an observer comoving with the
external medium, is

ur (x) = dr

dt
= V0

2
√

πA

dA

dx
= V0

2
√

πA

dA

du

du

dx
, (40)

where we have used A = πr2 and t = x/V0. The last equality can be
used to express ur in a compact form as a function of u only. Using
du/dx from equation (33) and calculating dA/du from equation (31)
leads to

ur = V0

√
A1

4πλ2
F (u), (41)

where the dimensionless function F(u) reads

F (u) = A′

A1

u1(u − V0)2

u2(u1 − V0)

(
1 + γg − 1

2
M2

1

u1 − V0

u1

)
. (42)

The value of F at x = 0 is

F (u1) = u1 − V0

u1

(
1 + γg − 1

2
M2

1

u1 − V0

u1

)
(43)

for both scenarios A and B. In the limit M1 � 1 and u1 � V0 one
has F(u1) = 1, and consequently the value of ur at the origin is

ur1 = V0

√
A1

4πλ2
= V0

d0

2λ
. (44)

By contrast, for very large distances one has limx → ∞F(u) = 0. The
behaviour of the radial expansion speed can be seen in Figs 4 and 5
where the normalized speed ur(x)/ur1 = F(u) is shown for all plots.
With a simple study of the function F(u) it is easy to demonstrate
that ur is a monotonically decreasing function of x for scenario A,
while for scenario B the function F(u) has a peak where u equals

upeak = 5V0u1(2u1 + α)

4V0α + u1(2u1 + α)
, (45)

where α is given by equation (38). In the limit u1 � V0 one has
upeak → 5V0, which corresponds to a value of the expansion speed
that is equal to

ur,peak ≡ ur (upeak) = ur1

√
u1

V0

16

25
√

5

(
1 + γg − 1

2
M2

1

)3/2

. (46)

In addition, always in the limit u1 � V0, the peak of the expansion
speed is located at

xpeak = λ

2 + M2
1 (γg − 1)

{
1

2
+ 2 ln

[
u1

(
2 + M2

1 (γg − 1)
)

8V0

]}
.

(47)

Using parameter values that are typical for a bow shock PWN leads
to ur,peak ≈ (10-100)ur1 and xpeak ≈ (2–6)λ. Comparison of Figs 5
and 6 shows that for λ � 100d0 the expansion speed in scenario B
is larger than the sound speed in the ISM when the wind crosses
the unperturbed bow shock profile. In other words, when the pulsar
wind expands beyond the unperturbed bow shock, the expansion is

supersonic and one expects a strong modification of the bow shock.
By contrast, for λ � 100d0 the expansion of the wind in the ISM is
subsonic, and one therefore expects a less pronounced deformation
of the bow shock profile.

From Fig. 5 it should also be noted that for λ � d0, the velocity ur

can be larger than the sound speed in the wind as well as the wind
velocity u. When the former condition is realized the stationary
approach is no longer valid, while the second condition leads to a
break down of the quasi-1D approximation. As a result our model
can no longer be used.

Based on the above arguments one may speculate that when λ

decreases to a value close to d0, the non-stationarity of the prob-
lem could give rise to a periodic structure of expanding bubbles,
similar to those observed in the Guitar nebula. However, addressing
this scenario using only analytical models is a complicated matter,
requiring the use of full 2D numerical simulations.

From the present investigation it is difficult to predict which of
the scenarios, A or B, is the more realistic one. Based on the 1D ap-
proach, one can state that when the expansion occurs inside the bow
shock, the behaviour is most likely well described by scenario A. In
this scenario neutrals repeatedly undergo CE in the shocked ISM,
acquiring the same bulk speed, while also flowing parallel to the
contact discontinuity between the shocked ISM and the relativistic
wind. On the other hand, when the wind is close to the position
of the unperturbed bow shock (or crosses it) the effective distance
between the new bow shock and the contact discontinuity could
be small enough to allow a relevant fraction of neutral particles to
penetrate into the wind. If this is indeed the case, the expansion
speed should increase notably, reaching values close to the value
predicted by scenario B. It should also be noted that far from the
head of the nebula the neutral fraction of the ISM should be larger
as the ionization due to the UV radiation emitted by the nebula
is less effective, and that this should produce a faster transition to
scenario B.

5 H Y D RO DY NA M I C A L M O D E L FO R
RELATI VI STI C WI ND

In this section we present the solution of a mass loaded wind ac-
counting for the fact that the pulsar wind is relativistic, hence we
will use a relativistic expression for the enthalpy. This is the only
difference with respect to the non-relativistic treatment presented
in Section 3. We will show that the solution is very similar to the
non-relativistic one, apart from a different value of the transition
length scale λ.

The relativistic equations for the conservation of particle number,
energy and momentum, written in the rest frame of the neutron star
and for a 1D system, are

∂x

[
np,euA

] = ṅA′, (48)

∂x [wγwuA] = qc2γ0A
′, (49)

∂x

[
wu2A

] + c2A∂xP = qc2γ0A
′V0. (50)

Here ne,p is the numerical density of electrons (protons), w is the
total wind enthalpy and γ w and γ 0 are the Lorentz factors of the wind
and the neutrals, respectively. The quantities q and ṅ are given by
equations (27) and (28), respectively. We notice that in a relativistic
treatment it is more convenient to start with the conservation of the
particle number, equation (48), rather than with the conservation
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of mass. For the reader’s convenience, the derivation of equations
(48)–(50) is reported in Appendix C.

As was the case for the non-relativistic model, we again neglect
the free wind region and the termination shock. We consider only the
pulsar wind after the termination shock where it becomes marginally
relativistic with a bulk Lorentz factor γ w ≈ 1. Furthermore, the
neutrals are non-relativistic, hence γ 0 ≈ 1, while the steady-state
assumption requires the pressure to be constant everywhere, i.e. P
= P0 and ∂xP = 0. Using these assumptions, it is thus possible to
simplify the system (48)–(50) as follows:

∂x [ρeuA] = ṅmeA
′ ≈ q(me/mp)A′, (51)

∂x

[
ρpuA

] = ṅmpA
′ ≈ qA′, (52)

∂x [wuA] = qc2A′, (53)

∂x

[
wu2A

] = qc2A′V0. (54)

Note that in equations (51) and (52) we neglect the contribu-
tion of the electrons to mass loading, and that the approximation
q = ṅ(me + mp) ≈ ṅmp is used. In order to close the system (51)–
(54), an expression for the enthalpy is required. It is generally
believed that the pulsar wind predominantly consists of electron–
position pairs with highly relativistic temperatures, and we assume
that when mass loading occurs there is no energy transfer between
electron and protons. In other words, electrons and protons do not
reach a thermal equilibrium, but evolve independently with differ-
ent temperatures. This implies that the electron gas is always highly
relativistic, hence the rest mass contribution to enthalpy can be ne-
glected, i.e. we = εe + Pe = 4Pe = 4P0. On the other hand, protons
are non-relativistic, hence their thermal energy is always negligible
with respect to their rest mass energy, and their enthalpy is wp =
ρpc2. The total enthalpy of the wind is thus

w = wp + we = ρpc
2 + 4P0. (55)

Using these simplifications allows one to obtain an analytical so-
lution for the wind dynamics by following a procedure similar to
the one outlined for the non-relativistic case. Combining equations
(53) and (54) furnishes a first constant of motion:

uAw(u − V0) = uA(ρpc
2 + 4P0)(u − V0) = const. (56)

Similarly, combining equations (52) and (53) furnishes a second
constant of motion:

uA(w − ρpc
2) = 4 uAP0 = const. (57)

Evaluating the constants at the initial position x = x1, where u = u1

and A = A1, equation (57) gives the solution for the cross-section A
as a function of the velocity:

A(u) = u1A1/u, (58)

while dividing equation (56) by equation (57) gives the solution for
the proton density as a function of u:

ρp(u) = 4P0

c2

u1 − u

u − V0
. (59)

The electron density can be obtained in a similar way using equation
(51) rather than equation (52), giving the following result:

ρe(u) = ρe,0 + me

mp

4P0

c2

u1 − u

u − V0
, (60)

where ρe, 0 is the initial electron density. One noteworthy point is
that the solutions (58), (59) and (60) do not depend on the specific
assumption regarding the injection cross-section A′ (this result is
also identical to the non-relativistic case). The solution for the ve-
locity u(x) can be obtained by deriving equation (54) by parts, and
using equation (53). This leads to the expression

∂u

∂x
= −qc2 A′

A

u − V0

wu
. (61)

As was done for the non-relativistic case, we again distinguish
between scenario A (A′ = A1) and scenario B (A′ = A). For scenario
B the integration of equation (61) leads to the following implicit
solution:

x

λrel
= u

u − V0
− u1

u1 − V0
+ ln

[
u1 − V0

u − V0

]
, (62)

where we have introduced the relativistic length scale

λrel = 4P0(u1 − V0)

qc2
� 4P0

ρNc2

u1

nphσ̄phc
. (63)

The second equality results from assuming V0 � u1 ∼ c and us-
ing the photoionization rate nphσ̄phc in the calculation of the mass
loading rate, i.e. q = mpnNnphσ̄phc. Comparison of equation (63)
with the definition of the mass loading length scale for the non-
relativistic case, equation (17), shows that they are identical, with
the exception that the quantity 4P0/c2 replaces the electron mass
density. In the steady-state model the internal pressure of the wind is
equal to the external pressure, hence 4P0 corresponds to the specific
enthalpy of the electron–positron wind plasma. Using equation (16)
from Section 2.3 allows one to find a numerical estimate for λrel:

λrel ≈ 1.2 × 1013 T4
R

〈l〉
u1

c
η−1

X,−4 V −2
300 n−1

N,−4F (�)−1 cm, (64)

where P0 = nISMKBT and T = 104T4 K have been used. Choosing
realistic values for the parameters associated with bow shock neb-
ulae emitting H α shows that λrel can be as large as 1015 cm, but
we stress that this value can vary by orders of magnitude, essen-
tially due to the fact that the values of the neutral density inside the
wind and the luminosity of the PWN tail are difficult to estimate.
Nevertheless, for any scenario λrel represents the lower limit for the
typical expansion length scale. For example, in scenario A a larger
expansion length scale is predicted.

Substituting A′ = A1 in equation (61) leads to the following
equation:

∂u

∂x
= − qc2

4P0

(u − V0)2

(u1 − V0)u1
, (65)

which, once integrated by parts, gives the solution

x

λrel
= u1

u − V0
− u1

u1 − V0
. (66)

In this case the typical expansion length scale is

λrel,A = u1

V0
λrel = 4P0(u1 − V0)u1

qc2V0
. (67)

As u1/V0 can be as large as 103, the mass loading length scale in
scenario A can reach 1018 cm. In a realistic case one expects the
transition to occur between λrel and λrel, A.

Equation (64) predicts that a density of neutrals as small as
10−4 cm−3 is sufficient to have λrel comparable to the size of the
nebula. Thus, for a relativistic pair-plasma wind, a relatively small
amount of neutrals can strongly affect the tail flow.
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Mass loading of bow shock PWNe 3897

Figure 8. Structure of a pulsar wind when mass loading occurs, assuming
that the wind consists of a hot relativistic electron–positron pair plasma. Top
and bottom panels report results for scenarios A and B, respectively, using
the same values summarized in Table 2. The various lines represent the wind
speed divided by V0 (solid line), wind cross-section (dot– dashed line) and
expansion speed (dotted line) both normalized to their initial values. The
sound speed of the ISM, cs0, also normalized to V0, is shown for comparison
(thin dot–dashed line).

Fig. 8 shows the solutions for u and A corresponding to scenar-
ios A and B, where the parameter values given in Table 2 have
been used. Comparison of Fig. 8 with Figs 4 and 5 shows that the
relativistic and non-relativistic solutions are very similar.

As was done for the non-relativistic case, the profile of a relativis-
tic wind undergoing mass loading is compared to the typical profile
of the unperturbed bow shock. Fig. 9 is analogous to Fig. 6, but
the wind profile is now calculated using the relativistic expression
for scenarios A and B obtained in equation (58). One can see that
the relativistic and non-relativistic model give very similar profiles,
with the important difference that λ is replaced by λrel. Addition-
ally, a similar radial expansion is predicted for the corresponding
scenarios of the non-relativistic and relativistic cases. Starting from
equation (40), using d u/d x from equation (65), and calculating
dA/dx from equation (58), leads to the following expression for the
expansion speed:

ur = V0

√
A1

4πλ2
rel

u
1/2
1 (u − V0)2

u5/2

(
u

u1

) 1
2 ± 1

2

, (68)

Figure 9. Same as Fig. 6, but for a relativistic model. Notice that the dot–
dotted line is the same as in Fig. 6 and represents the bow shock profile in
the thin-shock approximation for non-relativistic wind.

where the upper and lower signs refer to scenarios A and B, respec-
tively. Fig. 8 also shows the normalized velocity ur/ur1, where

ur1 = V0

(
A1

4πλ2
rel

)1/2

= d0

2λrel
V0 (69)

is the expansion speed at x = 0, with this speed being the same for
both scenarios A and B. Similar to the non-relativistic case, ur(x) is
also a monotonically decreasing function of x for scenario A, while
for scenario B it has a peak at u = upeak = 5V0, corresponding to

ur,peak ≡ ur (upeak) = ur1

√
u1

V0

16

25
√

5
. (70)

The peak is located at the position xpeak, which, in the limit u1 �
V0, is equal to

xpeak = λrel

(
1

4
+ ln

[
u1

4V0

])
. (71)

It is interesting to note that this result is identical to the non-
relativistic case for the limit M1 → 0. In other words, all discussions
presented for the non-relativistic solutions at the end of Section 4
also apply to the relativistic solutions. In particular, when λrel � d0

the expansion velocity can become larger than the wind velocity,
thereby causing the quasi-1D approximation to break down.

6 A VI SUAL FI T O F BOW SHOCK N EBULA
P S R J 0 7 4 2−2 8 2 2

In this section we provide an example of a comparison between the
predicted profile of the wind due to mass loading and the observed
shape of an H α bow shock. Among the pulsars showing an anoma-
lous H α bow shock, we chose PSR J0742−2822 for two reasons:
not only has several quantities been measured with sufficient accu-
racy, but also the pulsar is believed to move almost perpendicular
to the line of sight, a fact which, to some extent, simplifies the
comparison between the model prediction and observation.

We use the parameter values reported by Brownsberger & Romani
(2014). The pulsar luminosity is Lw = 1.9 × 1035 erg s−1, while the
measured proper motion is 29.0 mas yr−1. The most recent distance
estimate gives 2.1 ± 0.5 kpc (Janssen & Stappers 2006). Using a
value of d = 2 kpc, Brownsberger & Romani (2014) estimated nISM

= 0.28 cm−3 for the total ISM density and V⊥ = 275 km s−1 for
the projected component of the pulsar velocity. We assume that the
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Figure 10. Comparison of the observed H α bow shock produced by the
PSR J0742−2822 (Brownsberger & Romani 2014) with the wind profile
obtained using the relativistic calculations for scenario A (dotted line) and
scenario B (solid line). The dot–dashed line shows the predicted position of
the unperturbed bow shock. The small dot in the head of the nebula indicates
the position of the pulsar. The profile of the wind starts at the location of the
backward termination shock, which is 4d0 behind the pulsar.

velocity of the pulsar is almost perpendicular to the line of sight,
hence V0 ≈ V⊥.

Using the above values, the stand-off distance is estimated to be
d0 = 3.8 × 1016 cm. Note that this value is compatible with the mea-
sured distance between the pulsar and the apex, measured as 1.4 arc-
sec, corresponding to a physical distance of 4.2 × 1016d/(2 kpc) cm.
Using this value of d0, the profile of an ideal bow shock (i.e. no mass
loading) is calculated according to the procedure outlined at the be-
ginning of Section 4. The resulting solution is shown in Fig. 10
(dot–dashed line), while the small dot indicates the position of the
pulsar. The unperturbed bow shock profile fits the head of the nebula
reasonably well, but fails to reproduce the ‘fan’ structure emerging
behind the bow shock head.

For the mass loaded wind, profiles are calculated using the rel-
ativistic model developed in Section 5, with Fig. 10 showing the
results for both scenarios A (dashed line) and B (solid line). In order
to ensure that the wind profile in scenario B crosses the bow shock
at the precise location where the ‘fan’ structure emerges, the profiles
are calculated using the value λrel = 2d0. Note that the wind profiles
start at the position dback = 4d0 behind the pulsar, which corre-
sponds to the location of the backward termination shock according
to numerical simulations (Bucciantini et al. 2005). As previously
discussed in Sections 4 and 5, scenario A cannot account for a rapid
expanding structure emerging from the unperturbed bow shock as
the resulting profile is very smooth, while scenario B does predict
such a structure. On the other hand, from Fig. 10 it can be seen that
the expansion in scenario B is larger than the one detected in H α.

Our aim is not to exactly reproduce the shape of the bow shock
as our model only predicts the shape of the relativistic tail wind.
The more important point that we want to emphasize is that the
location where the ‘fan’ structure emerges is compatible with our
predictions. In particular, one can ask whether the ratio λrel/d0 = 2
is compatible with observations. This can be checked by estimating
the neutral density inside the wind.

Analysing the H α flux, Brownsberger & Romani (2014) found
that the neutral fraction of the ISM is comparable to ∼1. However,
as the uncertainty is quite large, we use a fiducial value of 0.5.
It was shown in Section 2.1 that the collisional ionization in the
shocked ISM is not effective when V0 � 300 km s−1, therefore,
one need only take into account the effect of photoionization. As
was shown in Section 2.3, the UV flux from the nebula can be
estimated from the X-ray luminosity: the measured upper limit for
the X-ray flux is FX < 2 × 10−14 erg cm−2 s−1 (Abdo et al. 2013),
which translates into an upper limit for the X-ray luminosity of
LX < 9.6 × 1030(d/2 kpc)2 erg s−1. For the non-thermal spectrum
we assume a power law with an index � = 2. Furthermore, using
equation (11) allows one estimate the neutral density at the location
of the backward termination shock, dback. The value of this density
averaged over the cross-section of the wind is found to be ∼0.13 nISM

= 0.065 cm−3. Finally, using this value in equation (64) and dividing
the result by equation (1), one finds that λrel/d0 > 0.03R/〈l〉. A value
of λrel/d0 = 2 thus implies R/〈l〉 � 60, which is fully compatible
with the wind geometry.

7 MASS LOADI NG I N A MAG NETI ZED WIND

In this paper we have neglected the role of the magnetic field inside
the wind of the nebula. Nevertheless, using the conservation of mag-
netic flux, we now show that general conclusions can be drawn from
the knowledge of the wind dynamics only. We consider two differ-
ent configurations: a purely poloidal and a purely toroidal magnetic
field, with both cases assuming that the initial magnetic field is dy-
namically unimportant. In the poloidal case the flux conservation is
applied through the cross-section A, which leads to B̄xA = const,
where B̄x is the average poloidal magnetic field strength. Using
the solution for the cross-section from equation (58), one finds that
B̄x ∝ u. As the fluid speed decreases, the poloidal magnetic field
strength will also decreases, and one would not expect the wind
dynamics to be affected.

For the toroidal configuration the opposite situation occurs.
The conservation of magnetic flux is applied through a poloidal
surface (i.e. a surface parallel to the x direction) which implies
B̄φu

√
A = const, where B̄φ is the average poloidal magnetic field

inside the wind. Again using equation (58), one finds B̄φ ∝ u−1/2.
Consequently the strength of the toroidal component increases along
x. As the toroidal magnetic field exerts a hoop stress on the wind
∝B̄2

φ , the magnetic pressure can easily become comparable to the
internal pressure, thereby reducing the expansion of the wind.

These conclusions have implications for the non-thermal emis-
sion. The synchrotron emissivity is proportional to jsyn ∝ neB̄

2,
where ne is the density of relativistic electrons and B̄ is the average
field. The density of relativistic electrons is constant along x, and
as a result the expansion induced by mass loading will enhance jsyn

if the magnetic field is mainly toroidal. Conversely, for a poloidal
configuration at the location of expansion the synchrotron emission
should decrease.

Remarkably, this prediction is compatible with the observations
of at least one object. The bow shock nebula powered by the pulsar
J1509−5850 has been detected both in X-rays and radio, and shows
an anticorrelation in these two bands (Hui & Becker 2007; Kargalt-
sev et al. 2008): while the head of the nebula is mainly bright in
X-rays, the bulk of the radio emission is observed from the tail of
the wind at a distance roughly 4 arcmin far away from the pulsar, at
a location where the X-ray emission becomes negligible. Moreover,
radio polarimetry measurements show that the magnetic field in the
tail is mainly toroidal (Ng et al. 2010).
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In our model these observations can be explained by assuming
that the enhancement of the radio emission occurs where the tail
expands due to mass loading, while the decrease in X-ray emission
should be the consequence of radiative cooling, which is efficient for
the X-ray emitting electrons but is negligible for the radio emitting
electrons. This picture is confirmed by the fact that J1509−5850
has also been observed in H α, showing an anomalous bow shock
expansion right at the location where the enhancement of the radio
emission begins. A further intriguing detail is that the comparison
between radio and X-ray data suggests a significant deceleration of
the flow when moving downstream, with the speed decreasing by
1–2 orders of magnitude (Ng et al. 2010). From our model it follows
that this decrease can be the result of mass loading. However, a
more quantitative model is needed to better compare this picture
with observations.

Noticeably, an opposite situation has been observed for the Mouse
nebula (J1747−2958), where radio polarimetry shows a poloidal
magnetic field structure along the tail (Gaensler et al. 2004). In
this case X-ray and radio emission are both peaked in the head
of the nebula and decrease smoothly along the tail. The effect of
mass loading for the Mouse nebula is probably negligible, in fact
the H α emission is not detected, and this is probably due to its
exceptional luminosity able to photoionize the ISM around it. The
X-ray luminosity measured by Chandra is LX = 5 × 1034 erg s−1

for a distance of 5 kpc (Gaensler et al. 2004), while the pul-
sar spin-down luminosity is Lw = 2.5 × 1036 erg s−1, giving an
X-ray efficiency ηX = 0.02. Gaensler et al. (2004) also measured
the photon index as 1.8 < �X < 2.5, and provide an estimate of the
ISM density of ≈0.3 cm−3. Using these values we can estimate the
upper limit for the X-ray efficiency from equation (14) to be 1.2 ×
10−4. Because ηX is much larger than this upper limit, we infer that
the vast majority of H atoms have been ionized before to reach the
bow shock.

8 D I S C U S S I O N A N D C O N C L U S I O N S

In this work we have shown that the structure of a bow shock
nebula produced by a neutron star propagating through the ISM can
be significantly affected by the presence of neutral hydrogen in the
ISM. In many cases a non-negligible fraction of neutral atoms can
penetrate into the relativistic wind where they will be ionized by
UV photons emitted by the nebula. Once ionized, the new protons
and electrons interact with the wind, leading to a net mass loading
of the wind in the tail region of the nebula. More specifically, this
mass loading is important in the shocked part of the tail wind, while
it is most likely negligible in the region of the free, unshocked wind.

To investigate the effect of mass loading, we have developed a
steady-state HD model using a quasi-1D approximation, with the
study focusing on two specific scenarios. In the first a wind consist-
ing of a non-relativistic plasma with an adiabatic index γ g = 5/3
(see Section 3) was investigated, while the second situation inves-
tigated a wind that consists of a hot relativistic electron–positron
plasma, as is the case for a pulsar wind (see Section 5). Remark-
ably, both situations show the same qualitative behaviour: the loaded
mass decelerates the wind and produces a transverse expansion of
the tail. The typical expansion factor of the tail cross-section is
A∞/A1 = u1/V0, where u1 ∼ c is the initial velocity of the pulsar
wind after the termination shock, and V0 is the speed of the neutron
star measured in the rest frame of the ISM, which is of the order of
few hundreds km s−1. The model therefore predicts A∞/A1 ≈ 1000
(for a non-relativistic wind there is a correction due to the initial
Mach number of the wind – compare equation 39 with equation

58). The main difference between the two situations is the distance
where this expansion occurs, being determined by the mass loading
length scale, λML. We further showed that this latter length scale is
determined by the distance where the enthalpy of the loaded mass
is comparable to the enthalpy of the wind (compare equation 17
versus equation 63).

Considering a relativistic wind consisting of an electron–positron
plasma, and using parameters values observed for pulsar bow shock
nebulae, we showed that the mass loading effect could be respon-
sible for the head-shoulder shape observed in many bow shock
nebulae. Unfortunately it is not easy to make a quantitative predic-
tion for specific objects as the amount of mass loading depends on
two important parameters, specifically the density of neutrals inside
the wind and the density of UV photons, both of which are difficult
to estimate.

We showed that a relatively small density of neutrals inside the
wind (as small as 10−4 cm−3) is sufficient to affect the wind, deceler-
ating the tail flow and producing a fast expansion in the transverse
direction. For comparison we remember that the typical number
density of neutral hydrogen in the warm ISM (where H α bow
shock nebulae are thought to propagate) is ∼0.05–0.5 cm−3 (Jean
et al. 2009). In order for the mass loading effect to be negligible,
either the ISM should be completely ionized, or the photoionization
due to the nebula should be so effective that all neutrals are ionized
before they reach the termination shock in the tail. Neither of these
two possibilities can be applied to H α bow shock nebulae as the
presence of H α lines is an indication that the photoionization is
incapable of fully ionizing the ISM. If this were the case, it would
not be possible to observe the H α emission in the first place.

We also made a visual comparison of the wind profile pre-
dicted from our model with the H α bow shock observed around
PSR J0742−2822. We showed that a density of neutrals in the wind
comparable to ∼0.06 cm−3 is required to explain the presence and
the location of the ‘fan’ structure observed behind the head of the
nebula. Such a density is compatible with the estimated neutral
density of the local ISM, taking into account the photoionization
resulting from the UV radiation emitted by the nebula, which, in
turn, was estimated from the upper limit of the X-ray flux.

Finally, even though the magnetic field is neglected in the present
model, we discussed the qualitative behaviour of a magnetized wind
flow that is being loaded with mass. The poloidal component of
the field decreases with distances, thereby becoming dynamically
unimportant. On the other hand, the toroidal component, if present,
will be amplified due to the compression of the wind flow. Such an
amplification will have two important consequences: the first is to
limit the transverse expansion of the wind due to the increase of the
magnetic hoop stresses; the second is to produce an enhancement
of the synchrotron emission in the location where the expansion
occurs. Remarkably, this prediction is confirmed by the observation
of the bow shock nebula associated with the pulsar J1509−5850,
where an enhancement of the radio emission is observed far from
the head of the nebula, and at the same location where the H α

emission shows an anomalous expansion of the bow shock.
The quasi-1D approximation presented in this work has the ad-

vantage of having a clear and simple analytical solution, thereby
making it very usable. However, it also has several limitations.
First, we neglected the presence of any internal structure, as well
as the bow shock. Moreover, the quasi-1D approximation is based
on the assumption that the transverse expansion velocity is much
smaller than the wind velocity, a condition that can be violated when
λML is of the order of or smaller than the typical stand-off distance
of the nebula. In this case the quasi-1D approximation breaks down.
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Additionally, the transverse expansion speed can be faster than the
sound speed of the wind. When this occurs the steady-state condi-
tion is violated and the solution presented is no longer applicable.
It is therefore necessary to implement a time-dependent solution.
This last situation is especially interesting as it points towards to
possibility of having a tail wind with periodic expanding bubbles
similar to what is observed in the Guitar nebula. Hopefully all this
limitations can be overcome using time-dependent 2D simulations,
which will form the topic of research of a forthcoming paper.
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A P P E N D I X A : D E P L E T I O N O F N E U T R A L S
I N S I D E T H E W I N D

For the solutions presented in the paper we have assumed that the
density of neutrals inside the wind remains constant, i.e. that the
number of ionized atoms is negligible with respect to the total
number of neutrals. This is true only on a length scale much smaller
than the ionization length scale, λph. Here we show how to modify
the model, should this assumption no longer be valid, by taking into
account the fact that the density of neutrals is no longer constant,
but decreases as a function of distance.

When the depletion of neutrals becomes important, scenario B
(where neutrals can also penetrate into the wind region through the
side of the contact discontinuity) can no longer be described using
a 1D model as the neutral density inside the wind will depend on
both x and r. The discussion will therefore be limited to scenario A,
where the neutrals penetrate only through the head of the nebula.

It is useful to introduce a new spatial variable, ξ , defined as

dξ = n̄N(x)dx, (A1)

where n̄N ≡ nN(x)/nN1 is the numerical density of neutrals normal-
ized to its initial value. Substituting ξ for nN(x), equations (24)–(26)
(or equations 48–50 for the relativistic case) can be rewritten by re-
placing ∂x → ∂ξ , and using

ṅ1 = nN1nphσ̄phc (A2)

rather than ṅ on the right-hand side. This new set of equations is
formally identical to equations (24)–(26), where a constant density
is assumed, with the only exception that x is replaced by ξ . The
solutions presented in Sections 3 and 5 therefore remain the same,
with the exception that the dependence on x is substituted by the
dependence on ξ . To find the full new solutions therefore only
requires that one finds the function ξ (x), relating the new variable
ξ to the physical distance x. This can be easily done using equation
(A1) along with the equation for the evolution of the neutral density,
which, for the scenario A, is

V0
dnN

dx
= −ṅ = −nNnphσ̄phc, (A3)

leading to a simple exponential solution

nN(x) = nN1e−x/λph , (A4)

where λph is defined in equation (16). Finally, substituting equation
(A4) into equation (A1), and integrating one obtains

ξ (x) = λph

(
1 − e−x/λph

)
. (A5)

It is easy to check that when x � λph one has ξ = x, and that the
solutions presented in Sections 3 and 5 are recovered.

A P P E N D I X B : FO R M AT I O N O F S E C O N DA RY
S H O C K S

One of the main results of this study is that the mass loading of a
pulsar wind leads to a sideways expansion of the tail. As the contact
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discontinuity between the tail flow of a PWN and the ISM acts
as impenetrable wall for the ISM flow, a secondary shock can be
created. As we demonstrate below, this secondary shock will appear
when the contact discontinuity makes an angle with the flow that is
larger than the Mach cone.

As a model problem, consider a flow with velocity, V, and internal
sound speed, cs, bounded by a wall with the parabolic profile, r0 =
x2

0/L. A shock will appear when the characteristics first intersect
(Landau & Lifshitz 1959). The characteristics originating at point
{x0, r0} are

r(t) = r0 + cst,

x(t) = x0 + (cs + V )t . (B1)

Eliminating t leads to

r = x2
0/L + cs

cs + V
(x − x0). (B2)

The first intersection occurs where ∂r/∂x0 = 0:

x0 = 1

2(1 + M)
L,

M = V /cs. (B3)

At this point the angle that the wall makes with the flow is

tan θ = 1/(1 + M). (B4)

Thus, for a highly supersonic flow a shock forms when the angle of
attack becomes larger than the Mach angle.

A P P E N D I X C : H Y D RO DY NA M I C A L M O D E L
FOR R ELATIVISTIC WIND

To derive equations (48)–(50) we start by writing a relativistic for-
mulation of the mass loading problem, and then we specialize our
equations to describe a typical pulsar wind. It has been shown by
Komissarov (1994) (see also Lyutikov 2003) that the covariant rela-
tivistic equation for a perfect fluid with the inclusion of mass loading
can be written in the following form:

∂T νμ

∂xν
= qcτμ, (C1)

where

T νμ = wuνuμ + Pgνμ (C2)

is the energy momentum tensor, w = ε + P is the total enthalpy
and uμ = γw(1, u/c) is the four-velocity of the plasma, with γ w de-

noting the Lorentz factor of the wind. The quantity qcτμ represents
the mass loading term, where τμ = γ0(1, V 0/c) is the four-velocity
of the neutrals moving with a Lorentz factor γ 0 = (1 − V0/c)−1/2,
and

q =
∑

i

ṅiγimi (C3)

is the mass injected per unit time per unit volume calculated in the
frame moving with velocity V 0, i.e. the rest frame of the neutrals.
It is assumed that the incoming neutrals have the same temperature
as the ISM (≈104 K), and they can thus be considered as being
cold with respect to the wind in the nebula, i.e. γ i = 1. As the
rate of injected electrons and protons is the same, ṅe = ṅp = ṅ, the
equations describing the evolution of the electron and the proton
densities are similar, i.e.

∂

∂xν

[
ne,pcu

ν
] = ṅ, (C4)

where ne, p is the numerical density of electrons (protons), with an
expression for ṅ given by equation (28). As was done for the non-
relativistic case, we assume that both nN and nph are constant along
x. A method to obtain the solution when the depletion of neutrals
inside the wind is taken into account is described in Appendix A.

The next step is to rewrite the conservation equations (C1) and
(C4) for a 1D system, integrating over a small volume with a cross-
section A and a length dx (see Komissarov 1994). Additionally
assuming that the system is in a steady state, the conservation equa-
tions for the particles’ number, energy and momentum in the x
direction become

∂x

[
np,euA

] = ṅA′, (C5)

∂x [wγwuA] = qc2γ0A
′, (C6)

∂x

[
wu2A

] + c2A∂xP = qc2γ0A
′V0. (C7)

Note that the non-relativistic equations (24)–(26) can be recovered
from equations (C5)–(C7) using the first-order approximation for
the Lorentz factors, i.e. γ w ≈ 1 + u2/c2 and γ0 ≈ 1 + V 2

0 /c2.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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