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ABSTRACT
The properties of filamentary interstellar clouds observed at submillimetre wavelengths, es-
pecially by the Herschel Space Observatory, are analysed with polytropic models in cylin-
drical symmetry. The observed radial density profiles are well reproduced by negative-index
cylindrical polytropes with polytropic exponent 1/3 � γ p � 2/3 (polytropic index −3 � n
� −3/2), indicating either external heating or non-thermal pressure components. However,
the former possibility requires unrealistically high gas temperatures at the filament’s surface
and is therefore very unlikely. Non-thermal support, perhaps resulting from a superposition
of small-amplitude Alfvén waves (corresponding to γ p = 1/2), is a more realistic possibility,
at least for the most massive filaments. If the velocity dispersion scales as the square root
of the density (or column density) on the filament’s axis, as suggested by observations, then
polytropic models are characterized by a uniform width. The mass per unit length of pressure-
bounded cylindrical polytropes depends on the conditions at the boundary and is not limited
as in the isothermal case. However, polytropic filaments can remain stable to radial collapse
for values of the axis-to-surface density contrast as large as the values observed only if they
are supported by a non-isentropic pressure component.

Key words: instabilities – ISM: clouds.

1 IN T RO D U C T I O N

The filamentary structure of molecular clouds has recently received
considerable attention, especially thanks to the high sensitivity and
dynamic range of images obtained at submillimetre wavelengths by
the Herschel Space Observatory. The observed filaments typically
represent enhancements by a factor of ∼102 in volume density (or
by a factor of ∼10 in column density) with respect to the ambient
medium of the molecular cloud, extending over ∼ pc scales and
often forming complex networks (André et al. 2010; Molinari et al.
2010). From a theoretical point of view, the origin of interstellar
filaments still needs to be fully understood. It is debated whether
filaments are stagnation regions formed either at the intersections of
planar shocks (Padoan et al. 2001), or by the collapse and fragmen-
tation of self-gravitating gaseous sheets (Burkert & Hartmann 2004)
perhaps mediated by magnetic fields (Miyama, Narita & Hayashi
1987a,b; Nagai, Inutsuka & Miyama 1998; Van Loo, Keto & Zhang
2014), or they are long-lived features of the flow resulting from hi-
erarchical fragmentation (Gómez & Vázquez-Semadeni 2013), or
they are formed by turbulent shear and maintained and kept coherent
by magnetic stresses (Hennebelle 2013). Remarkably, the observed
properties of individual filamentary clouds are well characterized
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and rather uniform, at least for filaments located in nearby molec-
ular clouds (mostly in the Gould’s Belt, see André et al. 2013, for
a review). Their density profiles in the radial direction, perpendic-
ular to the filament’s axis, are characterized by a flat-density inner
part of size ∼� flat and a power-law envelope extending to an outer
radius ∼10 � flat, where the filaments merge with the surrounding
ambient medium. The size of the flat-density region appears to have
a uniform value � flat = (0.03 ± 0.02) pc despite a variation of
the central column density Nc of about three orders of magnitude,
from ∼1020 to ∼1023 cm−2 (Arzoumanian et al. 2011, hereafter
A11).

A convenient parametrization of the radial density profile that
reproduces these basic features is the softened power-law profile

ρ(� ) = ρc

[1 + (�/�flat)2]α/2
, (1)

where ρc is the central density and α is a parameter. If α = 4, equa-
tion (1) is an exact solution of the equation of hydrostatic equilib-
rium for a self-gravitating isothermal cylinder, hereafter referred to
as the Stodółkiewicz–Ostriker density profile (Stodółkiewicz 1963;
Ostriker 1964a). In this case � flat = (2a2/πGρc), where a is the
isothermal sound speed. The isothermal cylinder has infinite radius,
but finite mass per unit length,

μiso = 2a2

G
= 16.5

(
T

10 K

)
M� pc−1. (2)
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However, the power-law slope α measured in a sample of filaments
in the IC5146, Aquila and Polaris clouds, mapped by the Her-
schel satellite, is significantly different from α = 4: on average,
α = 1.6 ± 0.3 (A11). Thus, the possibility that the gas in these
filaments obeys a non-isothermal equation of state, and the impli-
cations of relaxing the hypothesis of thermal support, should be
explored.

A fundamental difference between the behaviour of isothermal
spherical and cylindrical interstellar clouds with respect to gravi-
tational collapse was pointed out by McCrea (1957): while for a
spherical cloud of given mass and temperature there is a maximum
value of the external pressure for which an equilibrium state is
possible (the Bonnor–Ebert criterion), a cylindrical cloud can be in
equilibrium for any value of the external pressure, provided its mass
per unit length is smaller than a maximum value. This led McCrea
(1957) to conclude that filamentary (or sheet-like) clouds must first
break up into fragments of roughly the same size in all directions
before gravitational collapse (and therefore star formation) can take
place. However, as we will argue in Section 3.1, filamentary clouds
are unlikely to be thermally supported, and their radial density pro-
files are well reproduced by assuming an equations of state ‘softer’
than isothermal. In this case, as shown by Viala & Horedt (1974b)
the behaviour of cylindrical clouds with respect to gravitational in-
stability becomes essentially analogous to that of spherical clouds
(see Section 4).

The goal of this paper is to analyse the radial density profiles
of filamentary clouds, their stability with respect to collapse and
to derive from the observed properties some conclusions on the
relative importance of various mechanisms of radial support (or
confinement) of these clouds. In particular, we analyse the stability
of filamentary clouds following ideas explored in theoretical stud-
ies of spherical clouds by McKee & Holliman (1999) and Curry &
McKee (2000), stressing the need for non-isentropic models to ac-
count for the observed large density contrasts. As in the case of
spherical polytropes, the stability properties of polytropic cylin-
ders depend on the polytropic exponent γ p, that characterizes the
spatial properties of the filament, and on the adiabatic exponent
γ , that determines the temporal response of the cloud to adiabatic
perturbations.

The paper is organized as follows: in Section 2, we analyse the ra-
dial density profiles of filamentary clouds on the basis of polytropic
cylindrical models; in Section 3, we compare the role of thermal
and non-thermal pressure in supporting the cloud against its self-
gravity; the stability to radial collapse of filaments of increasing
mass per unit length under fixed external pressure is analysed in
Section 4; finally, in Section 5, we summarize our conclusions. In
this paper, we focus on unmagnetized filaments. However, we con-
sider particular forms of the equation of state that may simulate the
effects of a large-scale or wavelike magnetic field on the cloud’s
structure. Magnetized models are presented in a companion paper
(Toci & Galli 2015, Paper II).

2 RADIAL DENSITY PRO FILES
O F F I L A M E N TA RY C L O U D S

2.1 Basic equations

Neglecting magnetic fields, the structure and evolution of a self-
gravitating filament is governed by the force equation

(u · ∇)u = −∇V − 1

ρ
∇p, (3)

and Poisson’s equation

∇2 V = 4πGρ, (4)

where u is the gas velocity, V is the gravitational potential and p is
the gas pressure. The left-hand side term in equation (3) represent
the effects of dynamical motions on the momentum balance. These
include the laminar and turbulent flows associated with the forma-
tion of the filament and/or produced by the gravitational field of the
filament itself. In a cylindrical coordinate system with the z-axis
along the filament’s axis and the � -axis in the radial direction, as-
suming azimuthal symmetry (∂/∂ϕ = 0), and neglecting rotation,
the radial component of the left-hand side of equation (3) reads

(u · ∇)u =
(

u�

∂u�

∂�
+ uz

∂u�

∂z

)
ê� . (5)

The first term in equation (5) represents a ram-pressure compress-
ing the filament. If the filament is building mass by accretion from
the surrounding medium, then u� is negative and decreases in-
wards (u� = 0 by symmetry on the filament’s axis). If u� becomes
subsonic inside the filament, where u is expected to be mostly par-
allel to the filament’s axis (as e.g. in the simulations of Gómez
& Vázquez-Semadeni 2013), then the internal pressure dominates
over the accretion ram pressure. Accretion ram-pressure can be ne-
glected in the central parts of a filament, although it may play a role
in the envelope.1 Thus, a description of the structure of filamentary
clouds in terms of hydrostatic equilibrium models does not neces-
sarily imply that the velocity field is zero everywhere. Of course the
velocity term in equation (3) cannot be ignored during the growth
of the varicose (or sausage) gravitational instability when signifi-
cant radial and longitudinal gas flows can occur (see e.g. Gehman,
Adams & Watkins 1996). These motions may lead to the formation
of dense pre-stellar cores as observed e.g. in the SDC13 infrared
dark cloud (Peretto et al. 2014).

2.2 Isothermal models

Observations of limited spatial extent of intensity profiles have been
successfully modelled with isothermal cylinders. For example, ra-
dial density profiles derived from molecular line emission in L1517
(Hacar & Tafalla 2011), and from the 850 μm emission in the fila-
mentary dark cloud G11.11-0.12 (Johnstone et al. 2003) are compat-
ible with the Stodółkiewicz–Ostriker density profile up to ∼0.2 pc.
Fischera & Martin (2012b) have successfully modelled the surface
brightness profiles of four filaments observed by Herschel in the
IC5146 region with truncated isothermal cylinders, limiting their
analysis to ∼1 arcsec radial distance from the emission peak on
both sides of the filament (corresponding to 0.13 pc at the distance
of 460 pc). Over this radial extent, the column density profiles ob-
tained by equation (1) with α = 2 or α = 4, or by a Gaussian profile,
are all indistinguishable (see e.g. fig. 4 of A11). The large dynamic
range allowed by the Herschel Space Observatory has made possi-
ble to map the submillimetre emission of interstellar filaments up
to the radial distances from the filament’s axis where the structures
merge with the ambient medium (∼0.4 pc for B211/213, Palmeirim
et al. 2013; ∼1 pc for IC5112, A11). At large radii, deviation of

1 However, for a Larson–Penston type of accretion, u� approaches a con-
stant value at large radii (Kawachi & Hanawa 1998) and the accretion
ram-pressure drops to zero. The second term in equation (5) is negligible if
the accretion velocity u� does not change significantly along the filament,
and vanishes in cylindrical symmetry (∂/∂z = 0).

MNRAS 446, 2110–2117 (2015)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/446/2/2110/2892392 by U
niversità Firenze Biblioteca U

m
anistica user on 27 February 2020



2112 C. Toci and D. Galli

the observed density profiles from the Stódołkiewicz–Ostriker pro-
file become evident, and the observations are generally not well
reproduced by isothermal cylinders. First, as already mentioned
in Section 1, the density profiles at large radii are characterized
by power-law exponents α close to ∼2, rather than 4; secondly, the
mass per unit length is in some cases larger than the maximum value
allowed for an isothermal cylinder (equation 2). These aspects will
be considered in the following sections.

2.3 Polytropic models

A more general class of hydrostatic models for filamentary clouds
is represented by polytropic cylinders (Ostriker 1964a; Viala &
Horedt 1974b), in which the gas pressure (arising from thermal or
non-thermal motions) is parametrized by a polytropic equation of
state,

p = Kργp , (6)

where ρ is the gas density, K a constant and γ p is the polytropic
exponent. The constant K is a measure of the cloud’s entropy (for
an isothermal gas K = a2, where a is the isothermal sound speed).
The polytropic exponent is usually written as γ p = 1 + 1/n, where
the polytropic index n can take values in the range n ≤ −1 or
n > 0 (the range −1 < n < 0 corresponds to negative values
of γ p and is therefore unphysical). For 0 ≤ γ p ≤ 1 (n ≤ −1),
polytropic cylinders have infinite radii and infinite mass per unit
length, whereas for γ p > 1 (n > 0) the density and pressure become
zero at some finite radius and therefore have finite masses per unit
length. For γ p = 1 (n → −∞), the gas is isothermal, whereas
for γ p → 0 (n = −1) the equation of state becomes ‘logatropic’,
p ∝ ln ρ. This latter form was first used by Lizano & Shu (1989)
to model the non-thermal support in molecular clouds associated
with the observed supersonic line widths (see also McLaughlin &
Pudritz 1996, 1997). Logatropic cylinders have infinite radius and
infinite mass per unit length (Gehman et al. 1996; Fiege & Pudritz
2000). Negative index polytropes (0 ≤ γ p < 1) were first proposed
as models for thermally-supported interstellar clouds heated by an
external flux of photons or cosmic rays (Shu et al. 1972; Viala 1972;
de Jong, Boland & Dalgarno 1980). On the other hand, Maloney
(1988) interpreted the polytropic temperature T ∝ (p/ρ)1/2 as a
measure of the contribution of non-thermal (turbulent) motions to
the support of the cloud. In this case, negative index polytropes
reproduce the observed increase of non-thermal line width with size
observed in molecular clouds (McKee & Holliman 1999; Curry &
McKee 2000).

With the equation of state (6), the equation of hydrostatic equi-
librium equation (3) with the advective term set equal to 0 reduces
to the standard cylindrical Lane–Emden equation

1

ξ

d

dξ

(
ξ

dθ

dξ

)
= ±θn, (7)

for the non-dimensional density θ and radius ξ defined by

� = �0ξ =
[∓(1 + n)K

4πGρ
1−1/n
c

]1/2

ξ, ρ = ρcθ
n. (8)

In equation (7) and (8), as well as in the rest of the paper, the upper
(lower) sign is for 0 ≤ γ p < 1 (γ p > 1), and the subscripts ‘c’ and ‘s’
denote values at the centre (axis of the cylinder) and at the surface
of the filament, respectively. Numerical and analytical solutions
of equation (7) with boundary conditions θ = 1 and dθ/dξ = 0 at
ξ = 0 have been obtained by Viala & Horedt (1974a) for 0 < γ p < 1,

Figure 1. Radial density profiles (normalized to the central density ρc) of
polytropic cylinders with γ p = 2, 3/2, 4/3 (n = 1, 2 and 3, short-dashed
lines, from left to right) and γ p = 1/3, 1/2, 2/3 and 3/4 (n = −3/2, −2, −3
and −4, long-dashed lines, from right to left). The thick solid lines show
the density profiles of an isothermal (γ p = 1, or n = ±∞) and a logatropic
(γ p = 0, or n = −1) cylinder. Dotted lines are the singular solutions given by
equation (12). The radius is normalized to the core radius � core defined by
equation (10). The hatched area corresponds to the observed mean density
profile of filaments in IC5146, given by equation (1) with α = 1.6 ± 0.3.

by Stódołkiewicz (1963) and Ostriker (1964a) for γ p = 1, and by
Ostriker (1964a) for γ p > 1. The mass per unit length μ is

μ = 2π

∫ �s

0
ρ� d� = ∓ (1 + n)Kρ1/n

c

2G
ξsθ

′
s, (9)

where equation (7) has been used to simplify the integral.
In order to compare different models for the radial density

profiles, it is necessary to normalize the radial coordinate � to
the same length-scale. To the lowest order in a series expan-
sion for small radii, the density profile of polytropic filaments is
ρ(� ) ≈ ρc(1 − � 2/� 2

core + . . .). The ‘core radius’ � core is

�core = 2�0√∓n
=

(
1 + n

n

)1/2
σc

(πGρc)1/2
, (10)

where σ c = (pc/ρc)1/2 is the velocity dispersion on the filament’s
axis.2 For the observed value σ c ≈ 0.26 km s−1 (Arzoumanian et al.
2013, hereafter A13), using the fiducial value nc ≈ 2 × 104 cm−3,
and setting n = −2 the core radius is

�core ≈ 0.047
( σc

0.26 km s−1

) (
nc

2 × 104 cm−3

)−1/2

pc. (11)

Fig. 1 compares the density profiles of various cylindrical polytropes
of positive and negative index, as function of radius normalized to
� core. The longitudinally averaged density profiles of the filaments
in IC5146, given by equation (1) with α = 1.6 ± 0.3 (A11), are well
reproduced by cylindrical polytropes with 1/3 � γ p � 2/3 (−3 �

2 A comparison with an analogous series expansion of the softened power-
law profile (equation 1) leads to the identification � core = (2/α)1/2� flat.
Since α ≈ 2, � core ≈ � flat.
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n � −3/2) at least over the observed radial extent of the filaments
(from � ≈ 0.1 � core to � ≈ 10 � core). Overall, the single value
γ p ≈ 1/2 (n = −2) provides a good fit to the data, at least for this
sample of filaments. The implications of these results are discussed
in Section 3.2.

2.4 Power-law behaviour at large radius

In addition to regular solutions, equation (7) also allows singular
(or scale-free) solutions for 0 ≤ γ p < 1 (n < −1), characterized by
a power-law behaviour intermediate between ρ ∝ �−1 (for γ p = 0)
and ρ ∝ �−2 (for γ p → 1), given by

ρ(� ) =
[

(1 − n)2πG

−(1 + n)K

]n/(1−n)

� 2n/(1−n), (12)

(Viala & Horedt 1974b). The mass per unit length of the scale-free
models is

μ(� ) = (1 − n)π

[
(1 − n)2πG

−(1 + n)K

]n/(1−n)

� 2/(1−n)

= (1 − n)π� 2ρ(� ), (13)

and approaches the constant value μ → a2/G if γ p → 1.
The scale-free solutions are plotted in Fig. 1 along with the reg-

ular solutions. As shown by Fig. 1, scale-free solutions represent
the asymptotic behaviour around which the regular solutions os-
cillate with decreasing amplitude for � → ∞. This asymptotic
behaviour is the same for both polytropic spheres and cylinders.
However, while a spherical singular solution exists also for γ p = 1
(the singular isothermal sphere), this does not happen in cylindrical
geometry.3 In fact, whereas for spheres the amplitude of the oscil-
latory component decreases as r−1/2 for γ p = 1, for cylinders it
approaches instead a constant value for γ p → 1, and the period of
the oscillation becomes infinite: the isothermal cylinder converges
to the singular solution equation (12) only at infinite radius. Thus, if
a quasi-isothermal filamentary clouds goes through an evolutionary
stage independent of the initial and boundary conditions, yet still
far from the ultimate equilibrium state (an intermediate asymptotic;
Barenblatt 1979), a radial density profile closer to ρ ∝ �−2 rather
than ρ ∝ �−4 should be expected. This happens, for example, in
the self-similar collapse solutions of quasi-isothermal filaments by
Kawachi & Hanawa (1998).

3 SUPPORT AG AINST G RAVITY

3.1 Thermal support

The deviations of the observed radial behaviour of the density from
an isothermal Stódołkiewicz–Ostriker profile has been interpreted
as an indication of temperature gradients increasing outwards, re-
sulting in a larger thermal pressure gradient with respect to an
isothermal gas (Recchi, Hacar & Palestini 2013). This possibility
is supported by the presence of significant radial gradients in the
dust temperature profiles derived from radiative transfer modelling
of the infrared emission (see e.g. Stepnik et al. 2003). In particular,
the dust temperature Td increases outwards from ∼10–12 K on the
axis to ∼14 K at � ≈ 0.5 pc in the B211 filament (Palmeirim et al.
2013), and to ∼18 K in the L1506 filament (Ysard et al. 2013).

3 Conversely, for a logatropic equation of state, a singular solution exist in
cylindrical geometry but not in spherical geometry.

Figure 2. Radial profiles of the polytropic temperature T (normalized to
the central temperature value Tc) of polytropic cylinders with values of
γ p (or n) as in Fig. 1. The thick solid lines show the temperature profiles
of an isothermal (γ p = 1, or n = ±∞) and a logatropic (γ p = 0, or
n = −1) cylinder. Dotted lines correspond to the singular solutions given by
equation (12). The radius is normalized to the core radius � core as in Fig. 1.

Similar (or larger) gradients are expected in the gas temperature
Tg as well: in fact, while some mild coupling of the dust and gas
temperatures is possible at the typical densities on the filament’s
axis (∼104 cm−3), in general the gas is expected to be significantly
hotter than the dust in the outer regions (see e.g. Galli, Walmsley &
Gonçalves 2002; Keto & Caselli 2008).

The polytropic models presented in Section 2.3 make possible
to quantify the magnitude of the gradient in the gas temperature
needed to reproduce the observed density profiles. Fig. 2 shows
the radial behaviour of polytropic temperature T ∝ (p/ρ)1/2 for the
same models shown in Fig. 1. For the range of polytropic expo-
nents that reproduce the density profiles of filaments in IC5146, the
polytropic temperature increases by a factor ∼5–12 from the fila-
ment’s axis to the boundary, assumed to be located at ρs ≈ 10−2ρc

or � s ≈ 10 � core (corresponding to a radius of about 1 pc, where
the filaments merge with the ambient medium). If the polytropic
temperature is identified with the gas temperature, this implies a
temperature at the filament’s surface Ts ∼ 70–170 K, assuming a
central temperature Tc = 14 K (A11). Such high temperatures are
very unlikely. The observed gradients of gas temperature in pre-
stellar cores are much shallower (Crapsi et al. 2007), in agreement
with the predictions of theoretical models. Therefore, alternatives
to thermal pressure must be sought.

3.2 Non-thermal support

Turbulence and magnetic fields, either large-scale or wavelike, can
contribute to the pressure supporting the filament. If approximated
as isotropic pressure components, their effects can be modelled
with appropriate polytropic laws. For example, in the limit of small
amplitude, small wavelength and negligible damping, Alfvén waves
behave as a polytropic gas with γ p = 1/2 (Walén 1944), a value
consistent with the observations, as shown in Section 2.3. Thus, the
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filamentary clouds observed by Herschel may be supported radially
by non-thermal motions associated with Alfvénic ‘turbulence’, i.e.
a superposition of hydromagnetic waves (Fatuzzo & Adams 1993;
McKee & Zweibel 1995).

If small-amplitude Alfvén waves (modelled with a γ p = 1/2
polytropic law) dominate the pressure, observed molecular transi-
tions should be characterized by a non-thermal line width increasing
roughly by a factor ∼3 from the axis to the filament boundary, fol-
lowing approximately a ρ−1/4 (or � 1/3) dependence at large radial
distances. However, the available data do not allow any firm conclu-
sion to be drawn on the magnitude and spatial distribution of non-
thermal motions inside filamentary clouds. Hacar & Tafalla (2011)
find that in L1517 the non-thermal line width of molecular transi-
tions like C18O and SO is everywhere subsonic (σ nt < a) and very
uniform, typically σ nt = 0.1 ± 0.04 km s−1 across the sampled re-
gion. Li & Goldsmith (2012) find that the velocity dispersion on the
axis of the B213 filament is slightly supersonic (σ nt ≈ 0.3 km s−1).
Millimetre line studies indicate that self-gravitating filaments have
intrinsic, suprathermal linewidths σ nt � a (A13). In the massive fil-
ament DR21 (Nc ≈ 1023 cm−2, μ ≈ 4 × 103 M� pc−1), Schneider
et al. (2010) find that the velocity dispersion increases towards the
filament’s axis, where it reaches σ nt ≈ 1 km s−1 (see their fig. 18),
whereas condensations in the filaments are characterized by lower
velocity dispersions. Further observations should explore the spatial
distribution of non-thermal motions in filamentary clouds and the
correlation (if any) of σ c with ρc.

As shown in Section 2, negative-index cylindrical polytropes with
appropriate values of γ p reproduce the observed radial density pro-
files of filaments and predict a core radius �core ∝ σc/ρ

1/2
c . This

result is consistent with the observed uniformity of filament widths
if σ c scales as the square root of the central density, σc ∝ ρ1/2

c .
Since the central column density is Nc ∝ ρc� core, it follows
that σc ∝ N1/2

c , since � core is constant. Observationally, filaments
with central column densities above ∼1022 cm−2 follow this trend
(A13). Theoretically, the relation σ ∝ ρ1/2 seems to characterize
the behaviour of the turbulent pressure during the relaxation pro-
cesses leading to virialization in a strongly self-gravitating collapse
flow, according to the numerical simulations of Vázquez-Semadeni,
Cantó & Lizano (1998). This could be an indication that, at least
in the more massive filaments, the gas in the central parts is still
undergoing turbulent dissipation (perhaps following accretion, Hen-
nebelle & André 2013). Numerical simulations and analytic con-
siderations show that the polytropic exponent of magnetohydro-
dynamic turbulence depends on the dominant wave mode via the
Alfvén Mach number MA, ranging from γ p ≈ 1/2 at low MA, where
the slow mode dominates, to γ p ≈ 2 at large MA, where the slow
and fast mode are comparable (Passot & Vázquez-Semadeni 2003).
Thus, a picture of magnetohydrodynamic turbulence in terms of
small-amplitude Alfvén waves is clearly an oversimplification.

4 RADIAL STABILITY O F POLYTRO PIC
FIL AMENTS

Cylindrical polytropes are known to be unstable to longitudinal per-
turbations of wavelength larger than some critical value. This vari-
cose (or sausage) gravitational instability (Ostriker 1964b; Larson
1985; Inutsuka & Miyama 1992; Freundlich, Jog & Combes 2014)
and its magnetic variant (Nagasawa 1987; Nakamura, Hanawa &
Nakano 1993; Gehman et al. 1996; Fiege & Pudritz 2000b) produces
the fragmentation of a filamentary cloud in a chain of equally spaced
dense cores, as observed in some cases, and represents therefore a
promising mechanism for star formation. However, it is important

to assess first the conditions for radial stability, i.e. with respect to
collapse to a line mass, in analogy with the Bonnor–Ebert stability
criterion for spherical polytropes. For observed filaments, stability
considerations are usually based on a comparison with the mass per
unit length of the isothermal cylinder, μiso (equation 2). However, as
mentioned in the Introduction, the stability properties of an isother-
mal cylinder are different from those of polytropic cylinders with
γ p < 1, essentially because its mass per unit length approaches
the finite value μiso as the radius of the cylinder increases to in-
finity, whereas for γ p < 1 the mass increases with radius. As a
consequence, an isothermal filament is always radially stable: if the
pressure ps exerted over an isothermal cylinder with fixed μ < μiso

is gradually increased, the filament contracts, reducing its radius � s

and core radius � core as p−1/2
s , and increasing its central density

ρc as p−1
s , but otherwise maintaining the same shape of the density

profile. Conversely, for 0 ≤ γ p < 1, also cylindrical polytropes
become unstable if the external pressure becomes larger than some
critical value. The instability extends to γ p = 4/3 for spheres (the
classical Bonnor–Ebert instability) but not for cylinders.

The stability of polytropic cylindrical clouds to radial perturba-
tions can be determined by solving the equation of radial motion
for small perturbations about equilibrium, first derived for spheri-
cal clouds by Eddington (1926). For cylindrical clouds, it becomes
(Breysse, Kamionkowski & Benson 2014)

d2 h

d� 2
+ 3 − 4q

�

dh

d�
+

[
ω2

f 2
+ 8

(
1

γ
− 1

)
q

]
h

� 2
= 0, (14)

where h = δ�/� is the relative amplitude of the perturbation, ω is
the frequency of the oscillations, γ is the adiabatic exponent, and
we have defined

q ≡ Gμρ

2p
= − (1 + n)ξθ ′

4θ
, (15)

and

f ≡ 1

�

(
γp

ρ

)1/2

= (4πGρc)1/2

ξ

( ∓γ θ

1 + n

)1/2

. (16)

In deriving equation (14), the simplifying assumption has been
made that the perturbations occur adiabatically, δp/p = γ δρ/ρ. It
is important to notice that the adiabatic exponent γ determining the
response of the cloud to small perturbations is not necessarily equal
to the polytropic exponent characterizing the equilibrium structure
discussed in Section 2. Only if the perturbation occurs on a time
much longer than the characteristic time for internal redistribution
of entropy, the adiabatic exponent γ is equal to γ p (see examples
and discussion in Section 4.2).

4.1 Isentropic filaments

We first consider isentropic clouds, in which the entropy is both
spatially uniform and constant during an adiabatic perturbation, and
set γ = γ p. To determine the condition of marginal stability, we
set ω = 0 and we solve equation (14) with the boundary condition
dh/dξ = 0 at ξ = 0 in order for h to remain finite on the axis (since
equation 14 is linear and homogeneous, the value of h at ξ = 0 is
arbitrary). For any fixed value of the polytropic exponent γ p, the
critical point ξ cr can be found determining the radius at which the
Lagrangian variation in the pressure at the boundary vanishes,
(

δp

p

)
ξ=ξcr

= −γ

(
2h + �

dh

d�

)
ξ=ξcr

= 0. (17)
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Table 1. Critical points for isentropic cylindrical
polytropes.

n γ p ξ cr (ρc/ρs)cr qcr

−1 0 6.62 6.05 0
−1.01 0.0099 6.59 6.10 0.0272
−1.5 1/3 5.52 8.61 0.115
−2 1/2 4.93 11.4 0.199
−3 2/3 4.28 17.6 0.317
−4 3/4 3.92 23.9 0.399
−5 0.8 3.68 32.8 0.459
−10 0.9 3.13 80.0 0.626
−20 0.95 2.76 228 0.752
−30 0.967 2.60 441 0.812
−40 0.975 2.50 701 0.846
−∞ 1 ∞ 1

If ξ > ξ cr, the filament is unstable to radial collapse. At the critical
point the density contrast is (ρc/ρs)cr = θ−n

cr and the mass per unit
length is

μcr = qcr

(
2ps

Gρs

)
, (18)

where

qcr = − (1 + n)ξcrθ
′
cr

4θcr
. (19)

The values of ξ cr, (ρc/ρs)cr, and qcr for different polytropes are listed
in Table 1. For the same value of the ratio ps/ρs, the marginally
stable configuration with the largest mass per unit length is the
isothermal filament with γ p = 1, for which qcr = 1 and μcr = μiso.
At the opposite end, the logatropic filament with γ p = 0 has qcr = 0.
Thus, for fixed values of the surface pressure and density, filaments
with increasingly ‘softer’ equations of state can support less and
less mass per unit length, as in the case of spherical polytropes
(McKee & Holliman 1999).

Fig. 3 shows the radius and the mass per unit length of cylindrical
polytropes with various values of γ p between γ p = 1/3 and 1 (from
n = −3/2 to −∞) as function of ρc/ρs and the position of the
critical point on both sets of curves. The stability properties of
polytropic filaments with 0 ≤ γ p < 1 for the same value of the
entropy parameter K and the ratio ps/ρs are qualitatively similar:
increasing ρc/ρs the filament first expands then contracts, until
the filament becomes unstable when ρc/ρs becomes larger than
the critical value listed in Table 1. Equilibria also exist above this
critical value, but they are unstable to radial collapse. The instability
occurs for increasingly larger values of ρc/ρs when γ p increases
(for γ p = 1, the critical point is at ξ cr = ∞).

The problem here is that several filamentary clouds observed by
Herschel have mass per unit length in excess of μiso, if the latter is
computed with a2 corresponding to the measured central tempera-
ture ∼10 K. Although the fact that pre-stellar cores are preferentially
found in filaments with μ > μiso is considered a signature of grav-
itational instability (see e.g. André et al. 2010), it is difficult to
justify the formation by accretion (or by other processes) of isother-
mal filaments with mass per unit line larger than μiso. Consider
for example the evolution of an isothermal filament with μ < μiso,
bounded by an external constant pressure ps = a2ρs, slowly increas-
ing its mass per unit length while keeping its temperature uniform
and constant with time. As μ increases, the filament becomes more
and more centrally condensed, its density contrast ρc/ρs increasing
as (1 − μ/μiso)−2. At the same time, the flat core region shrinks
as (1 − μ/μiso), and the outer radius first expands then contracts

Figure 3. Mass per unit length μ (thick curves) and radius � s (thin curves)
of cylindrical polytropes bounded a fixed external pressure as function of the
density contrast ρc/ρs. The cases shown are, from bottom to top, γ p = 1/3,
1/2, 2/3, 3/4 and 1 (n = −1.5, −2, −3, −4 and ∞). Dots on each curve
indicate critical points. The stable and unstable parts of each sequence are
shown by solid and dashed curves, respectively. The radius � s is in units of
[ps/(4πGρ2

s )]1/2, the mass per unit length μ in units of 2ps/Gρs.

as [(1 − μ/μiso)(μ/μiso)]1/2 (Fischera & Martin 2012a). As μ →
μiso, the filament approaches a delta-like line mass of zero radius
and infinite density on the axis. During this evolution the filament
is subject to the varicose instability and can fragment into a chain
of cores, but can never reach a stage with μ > μcr. This is not the
case for non-isothermal filaments. In fact, it is reasonable to expect
that in actual filaments the ratio ps/ρs in equation (18) is much
larger than a2, the value for isothermal gas. If filamentary clouds
are pressure confined, ps must be equal to the pressure exerted on
the filament by the surrounding intercloud medium, where turbulent
motions are likely to dominate the pressure.

4.2 Non-isentropic filaments

If filamentary clouds are well described by cylindrical polytropes
with 1/3 � γ p � 2/3 as shown in Section 2, their density contrast
cannot be larger than ρc/ρs = 8.61–17.6 (see Table 1) or they would
collapse to a line mass. However, the observations summarized in
Section 2 indicate that the density contrasts measured by Herschel
are of the order of ∼100. As in the case of spherical clouds, this
limitation is alleviated if the cloud is non-isentropic (γ �= γ p).

While the assumption of isentropy has been made in most studies
of polytropes, McKee & Holliman (1999) and Curry & McKee
(2000) showed that it is not generally valid for molecular clouds. In
fact, a significant contribution to the pressure supporting the cloud
against its self-gravity may be provided by non-thermal components
whose behaviour is not isentropic: for example, small-amplitude
Alfvén waves have γ p = 1/2 and γ = 3/2 (McKee & Zweibel
1995). In general, non-isentropic polytropes remain stable for larger
density contrasts than isentropic clouds. In practice, the analysis
must be limited to values of γ > γ p since polytropes with γ < γ p

are convectively unstable according to the Schwarzschild criterion.
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Table 2. Stability of non-isentropic cylindrical
polytropes.

γ p = 1/3
γ ξ cr (ρc/ρs)cr qcr

1/3 5.52 8.61 0.115
0.4 10.3 20.2 0.111
γ ∞ = 5/9 ∞ ∞ q∞ = 1/10

γ p = 1/2
γ ξ cr (ρc/ρs)cr qcr

1/2 4.93 11.4 0.199
0.6 10.7 38.0 0.188
0.7 124 1096 0.163
γ ∞ = 3/4 ∞ ∞ q∞ = 1/6

γ p = 2/3
γ ξ cr (ρc/ρs)cr qcr

2/3 4.28 17.6 0.317
0.7 5.18 25.2 0.316
0.8 14.1 153 0.282
γ ∞ = 8/9 ∞ ∞ q∞ = 1/4

To obtain the critical point ξ cr of non-isentropic cylindrical poly-
tropes, equation (14) is solved for a fixed γ p and arbitrary γ > γ p.
The results are shown in Table 2, listing the values of ξ cr, (ρc/ρs)cr

and qcr for polytropes with γ p = 1/3, 1/2 and 2/3 for various val-
ues of γ . As for the case of spherical polytropes, the critical points
moves to larger and larger values of the density contrast ρc/ρs as
γ increases. At a threshold value γ ∞, the critical point reaches
ξ cr = ∞ and the density profile approaches that of a singular poly-
tropic cylinder. The value of qcr = q∞ at this point can be easily
determined substituting equation (12) into equation (14),

q∞ = γp

2(2 − γp)
. (20)

The threshold value of the adiabatic exponent, γ ∞ can also be found
analytically. For a singular polytropic cylinder, equation (14) with
ω = 0 has constant coefficients, and the characteristic equation has
two real and negative roots if γ is larger than

γ∞ = γp(2 − γp), (21)

corresponding to h exponentially decreasing with ξ . The values of
q∞ and γ ∞ for γ p = 1/3, 1/2 and 2/3 are also listed in Table 2. Non-
isentropic polytropes are more stable than their isentropic counter-
parts as they can support larger centre-to-surface density contrasts.
For γ > γ ∞, polytropic filaments are unconditionally stable for any
ρc/ρs.

Fig. 4 summarizes the stability properties of cylindrical poly-
tropes in the γ p–γ plane. In cylindrical geometry, the polytropic
exponent γ p = 1 is a critical value that plays the same role of
γ p = 4/3 for spherical polytropes: while spheres with γ p > 4/3
are unconditionally stable to small perturbations, cylinders become
stable already for γ p > 1 (McCrea 1957; Larson 2005). The analysis
presented in this section extends the study of the gravitational insta-
bility to non-isentropic clouds determining the threshold value γ ∞
for the stability of polytropic cylinders as function of the polytropic
exponent γ p. For example, for γ p = 1/2, a value consistent with the
observed radial density profiles of filamentary clouds, the threshold
value for stability (from equation 21) is γ ∞ = 3/4. Note that for
a ‘soft’ equation of state the stability condition is about the same
for cylinders and spheres: for γ p � 1, a first-order approximation
gives γ ∞ ≈ 2γ p for cylinders and γ ∞ ≈ (16/9)γ p for spheres.

Figure 4. Stability properties of cylindrical and spherical polytropes in the
γ p–γ plane. Polytropes in the γ < γ p region (shaded) are convectively
unstable. On the line γ = γ p, polytropic cylinders (spheres) are isentropic,
and become unstable at some finite (ρc/ρs)cr if γ < 1 (γ < 4/3). Above the
curve labelled γ ∞ (dashed for spheres) cylindrical polytropes are uncondi-
tionally stable even for ρc/ρs = ∞. Cylindrical (spherical) polytropes have
finite radii for γ p > 1 (γ p > 6/5) as indicated by the vertical dotted lines.
The stability properties of spherical polytropes are from McKee & Holliman
(1999).

For larger values of γ p, cylinders are intrinsically more stable than
spheres in the γ p–γ plane. A pressure-bounded isothermal cylinder,
for example, is always stable with respect to an arbitrary increase in
the external pressure, whereas an isothermal sphere is not. For the
range of polytropic exponents allowed by the observations of the
radial density profiles (1/3 � γ p � 2/3, see Section 2), the stability
properties of cylindrical and spherical clouds are very similar.

5 C O N C L U S I O N S

The typical core-envelope structure and the uniformity of the ob-
served properties of filamentary molecular clouds suggest that their
main physical characteristics can be analysed with polytropic mod-
els in cylindrical symmetry. Isothermal models fail to reproduce the
observed power-law behaviour of the density at radii larger than
the core radius, and cannot explain the existence of filaments with
mass per unit length larger than the limiting value for an isothermal
cylinder. Conversely, the observed radial density profiles of fila-
mentary clouds are well reproduced by negative-index cylindrical
polytropes with 1/3 � γ p � 2/3 (−3 � n � −3/2) indicating
either outward-increasing temperature gradients, or the presence of
a dominant non-thermal contribution to the pressure. In the former
case, however, the predicted gas temperature at the filament’s sur-
face would be unrealistically high. Non-thermal support, perhaps
in the form of a superposition of small-amplitude Alfvén waves
(for which γ p = 1/2) is an attractive possibility. In addition, the
mass per unit length of negative-index polytropes is not limited, but
depends on the pressure and density at the surface, if the filaments
are pressure confined by the ambient medium.
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Negative-index cylindrical polytropes have uniform width, as
observed, if the central velocity dispersion σ c is proportional to the
square root of the central density ρc (or the central column density
Nc), a relation that seems to be satisfied at least by the most dense
filaments (A13) and has been found in numerical simulations of
self-gravitating collapse flows (Vázquez-Semadeni et al. 1998).

Outside the core radius, the density profile of polytropic filaments
has often a power-law behaviour and carries important information
on the cloud’s thermodynamics and equation of state. Irrespective
of geometry, both spherical and cylindrical polytropes converge at
large radii to the same power-law behaviour in radius with a slope
equal to −2/(2 − γ p), that approaches −2 for a quasi-isothermal
gas. However, for cylinders, this power-law behaviour is approached
at increasingly larger radii for γ p → 1 (at infinite radius for γ p = 1).

Pressure-bounded polytropic cylinders with 1/3 � γ p � 2/3 can
support a mass per unit length as large as observed depending on
the conditions at the surface. However, their density contrast can-
not be larger than about a factor of 10–20 if they are isentropic.
Like their spherical counterparts (McKee & Holliman 1999), non-
isentropic cylinders remain stable at larger density contrasts (in prin-
ciple even infinite) with respect to adiabatic pressure perturbations.
Since magnetic fields and turbulence (modelled here in the very sim-
plified framework of Alfvén waves) behave as non-isentropic pres-
sure components, isentropic (and, in particular, isothermal) models
are inadequate to study the structure and the stability properties of
filamentary clouds.
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