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ABSTRACT
We study the properties of magnetized cylindrical polytropes as models for interstellar filamen-
tary clouds, extending the analysis presented in a companion paper. We formulate the general
problem of magnetostatic equilibrium in the presence of a helical magnetic field, with the aim
of determining the degree of support or compression resulting from the magnetization of the
cloud. We derive scale-free solutions appropriate to describe the properties of the envelopes of
filaments at radii larger than the flat-density region. In these solutions, the polytropic exponent
determines the radial profiles of the density and the magnetic field. The latter decreases with
radius less steeply than the density, and field lines are helices twisted over cylindrical sur-
faces. A soft equation of state supports magnetic configurations that preferentially compress
and confine the filament, whereas in the isothermal limit the field provides support. For each
value of the polytropic exponent, the Lorentz force is directed outwards or inwards depending
on whether the pitch angle is below or above some critical value which is a function of the
polytropic exponent only.

Key words: magnetic fields – ISM: clouds.

1 IN T RO D U C T I O N

In a companion paper (Toci & Galli 2015, hereafter Paper I), we
have analysed the structure and stability of unmagnetized cylindri-
cal polytropes, the simplest possible models of interstellar filaments,
with the aim of interpreting the observations recently obtained at
submillimetre wavelengths by the Herschel Space Observatory in
a sample of nearby giant molecular clouds. With respect to more
complex simulations, polytropic models have the advantage of re-
quiring the minimum number of physical constants (like the sys-
tem’s entropy K) and dimensionless parameters (like the polytropic
exponent γ p = 1 + 1/n and the adiabatic exponent γ ). In Paper I,
in analogy with previous studies of spherical clouds and cores, we
found that the observed radial density profiles of filaments are well
reproduced by a narrow range of γ p (1/3 � γ p � 2/3) correspond-
ing to negative values of the polytropic index n. In particular, a good
fit is obtained with γ p ≈ 1/2 (n ≈ −2), the polytropic exponent
that characterizes the pressure of a superposition of low-amplitude
undamped Alfvén waves. It is of interest, therefore, to investigate
further the properties of magnetized filaments.

Starting from the work of Chandrasekhar & Fermi (1953), sev-
eral models have been proposed to study the structure and sta-
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bility of filaments threaded by poloidal and/or toroidal magnetic
fields (Nagasawa 1987; Fiege & Pudritz 2000) or perpendicular to
the main axis (Tomisaka 2014). Unfortunately, there are few ob-
servational constraints on the strength and/or morphology of the
magnetic field within filaments. Polarization observations of back-
ground stars in the optical and near-infrared suggest that the field is
generally uniform and perpendicular to the filament, as, for exam-
ple in the Serpens South cloud imaged by Sugitani et al. (2011) and
the B211/B213/L1495 region in Taurus (Palmeirim et al. 2013).
However, this is not a general rule. For example, in the Taurus
cloud, the field inferred by optical polarization is oriented mainly
perpendicular to the main filaments B216 and B217 (Moneti et al.
1984; Goodman et al. 1992), whereas the L1506 filament is almost
parallel to the direction of the field (Goodman et al. 1990). Indi-
cations of the presence of helical magnetic field twisted along the
filament’s axis have been inferred in the dense core L1512 in Tau-
rus (Falgarone, Pety & Phillips 2001; Hily-Blant et al. 2004) and
in NGC 2024 in Orion B (Matthews, Fiege & Moriarty-Schieven
2002), but the evidence is often indirect (see Gahm et al. 2006 and
references therein for a discussion of rotationally and magnetically
twisted filaments). A survey of filamentary molecular clouds in
Gould’s Belt has shown that these clouds tend to be oriented either
parallel or perpendicular to the ambient field direction in a bimodal
fashion (Li et al. 2013), a result that, if confirmed, indicates that the
formation of these structures is magnetically controlled. It should
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be kept in mind, however, that optical and near-infrared polarization
measurements do not probe the magnetic field associated with the
densest parts of the filaments (Goodman et al. 1992).

Given the potentially important but still uncertain role played
by the magnetic field in determining the observable properties of
filamentary clouds, in this paper we examine the properties of mag-
netized polytropes in cylindrical geometry, focusing in particular on
the conditions for force balance in the radial direction. The models
presented in this paper are magnetostatic by design. The underlying
idea is that the evolution of real filaments can be analysed, as a first
step, as a series of magnetostatic solutions as filaments accrete more
material from the surrounding environment. As discussed in Paper
I, such a description does not necessarily imply a zero-velocity field
everywhere, as long as the accretion speed becomes either subsonic
or directed mostly parallel to the filament’s axis in the central parts
of the filament.

The paper is organized as follows: in Section 2, we derive the
equations for the equilibrium of a cylindrical cloud with a polytropic
equation of state and a magnetic field containing both a poloidal
and toroidal component; in Section 3, we solve these equations
in some special cases and we generalize results found in previous
studies; in Section 4, we present scale-free semi-analytical solutions
applicable the power-law envelopes of filamentary clouds; finally,
in Section 5, we summarize our conclusions.

2 MAG NETIZED ENVELOPES

In a cylindrical system of coordinates, we consider the equilibrium
structure of a self-gravitating filament threaded by a helical mag-
netic field with poloidal and toroidal components Bp and Bϕ defined
in terms of the scalar functions �(� , z) and �(� , z), respectively:

Bp = ∇ ×
(

�

2π�
êϕ

)
, Bϕ = �

2π�
. (1)

Following Paper I, we assume a polytropic equation of state,

p = Kργp , (2)

where K is a constant and γ p = 1 + 1/n is the polytropic exponent.
The equation of magnetostatic equilibrium is

− ∇V + 1

ρ
∇p + FL = 0, (3)

where V is the gravitational potential, related to the gas density ρ

by Poisson’s equation

∇2V = 4πGρ, (4)

and

FL ≡ 1

4πρ
(∇ × B) × B (5)

is the Lorentz force per unit mass. With the definitions (1), the
Lorentz force becomes

FL = − 1

16π3ρ� 2
[S(�)∇� + �∇� + ∇� × ∇�], (6)

where S is the Stokesian operator

S(�) = ∂2�

∂� 2
+ ∂2�

∂z2
− 1

�

∂�

∂�
. (7)

The condition of no Lorentz force in the azimuthal direction is
∇� × ∇� = 0, which implies � = �(�). The Lorentz force then
reduces to

FL = − 1

16π3ρ� 2

[
S(�) + �

d�

d�

]
∇�, (8)

This generalizes the expression derived by Lizano & Shu (1989) in
the case of a poloidal field (see also Li & Shu 1996 and Galli et al.
1999). Taking the dot product of the force equation (3) with B one
obtains the condition of force balance along field lines

V + (1 + n)Kρ1/n = H (�), (9)

where H(�) is the Bernoulli constant. The condition of force balance
across field lines (along ∇�) is

− 1

16π3ρ� 2

[
S(�) + �

d�

d�

]
= dH

d�
, (10)

and Poisson’s equation (4) then becomes

1

�

∂

∂�

[
�

(
dH

d�

∂�

∂�
− 1 + n

n
Kρ−1+1/n ∂ρ

∂�

)]
+

∂

∂z

(
dH

d�

∂�

∂z
− 1 + n

n
Kρ−1+1/n ∂ρ

∂z

)
= 4πGρ. (11)

Equations (8) and (10) show that H(�) is a potential for the Lorentz
force, FL = ∇H (�).

The two coupled PDEs (10) and (11) are the two fundamental
equations of the problem. To obtain a solution, one must specify
the two functions H(�) and �(�), and apply appropriate bound-
ary conditions. The arbitrariness in the choice of the functional
dependence of H and � on the flux function � is a consequence
of neglecting the dynamical evolution of the cloud. The loss of
information on the previous evolution of the cloud results in the
appearance of arbitrary functions that have to be determined from
physical considerations (see e.g. Shu 1992). Although in principle
any choice of H and � is allowed, not all solutions would lead to
a physically meaningful model for a magnetized filamentary cloud.
Unfortunately, the origin of filamentary clouds in the interstellar
medium (ISM) is not well understood (see discussion in Paper I),
and any attempt made to reduce the arbitrariness in equations (10)
and (11) must be necessarily ad hoc.

2.1 Non-dimensional equations

Equations (10) and (11) are generally valid under azimuthal sym-
metry. As a first simplification, we also assume cylindrical symme-
try (∂/∂z = 0), reducing the problem to the solution of a system
of two coupled ordinary differential equations. We define a non-
dimensional radius ξ and density θ as in Paper I:

� = �0ξ, ρ = ρcθ
n, (12)

where

�0 =
[∓(1 + n)K

4πGρ
1−1/n
c

]1/2

(13)

is the radial scalelength. Here, as in Paper I, the subscripts ‘c’ and
‘s’ indicated quantities evaluated at the centre and the surface of the
filament, respectively. We also define the non-dimensional magnetic
flux φ, enthalpy h and toroidal flux function ψ as

� =
[∓π(1 + n)3K3

G2ρ
1−3/n
c

]1/2

φ, (14)
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dH

d�
=

[∓G2ρ1−1/n
c

π(1 + n)K

]1/2
dh

dφ
, (15)

� =
[∓2π(1 + n)Kρ1/n

c

G1/2

]
ψ, (16)

Here and in the following, as in Paper I, the upper (lower) sign is
for n ≤ −1 (n > −1), where n is the polytropic index.

In non-dimensional form, the components of the magnetic field
are

Bz = B0bz, Bϕ = B0bϕ, (17)

where the scale factor B0 is

B0 = [∓4π(1 + n)pc]1/2. (18)

The field components are then

bz = 1

ξ

dφ

dξ
, bϕ = ψ

ξ
. (19)

Similarly, the forces per unit volume acting on the system are: the
pressure gradient,

− 1

ρ
∇P = ±F0

dθ

dξ
ê� , (20)

the Lorentz force

FL = F0
dh

dξ
ê� , (21)

and the gravitational force

− ∇V = −F0

(
dh

dξ
± dθ

dξ

)
ê� , (22)

where the scale factor F0 is

F0 ≡ [∓4π(1 + n)Gpc]1/2 = G1/2B0. (23)

With the definitions (12)–(16), equations (10) and (11) can be writ-
ten in non-dimensional form

− 1

ξ 2θn

[(
d2φ

dξ 2
− 1

ξ

dφ

dξ

)
dφ

dξ
+ ψ

dψ

dξ

]
= dh

dξ
, (24)

and

1

ξ

d

dξ

[
ξ

(
dh

dξ
± dθ

dξ

)]
= θn. (25)

For the magnetic field to be well-behaved near the axis of the cylin-
der, equation (24)–(25) must be solved under the boundary condi-
tions θ (0) = 1 and dθ/dξ (0) = 0, as in Paper I, plus the conditions
ξ−1dφ/dξ → const. and ξ−1ψ → 0 for ξ → 0, corresponding to
Bz(0) = const. and Bϕ(0) = 0.

From equations (21) and (24), one sees that in order to pro-
vide support to the cloud an axial field must decrease with radius,
whereas a toroidal field must decrease with radius more rapidly than
�−1. Thus, in general the ability of a magnetic field to support (or
to compress) a filamentary cloud depends on the radial profile of its
strength and on the relative importance of the poloidal and toroidal
components.

3 SP E C I A L S O L U T I O N S

3.1 Force-free fields

In general, magnetic force-free configurations have been applied
to the study of solar prominences, where the pressure gradients

and self-gravity of the plasma can be neglected with respect to
the Lorentz force. The possibility that force-free configurations
can also arise in the ISM has been raised by Carlqvist, Kristen &
Gahm (1998) to explain the twisted appearance of some filamentary
clouds on the basis of the argument that only for a nearly force-free
geometry the electromagnetic effects are not too disruptive.

For h = 0, the magnetic configuration is force-free, and the equa-
tions for the density and the magnetic field are decoupled. Equation
(24) becomes an equation only for the field,

(
d2φ

dξ 2
− 1

ξ

dφ

dξ

)
dφ

dξ
+ ψ

dψ

dξ
= 0, (26)

and equation (25) reduces to the ordinary Lane–Emden equation.
Several solutions of equation (26) are known. For example, if ψ = 0
(poloidal field) the only regular solution is φ = Aξ 2, with A arbitrary
constant, corresponding to the trivial case of a uniform axial field.
If ψ = kφ, with k constant, equation (26) is linear and reduces to
Bessell’s equation with solution φ = CξJ1(kξ ), where J1(kξ ) is the
Bessel function of the first kind of order 1 and C is a constant. In
this case, bz = CkJ0(kξ ) and bϕ = CkJ1(kξ ). This is Lundquist’s
solution (Lundquist 1950). The field lines are helices that reverse
direction and handedness, since Bessell’s functions are oscillatory.
The Lundquist solution is one of a class of solutions with oscillatory
behaviour that can be generated assuming a power-law dependence
of ψ on φ and solving the resulting non-linear equation (Low &
Lou 1990).

In the following, we limit our analysis to the case φ > 0. Although
in general the flux function φ may change sign at one or more radii,
resulting in field reversals, the large-scale magnetic field threading
a molecular cloud core is expected to be the result of a smooth
distortion (i.e. without field reversals) of the relatively uniform field
characteristic of giant molecular clouds and galactic discs.

3.2 Constant-β solutions

An axial field proportional to the square root of the gas pressure,
such that the plasma βz = (8πp/B2

z )1/2 is spatially constant, is a
simple case to analyse because the total pressure is just a scaled-up
version of the gas pressure. In this case, equations (24) and (25)
reduce to

1 + β−1
z

ξ

d

dξ

(
ξ

dθ

dξ

)
= ±θn. (27)

With the scaling transformation ξ → (1 + 1/βz)−1/2ξ , this is the
ordinary Lane–Emden equation for unmagnetized polytropic cylin-
ders. Thus, the analysis of Paper I remains valid, with the spatial
lenght-scale � 0 (and the core radius � core) increased by the fac-
tor (1 + 1/βz)1/2 (Talwar & Gupta 1973; Sood & Singh 2004). In
particular, for all values of the polytropic index n, the mass per unit
length and its critical or maximum value determined in Paper I are
increased by the factor 1 + 1/βz. The same is not true in general
for a purely toroidal field: only for an isothermal equation of state
a toroidal field with uniform βϕ = (8πp/B2

ϕ)1/2 produces a sim-
ple rescaling of the Lane–Emden equation (Stódołkiewicz 1963).
Therefore, if γ p = 1 the Stódołkiewicz–Ostriker density profile (see
Paper I) remains valid in the presence of a helical magnetic field
with constant βz and βφ . These scaled isothermal configurations
have been studied by Nakamura, Hanawa & Nakano (1993).

MNRAS 446, 2118–2124 (2015)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/446/2/2118/2892697 by U
niv D

egli Studi di Firenze , Biblioteca di biologia anim
ale user on 27 February 2020



Magnetized filaments 2121

3.3 Fiege and Pudritz’s models

Fiege & Pudritz (2000) solved the equations of magnetostatic equi-
librium for cylindrical clouds with an isothermal (γ p = 1) or logat-
ropic (γ p = 0) equation of state. They assumed a specific functional
dependence of the magnetic field strength on density and radius,
namely

Bz = �zρ, Bϕ = �ϕ�ρ, (28)

with �z, �ϕ being arbitrary constants. This choice is equivalent
to the assumption that the ratio of magnetic flux to mass per unit
length is the same in all cylindrical shells of the filament and that the
toroidal component of the field is generated by a uniform twisting
of the filament through a fixed angle. In our formalism, equation
(28) is equivalent to

d�

d�
= 2π�z�ρ, � = 2π�ϕ�

2ρ. (29)

Substituting these expressions in equations (10) and (11), we obtain

− 1

4π

[
�2

z

dρ

d�
+ �2

ϕ

d

d�
(� 2ρ)

]
= dH

d�
, (30)

and

1

�

d

d�

[
�

(
dH

d�
− 1 + n

n
Kρ−1+1/n dρ

d�

)]
= 4πGρ. (31)

Equation (30) can be integrated:

H = − 1

4π

(
�2

z ρ + �2
ϕ� 2ρ

) + const., (32)

and equation (31) can be written as

1

�

d

d�

{
�

d

d�

[
H − (1 + n)Kρ1/n

]} = 4πGρ. (33)

Equations (32) and (33) generalize equation D5 and D7 of Fiege &
Pudritz (2000). The problem is reduced to the solution of the second
order ordinary differential equation (33) for ρ(� ), with H given by
equation (32). These generalized Fiege & Pudritz (2000) models
have an asymptotic power-law behaviour at large radii depending
on the polytropic index n,

Bz ∝ ρ ∝ � 2n/(1−n), Bϕ ∝ �ρ ∝ � (1+n)/(1−n). (34)

Thus, the magnetic field becomes asymptotically dominated by
the toroidal component decreasing as a power-law with exponent
between −1 and 0. Such toroidal field has the effect of compressing
the cloud (as shown in Section 2).

4 C E N T R A L C O R E S A N D E N V E L O P E S O F
MAGNETIZED FILAMENTS

4.1 Series expansion for small radii

On the filament’s axis, symmetry requires the toroidal component
of the electric current to vanish, and the axial current to be finite.
This implies that, to the lowest order for ξ → 0, both φ and ψ must
decrease at least like ξ 2. A series expansion

φ ≈ φ2ξ
2 + φ4ξ

4 + · · · , ψ ≈ ψ2ξ
2 + · · · , (35)

gives

bz ≈ b0z + b2zξ
2 + · · · , bϕ ≈ b1ϕξ + · · · (36)

with b0z = 2φ2, b2z = 4φ4, b1ϕ = ψ2. The substitution in equations
(24) and (25) of the expansions (35) and the expansion for θ

θ ≈ 1 ± 1

4
ξ 2 + · · · (37)

gives the Lorentz force per unit mass near the axis,

FL = −4F0(b0zb2z + b2
1ϕ)ξ + · · · , (38)

where F0 > 0 is given by equation (23). In any realistic model for
filamentary clouds where the axial magnetic field decreases with
radius following the density, the product b0zb2z is negative, and the
Lorentz force associated with the poloidal field is directed outwards,
providing support to the cloud. Conversely, the Lorentz force as-
sociated with the toroidal field is directed inwards, squeezing the
cloud. The behaviour of the density near the axis is ρ/ρc ≈ 1 −
(�/� core)2 + ···, where

�core ≈ 2�0

[∓n(1 + 4b0zb2z + 4b2
1ϕ)]1/2

. (39)

The core radius is therefore increased by the poloidal field
(b0zb2z < 0) and decreased by the toroidal field (b2

1ϕ > 0). This
result can be used to constrain the strength and the morphology of
the magnetic field near the filament’s axis. As shown in Paper I, the
core radius predicted by unmagnetized polytropic models is

�core ≈ 0.047

(
σc

0.26 km s−1

) (
nc

2 × 104 cm−3

)−1/2

pc. (40)

For example, a toroidal field in the core region such that b2
1ϕ ≈ 1

(corresponding to Bϕ,c ≈ πG1/2�ρc in physical units) would re-
duce the core radius by a factor of ∼2. Field strengths of this order
are invoked in the models of Fiege & Pudritz (2000).

4.2 Scale-free solutions for large radii

To explore in the characteristics of polytropic magnetized filaments
at large radii (say, at radii much larger than the core radius given
by equation 39), we seek asymptotic solutions of equations (10)
and (11) without making specific assumption on the magnetic field
profile, except a power-law behaviour. Recalling that a power-law
behaviour of the density in cylindrical polytropes is only possible
for n ≤ −1, in the following we restrict our analysis to this range
of n.

For scale-free solutions, dimensional analysis requires |B| ∝
G1/2ρ� . In addition, the enthalpy H and the toroidal field func-
tion � must have the following power-law dependence on �:

dH

d�
= H0

[
G2

π|1 + n|nKn

]1/(3−n)

�−(1−n)/(3−n), (41)

�
d�

d�
= 4α2

[
π2(2−n)G1+n

(1 + n)2nK2n

]1/(3−n)

�(1+n)/(3−n), (42)

where H0 is a dimensionless constant that measures the deviation
of the poloidal field from force-free, α2 is a constant measuring the
strength of the toroidal field with respect to the poloidal field. In non-
dimensional form, with the definitions (12)–(16), these expressions
become

dh

dφ
= H0φ

−(1−n)/(3−n), (43)

and

ψ
dψ

dφ
= α2φ(1−n)/(3−n), (44)
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Equations (43) and (44) can be integrated to give

h(φ) = H0

(
3 − n

2

)
φ2/(3−n), (45)

and

ψ(φ) = ±α

(
3 − n

2

)1/2

φ2/(3−n), (46)

The system (24)–(25) allows power-law solutions,

φ = φ0 ξ (3−n)/(1−n), θn = θn
0 ξ 2n/(1−n), (47)

with the scale factors φ0 > 0 and θ0 > 0 given by

(3 − n)(1 + n)

(1 − n)2
φ

(2(2−n))/(3−n)
0 + α2φ

2/(3−n)
0 = −H0θ

n
0 , (48)

H0
2(3 − n)

(1 − n)2
φ

2/(3−n)
0 + 4

(1 − n)2
θ0 = θn

0 . (49)

In these scale-free models, all forces (gravity, pressure gradient, and
Lorentz force) decrease with radius with the same power-law slope.
The Lorentz force is

FL = H0

(
3 − n

1 − n

)
φ

2/(3−n)
0 ξ (1+n)/(1−n) ê� . (50)

and is directed inwards for H0 < 0 and outwards for H0 > 0. For
H0 = 0, the magnetic field is force-free. In this case, the density is
given by the unmagnetized scale-free solution

θn =
[

(1 − n)2

4

]n/(1−n)

ξ 2n/(1−n), (51)

(see equation 12 of Paper I), and the components of the field are

bz = φ0

(
3 − n

1 − n

)
ξ (1+n)/(1−n), (52)

bϕ = ±αφ
2/(3−n)
0

(
3 − n

2

)1/2

ξ (1+n)/(1−n). (53)

Thus, the magnetic field lines are helices twisted over cylindrical
flux tubes. The magnetic field decreases with radius with a be-
haviour intermediate between ξ−1 for an isothermal equation of
state, and ξ 0 for a logatropic equation of state. For the values of the
polytropic index derived in Paper I from fitting the radial density
profiles, −3 � n � −3/2, the slope of the magnetic field is in the
range from −0.2 to −0.5. Thus, following the discussion of Sec-
tion 2, for all values of n ≤ −1 the axial field always supports the
cloud and the toroidal field always compresses it. The net effect then
depends on the relative strength of the two components, determined
by the value of the pitch angle δ (the angle between Bz and Bϕ)

tan δ = |Bϕ |
|Bz| = α(1 − n)

[2(3 − n)]1/2
φ

−(1−n)/(3−n)
0 . (54)

For small δ, the field is almost axial, and supports the envelope
with a Lorentz force directed outwards. Increasing δ the toroidal
component becomes larger, squeezing the cloud with a Lorentz
force directed inwards. At some particular δff the two effects cancel
out, and the field is force-free (H0 = 0). This happens when

α = αff = [−(3 − n)(1 + n)]1/2

1 − n
φ

(1−n)/(1+n)
0 , (55)

as can be obtained from equation (48) setting H0 = 0. Thus, for
each n, the field becomes force-free when the pitch angle is

tan δff =
(

−1 + n

2

)1/2

, (56)

a value that depends only on the polytropic index. For n = −1
(logatropic case) the force-free field is a poloidal field with uni-
form strength, while for n → −∞ (isothermal case) the force-
free field is toroidal and decreases as �−1. For the values of n
derived in Paper I for filamentary cloud, δff varies between 26◦

and 45◦.
Fig. 1 shows the loci of solutions in the φ0–θn

0 plane (field strength
versus density in non-dimensional units), for three values of the
polytropic index: n = −1.01 (quasi-logatropic equation of state),
n = −2 (best-fitting value for the observed filaments, see Paper I)
and n = −5 (quasi-isothermal equation of state). Each line is a locus
of solutions with a fixed value of the pitch angle δ. The parameter
space is divided in two regions by the H0 = 0 line of force-free
configurations: for H0 > 0 the Lorentz force is directed outwards
and supports the cloud; for H0 < 0 the Lorentz force is directed
inwards and has the opposite effect. For H0 = 0 the field is force-
free, the pitch angle takes the value δff given by equation (56) and
the density the value given by equation (51) independently on the
field strength φ0 (dashed lines in Fig. 1). The line δ = 0 shows the
locus of solutions with a purely poloidal field. This line originates
from the unmagnetized solution θn

0 = [(1 − n)2/4]n/(1−n), φ0 = 0,
and lies always in the H0 > 0 region of the diagram, indicating that
a pure poloidal magnetic field can only support, not compress, a
cloud. The solutions with δ = 0 are characterized by a density scale
θn

0 larger than the density scale of the unmagnetized model, due to
the extra support provided by the field. No solutions are possible
above the δ = 0 line.

The curves in Fig. 1 show that for an increasing field strength φ0,
configurations with a fixed pitch angle lower than the critical value
δff support increasingly larger densities; whereas if the pitch angle
is larger than δff, any increase in the field strength reduces the den-
sity that can be supported. However, in the latter case, equilibrium
configuration only exists below a maximum value of φ0. Thus, for
a given field strength, there is always at least one solution with den-
sity larger than the unmagnetized solution, a pitch angle δ < δff and
magnetic effects dominated by the poloidal component (‘magnetic
support’), and one (or two, or zero) solutions with density lower than
the unmagnetized solution, pitch angle δ > δff, and magnetic effects
dominated by the toroidal component (‘magnetic compression’). As
shown by Fig. 1, if the equation of state is soft (upper panel) the
largest fraction of parameter space is occupied by ‘magnetic com-
pression’ solutions; conversely, for a quasi-isothermal equation of
state (lower panel) ‘magnetic support’ solutions become dominant.
This shows that the role of the magnetic field depends sensitively
not only on the pitch angle but also on its dependence on radius via
the polytropic exponent γ p.

The two cases n = 1.01 and n = −5 in Fig. 1 illustrate the be-
haviour of the solutions approaching the logatropic and the isother-
mal limit, respectively. In the former case, solutions where the mag-
netic field provides support progressively disappear. Already for a
pitch angle δ larger than about 4◦, the hoop stresses of the toroidal
field dominate over the extra support of the dominant poloidal field,
squeezing the cloud. Accordingly, the density is lower than that of
the unmagnetized solution. Increasing −n, the region with H0 < 0
shrinks, and the transition from support to compression occurs at
larger pitch angle (about 35◦ for n = −2). For n = −5, the allowed
parameter space is largely populated by solutions where the field
provides support to the filament (H0 > 0), but in the limit n → −∞
the region of no solutions covers the entire φ0–θn

0 plane. The un-
magnetized solution tends to θn

0 = 0 in this limit. In fact, even in the
unmagnetized case, no scale-free solution exists for an isothermal
equation of state.
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Figure 1. Scale-free solutions in the φ0–θn
0 plane for n = 1.01 (panel a),

n = −2 (panel b) and n = −5 (panel c). The curves are for selected values of
the pitch angle δ from 0◦ to 90◦ in steps of 10◦. No solutions exist above the
δ = 0◦ curve, representing models with a pure poloidal field. No solutions
exist in the shaded area above this curve. The dashed line is for the pitch
angle δff, when the field becomes force-free. Above this line, the magnetic
field provides support to the cloud (H0 > 0); below the dashed line, the
magnetic field compresses the cloud (H0 < 0).

4.3 Force between magnetized filaments

The magnetic field discussed in the previous sections is generated
by electric currents flowing in the filaments. A toroidal field Bϕ(� ),
for instance, is associated with an electric current I (� )êz flowing
along the filament given by

I (� ) = c

2

∫ �

0
[∇ × (Bϕ êϕ)]� d� = c

2
�Bϕ(� ). (57)

Thus, two parallel filaments, separated by a distance d larger than
their radii � s, behave as two electric wires and exert on each other
an electromagnetic force (per unit length) Fem, repulsive if the
currents are aligned, attractive if they are anti-aligned, given by

Fem = 2I1I2

c2d
ê� . (58)

This electromagnetic force scales as the gravitational force (per unit
length) Fg between the two filaments,

Fg = 2Gμ1μ2

d
ê� , (59)

where μ is the mass per unit length. Therefore, their ratio is inde-
pendent on the filaments separation

R ≡ |Fem|
|Fg| = I1I2

c2Gμ1μ2
∼

(
I

cG1/2μ

)2

, (60)

where the last approximation assumes that the two filaments have
similar properties. According to equation (57), the electric current is
zero on the axis and equal to c� sBϕ, s/2 on the surface (in our scale-
free models for the filaments’ envelopes, in which �Bϕ increases
outwards, the electric current is maximum at the surface). Taking
the average, we can set I ≈ c� sBϕ, s/4, to obtain

R ≈ 1

16

(
�sBϕ,s

G1/2μ

)2

. (61)

Inserting numerical values,

R ≈ 22

(
�s

1 pc

)2 (
Bϕ,s

10 μG

)2 (
μ

10 M
 pc−1

)−2

. (62)

The largest uncertainty on this result (in addition to the extreme
idealization of the picture) comes from the difficulty of estimating
the filament’s outer radius � s (see discussion in Arzoumanian et al.
2011) and the corresponding value of the (toroidal) magnetic field.
Nevertheless the non-negligible numerical value of R indicates that
the electromagnetic forces may play a role as important as gravity
in the interaction between magnetized filaments.

5 C O N C L U S I O N S

We have derived general equations for magnetized filamentary
clouds with a polytropic equation of state, assuming cylindrical
symmetry and magnetostatic equilibrium. The problem can be for-
mulated in terms of two partial differential equations for four un-
knowns: the density ρ, the flux function � for the poloidal field,
and two functions of �, namely the enthalpy H(�) and the toroidal
field function �(�). Solutions can only be obtained by making ad-
ditional assumptions, due to the lack of information on the previous
evolution of the system. These additional assumptions take usually
the form of specific choices of the dependence of the two compo-
nent of the field on density and/or radius (e.g. Stódołkiewicz 1963;
Talwar & Gupta 1973; Fiege & Pudritz 2000). In this work, we
have avoided assumptions of this kind, analysing the properties of
the models in the region near the axis (the filament’s ‘core’) where
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the boundary conditions imposed by symmetry requirements deter-
mine the behaviour of the solutions, and at large radii, where the
solutions are expected to approach a scale-free form for n ≤ 1. In
this paper, we have explored the range from a ‘logatropic’ (n = −1,
or γ p = 0) to an ‘isothermal’ (n → −∞, or γ p = 1) equation of
state. In this range, all variables have a power-law behaviour with
profiles that become flatter as the equation of state becomes softer.
As the polytropic exponent γ p decreases from 1 to 0, the power-law
exponents range from −2 to −1 for the density and from −1 to 0
for the magnetic field.

Depending on the power-law slope, the magnetic field affects
the radial density profile of the cloud in opposite ways. In the
range n ≤ −1, depending on the relative strength of the toroidal
and poloidal components, the magnetic field can either support or
compress the cloud (or be force-free). Pure poloidal fields, or with
small toroidal components (small pitch angle δ) provide support to
the cloud (H0 > 0), allowing higher values of the envelope density
θn

0 than those resulting from thermal support alone. By increasing
the strength of the toroidal component (α2 > 0), the effect of the
field becomes extremely sensitive to the field strength φ0: a small
change in φ0 changes the sign of the Lorentz force, from supporting
to squeezing the cloud. In the latter case, the density of the envelope
is lower than the corresponding value in a non-magnetized filament.
The confining effect of the field is enhanced for softer equations of
state, because the poloidal component becomes increasingly uni-
form. In particular, for a logatropic equation of states, all scale-free
solutions are characterized by a Lorentz force directed inwards, and
their density is lower than in the non-magnetic case. Conversely,
all scale-free solutions converge to zero density in the limit of an
isothermal equation of state, because, as shown in Paper I, the ‘nat-
ural’ asymptotic power-law behaviour of an isothermal cylinder is
reached only at infinite radius, where the density is zero.

Within the limits of the idealized scale-free models for magne-
tized filaments presented in this paper, our results suggest that a
measure of the pitch angle of the magnetic field associated with
filaments can provide a way to discriminate filaments that are com-
pressed by the field from those that are supported. This can be ac-
complished by comparing the direction of the magnetic field around
a filament, as traced by optical/near-infrared polarization, to the di-
rection of the field within the filament, as traced by submillimetre
polarization. Preliminary results from the Planck satellite (Adam
et al. 2014) suggest that the field direction changes from the dif-
fuse to the molecular gas, but the actual amount of field twisting
in a filament remains uncertain (see discussion in Section 1). High-
resolution observations of polarized dust emission inside the fila-
ments (e.g. with atacama large millimeter/submillimeter array) are
needed to assess the role of large- and small-scale magnetic fields
in their formation and evolution.

Finally, the magnetization of interstellar filaments implies the
presence of electric currents flowing along and/or around them, pro-
ducing attractive (or repulsive) electromagnetic forces that enhance
(or dilute) their gravitational field and may affect their interactions.
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