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ABSTRACT
The first building block to use galaxy clusters in astrophysics and cosmology is the accurate
determination of their mass. Two of the most well-regarded direct mass estimators are based
on weak lensing (WL) determinations or X-ray analyses assuming hydrostatic equilibrium
(HE). By comparing these two mass measurements in samples of rich clusters, we determined
the intrinsic scatters, σ WL ∼ 15 per cent for WL masses and σ HE ∼ 25 per cent for HE masses.
The certain assessment of the bias is hampered by differences as large as ∼40 per cent in
either WL or HE mass estimates reported by different groups. If the intrinsic scatter in the
mass estimate is not considered, the slope of any scaling relation ‘observable–mass’ is biased
towards shallower values, whereas the intrinsic scatter of the scaling is overestimated.

Key words: gravitational lensing: weak – methods: statistical – galaxies: clusters: general –
galaxies: clusters: intracluster medium.

1 IN T RO D U C T I O N

Usage of clusters of galaxies in cosmology and astrophysics relies
on precise determination of their masses (Voit 2005; Limousin et al.
2013). In the context of ongoing and future large surveys (Laureijs
et al. 2011), cluster properties which can be easily measured, e.g.
optical richness, X-ray luminosity, Sunyaev-Zel’dovich (SZ) flux,
are used as mass proxies. This requires an accurate calibration
of the observable through comparison with direct mass estimates
(Andreon & Bergé 2012; Ettori 2013).

The assessment of scaling relations is the foundation for inves-
tigating the physics of the baryons and of the dark matter at the
cluster scale (Pratt et al. 2009; Arnaud et al. 2010; Giodini et al.
2013). Cosmological parameters can be constrained with cluster
abundances and the observed growth of massive galaxy clusters
(Vikhlinin et al. 2009; Mantz et al. 2010; Planck Collaboration XX
2014) or with gas fractions (Ettori et al. 2009).

Two of the most well-regarded mass estimates are the weak lens-
ing (WL) mass and the X-ray mass exploiting hydrostatic equilib-
rium (HE). WL observations of the shear distortion of background
galaxies trace the gravitational field of the matter distribution of the
lens (Hoekstra et al. 2012; von der Linden et al. 2014; Umetsu et al.
2014). The physics behind gravitational lensing is very well under-
stood and WL provides unbiased estimates of the total mass along
the line of sight. The problem is to single out the contribution of
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the lens and to de-project the information to get the intrinsic mass,
which can then be confronted with theoretical predictions.

Under the assumption that HE holds between the intracluster
medium (ICM) and the gravitational potential, the cluster mass can
be recovered from observations of the spatially resolved spectro-
scopic data and the X-ray surface brightness (LaRoque et al. 2006;
Donahue et al. 2014). However, deviations from equilibrium or non-
thermal contributions to the pressure are difficult to quantify and
can bias the mass estimate.

Methods based on spectroscopic measurements of galaxies ve-
locities, such as the caustic technique (Rines & Diaferio 2006) or
approaches exploiting the Jeans equation (Lemze et al. 2009; Bi-
viano et al. 2013), can be effective too but they are hindered by
the expensive observational requirements and are mostly limited to
low-redshift haloes.

In principle, either WL or HE can provide accurate and un-
biased mass measurements, but the approximations that have to
be used (e.g. spherical symmetry, smooth density distributions,
thermal equilibrium) may bias and scatter the results. These ef-
fects must be accurately quantified to calibrate other mass proxies.
Due to scatter, WL and HE masses are proxies to the true mass
themselves.

Numerical studies argued that lensing masses obtained from
the fit of the cluster tangential shear profiles with Navarro-Frenk-
White (Navarro, Frenk & White 1996, hereafter NFW) function-
als are biased low by ∼5–10 per cent with a scatter of ∼10–
25 per cent (Meneghetti et al. 2010; Becker & Kravtsov 2011;
Rasia et al. 2012). The main sources of uncertainty in deprojected
WL mass measurements are due to the presence of substructures and
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triaxiality. Lensing properties depend on the orientation of the clus-
ter with respect to the line of sight (Oguri et al. 2005; Sereno 2007;
Sereno & Umetsu 2011; Limousin et al. 2013). For systems whose
major axis points towards the observer, 3D masses derived under
the standard assumption of spherical symmetry are typically over-
estimated. The opposite occurs for clusters elongated in the plane of
the sky, which are in the majority if the selected sample is randomly
oriented.

The presence of substructures in the cluster surroundings may
dilute the tangential shear signal (Meneghetti et al. 2010; Giocoli
et al. 2012, 2014). Severe mass underestimations may come from
either massive sub-clumps (Meneghetti et al. 2010) or uncorrelated
large-scale matter projections along the line of sight (Becker &
Kravtsov 2011).

The scatter is less significant in optimally selected clusters either
having regular morphology or living in substructure-poor environ-
ments (Rasia et al. 2012).

The origins of bias and scatter of X-ray masses are well under-
stood too, even though they are difficult to quantify (Rasia et al.
2012). They are strictly connected to non-thermal sources of pres-
sure in the gas, to temperature inhomogeneity, and, to a lesser degree
and mainly in the external regions, to the presence of clumps. Even
if the cluster is in HE, the assumption that all the pressure is ther-
mal biases the HE mass low. Large-scale, unvirialized bulk motions
and subsonic turbulence contribute kinetic pressure (Battaglia et al.
2012).

Furthermore, structures in the temperature distribution bias low
the temperature estimate. In fact, the X-ray detectors of Chandra
and XMM–Newton (X-ray Multi-Mirror Mission) have a higher effi-
ciency in the soft band and, thus, weight more colder gas (Mazzotta
et al. 2004).

Numerical simulations showed that X-ray masses based on HE
are biased low by a large amount of ∼25–35 per cent (Piffaretti
& Valdarnini 2008; Rasia et al. 2012, 2014). The bias grows from
the inner to the outer regions of the clusters, where the presence
of non-thermal sources of pressure in the ICM and temperature
inhomogeneity play a larger role (Rasia et al. 2012).

Since the intrinsic scatters in either WL or HE masses have
different origins, they are mostly uncorrelated. Scatter in WL masses
is mainly due to triaxiality and substructures in the dark matter halo.
On the other hand, the gas distribution approximately follows the
gravitational potential and it is rounder than the dark matter one.
Dark matter substructures are not necessarily associated with gas
clumps. The sources which cause scatter in the HE masses are more
related to gas physics and temperature distributions than to the total
matter distribution and have a small impact on WL estimates.

On the observational side, the certain assessment of cluster
masses is further complicated by instrumental and methodologi-
cal sources of errors which may cause systematic uncertainties in
data analysis (Rozo et al. 2014a).

The main sources of systematics in WL masses are due to se-
lection and redshift estimate of background galaxies, which can be
obtained through accurate photometric redshifts and colour–colour
selection methods (Medezinski et al. 2010), and to the calibration
of the shear signal. A small calibration correction of the order of
just a few per cent translates into a typical error of ∼10 per cent in
the estimate of the virial mass (Umetsu et al. 2014).

Instrumental uncertainty has long been recognized as one of the
main source of systematics plaguing HE masses. XMM cluster tem-
peratures are systematically smaller by 10–20 per cent than Chan-
dra estimates (Nevalainen, David & Guainazzi 2010; Donahue et al.
2014). On the other hand, Chandra and XMM measurements of the

gas distribution are highly consistent with one another (Donahue
et al. 2014; Rozo et al. 2014a).

The picture on the inconsistencies between Chandra and XMM
results is still debated. Donahue et al. (2014) found that Chandra and
XMM temperatures of the very massive CLASH (Cluster Lensing
And Supernova survey with Hubble; Postman et al. 2012) clusters
agree in the core, where photon fluxes are considerable, whereas the
regions where the temperature differences are larger are typically
∼1 arcmin from the much brighter cluster core. Temperature differ-
ences persist even in outer regions with large signal-to-background
ratio. These temperature discrepancies caused analogue off-sets in
the HE mass.

Martino et al. (2014) compared the mass profiles of 21 LoCuSS
(Local Cluster Substructure Survey) clusters that were observed
with both satellites, extracting surface brightness and temperature
profiles from identical regions of the respective data sets and includ-
ing analytic models that predict the spatial variation of the Chandra
and XMM–Newton backgrounds to �2 and �5 per cent precision,
respectively. Notwithstanding global XMM spectroscopic temper-
atures lower by ∼10 per cent, they obtained consistent results for
the gas and total hydrostatic cluster masses. Martino et al. (2014)
explained this counterintuitive result noticing that temperature dis-
crepancies were significant only above a value of 6 keV. In the outer
regions, most of the estimated temperatures were lower than this
threshold and Chandra and XMM temperatures were in good agree-
ment. Furthermore, they argued that larger errors bars are associated
with highest temperature, due to the larger difficulty to distinguish
the hottest spectra having a flatter shape from the background. The
relative statistical weight in a fitting procedure is then lower.

This is the first in a series of papers focused on COmparing
MAsses in LITerature (CoMaLit). Here, we look for systematic
differences in WL and HE masses obtained from independent anal-
yses and we assess the overall level of bias and intrinsic scatter.
According to numerical simulations, the scatter in X-ray masses is
supposedly smaller than in WL masses but a definite assessment
of the values of bias and scatter of HE masses is still lacking, due
to uncertainties in the treatment of the gas physics and to variabil-
ity caused by the hydrodynamical scheme adopted in numerical
simulations (Rasia et al. 2014). In this paper, we provide the first
measurements of intrinsic scatters of WL and HE masses of real
clusters.

In the second paper of the series (Sereno, Ettori & Moscardini
2015, hereafter CoMaLit-II), the Bayesian method developed to
calibrate scaling relations between masses and observables, which
fully accounts for intrinsic scatters in both the mass estimate and the
scaling relation, was applied to the scaling relation between SZ flux
and mass in Planck selected clusters of galaxies (Planck Collabora-
tion XXIX 2014). The third paper of the series (Sereno 2015, here-
after CoMaLit-III) presents the Literature Catalogs of weak Lensing
Clusters of galaxies (LC2), which are standardized compilations of
clusters with measured WL masses. The fourth paper of the series
(Sereno & Ettori 2015, hereafter CoMaLit-IV) extends the Bayesian
methodology to account for time-evolution of the scaling relation.
Products associated with the CoMaLit series, as well as future up-
dates, will be hosted at http://pico.bo.astro.it/~sereno/CoMaLit/.

This paper is structured as follows. In Section 2, we discuss how
the scatter in mass proxies can be estimated and how it impacts
the calibration of scaling relations. Samples of clusters used in the
analysis are introduced in Section 3. Comparison among either WL
or HE masses from different groups is investigated in Section 4.
Section 5 is devoted to the measurements of scatter and bias affect-
ing the mass proxies. Discussion of results is contained in Section 6.
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Final considerations can be found in Section 7. Three appendices
contain some simplified and ready-to-use formulae to de-bias the
scaling relations. A toy-model to illustrate the bias induced by the
intrinsic scatter in the mass estimate is discussed in Appendix A.
The correction for the widely used Bivariate Correlated Errors and
Intrinsic Scatter method (BCES; Akritas & Bershady 1996) is pro-
posed in Appendix B. Appendix C details how WL and HE mass
estimates depends on the cosmological parameters.

Throughout the series of papers, we assume a fiducial flat �

cold dark matter cosmology with density parameter �M = 0.3,
and Hubble constant H0 = 70 km s−1 Mpc−1; M� denotes the mass
within the radius r�, which encloses a mean overdensity of � times
the critical density at the cluster redshift, ρcr = 3H (z)2/(8πG);
H(z) is the redshift-dependent Hubble parameter. When H0 is not
specified, h is the Hubble constant in units of 100 km s−1 Mpc−1.

The presence of the superscript ‘WL’, ‘HE’ and ‘Tr’, means that
M500 and r500 were determined using the mass estimate from the
WL analysis, the X-ray measurements, or the knowledge of the true
mass (which is available only for simulated clusters), respectively.
‘log ’ is the logarithm to base 10 and ‘ln’ is the natural logarithm.

2 BIASES AND SCATTER INDUCED BIASES

The biases and the scatters of two mass proxies can be estimated
by comparing the proxies in a cluster sample. The lensing and the
hydrostatic mass approximate the true mass as

ln MWL ± δWL = αWL + βWL ln MTr ± σWL, (1)

ln MHE ± δHE = αHE + βHE ln MTr ± σHE, (2)

where the α’s quantify the bias and the β’s embody any deviation
from linearity. The intrinsic scatters σ WL and σ HE are due to dif-
ferent physical processes and are assumed to be uncorrelated, see
Section 1. The actual WL (HE) mass is known save for a measure-
ment error δWL (δHE).

The notation in the left-hand sides of equations (1) and (2) is
a shortcut to remind that the measurement processes are affected
by errors and uncertainties. The observed masses differ from the
‘true’ values of the WL and HE masses which we would measure

in the ideal case of infinitely accurate and precise observations and
systematics free-analyses. The notation in the right-hand sides of
equations (1) and (2) reminds us that even in the case of ideal mea-
surements without systematic/statistical errors (δ = 0), the ‘true’
WL or HE masses differ from the ‘true’ mass of the cluster due to
intrinsic scatter. In this sense, WL and HE masses are mass proxies.
The relations in either the left- or the right-hand side of equations
(1) and (2) can be modelled with normal distributions.

Bias and scatter in logarithmic variables differ from analogue
quantities in linear variables. We adopt (natural) logarithmic vari-
ables for coherence with the standard derivation of scaling relations.

2.1 Eddington-like bias

Intrinsic scatter in the mass proxy induces systematic effects alike
to the Eddington bias (Eddington 1913; Jeffreys 1938; Eddington
1940), which was first discussed in relation to observational uncer-
tainties. Due to scatter and even in absence of measurement errors,
the average value of an observed proxy differs from the true intrinsic
mean for objects of the same class, see Fig. 1. When a subsample
is selected according to the measured values of the proxy, XProxy,
the distribution of the differences between the proxy and the true
values, XTrue, may be biased.

For quantities drawn from a limited range, border and selection
effects have to be considered. Near a threshold, the symmetry be-
tween objects that are scattered into a range of observed values from
above and objects that are scattered into from below is broken. This
can be accounted for by assuming that the true masses are drawn
from a normal rather than a uniform distribution.

Let us assume that the proxy XTrue is the WL mass. Due to
selection effects, the observed sample may be poor in clusters below
a given threshold. At the tail at low values, more objects with larger
XTrue are scattered into the subsample from the right-hand side, than
from the less populated left-hand side where the XTrue’s are smaller,
see Fig. 1. In a sample with steep bounds in true mass, clusters with
very low values of MWL are then of two main kinds. They are either
intrinsically less massive clusters, i.e. with low values of MTr and
nearly unbiased values of MWL, or clusters with higher values of
MTr that are scattered to lower values of observed MWL. The mean
MTr is then larger than the measured MWL.

Figure 1. Probability distributions of a quantity XTrue and of its scattered proxy XProxy. Left-hand panel: the probability distribution p(XTrue) is a Gaussian
function. p(XProxy) is Gaussian too. It is smoothed due to the intrinsic (normal) scatter. At the tail at low values, for samples selected according to XProxy

(interval delimited by the blue vertical lines), more objects with larger XTrue are scattered into the subsample from the right-hand side than from the left-hand
side. Right-hand panel: conditional probability of XTrue given XProxy, p(XTrue|XProxy) (black line), and of a second proxy X

(2)
Proxy given XProxy, p(X(2)

Proxy|XProxy)

(red line). The scatters in XProxy and X
(2)
Proxy are not correlated. The mean XTrue given XProxy is larger than XProxy, 〈XTrue〉(XProxy) > XProxy. The second proxy

X
(2)
Proxy is unbiased with respect to XTrue.
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Let us consider a second proxy such as the HE mass, whose
intrinsic scatter is uncorrelated to the WL mass. The second proxy
is not biased by selections based on the first proxy. If the clusters are
selected according to their MWL, MHE is still an unbiased scattered
proxy of the true mass, since the scatters in measurements of WL
and X-ray masses are uncorrelated. As a consequence, the mass
ratio MHE/MWL is biased high for clusters with small WL masses.

The opposite happens at large masses, where the more massive
the clusters the rarer. The mass ratio MHE/MWL is then biased low
for clusters with large WL masses.

2.2 Biased slope

The intrinsic scatter in the mass estimate can make the slope of
any scaling relation calibrated with either WL or HE masses shal-
lower if the true masses in the selected sample are not uniformly
distributed. This is a ripple effect of the Eddington-like bias. Due
to measurement errors, the observed variance of the mass proxies
is larger than the variance of the true masses. Slope estimators have
to correct for this by de-biasing the sample variance (Akritas &
Bershady 1996). Here, we are emphasizing the similar effect of the
intrinsic scatter. Analogue treatments, which are often focused on
observational errors rather than intrinsic scatter, have already been
discussed (Andreon & Bergé 2012).

The distribution of the observed mass proxy is smoothed and it
has a larger dispersion than the true masses. Due to the finite range,
very large (small) measured WL or HE masses likely correspond
to smaller (larger) true masses (in arbitrary units), whose observed
WL or HE mass were scattered to the tails. If this is not accounted
for, the derived slope of the scaling relation is biased towards flatter
values.

Let us consider an unbiased (but scattered) mass proxy X, i.e. the
(logarithm of the) WL or the HE mass, of the (logarithm of the) true
mass Z,

X ± δX = Z ± σX|Z, (3)

and a second observable quantity Y we want to calibrate,

Y ± δY = αY |Z + βY |ZZ ± σY |Z. (4)

What we usually do is to compare the observable Y to the mass
proxy,

Y ± δY = αY |X + βY |XX ± σY |X. (5)

Due to the intrinsic scatter in the mass proxy, αY|X and βY|X are
biased estimates of αY|Z and βY|Z.

The full scheme outlined before can be formalized through a
latent variable model (Feigelson & Babu 2012). In this approach,
x and y are the measured manifest surrogate variables for the un-
observed latent true variables X and Y, respectively. We refer to
Feigelson & Babu (2012, chapter 7) for a review of this and other
regression methods for astronomy. Other applications of Bayesian
techniques to astronomical contexts can be found in Kelly (2007)
and Andreon & Hurn (2012), and references therein.

Let us detail our model, which comprises a third latent variable
Z together with X and Y. The observed values of the mass proxies
X and of the observable Y are distributed according to Gaussian
distributions centred on the true corresponding values,

xi ∼ N (Xi, δx,i), (6)

yi ∼ N (Yi, δy,i). (7)

The true values of the mass proxies and of the observables are scat-
tered with respect the true masses. If the scatters are uncorrelated,
the distributions are

Xi ∼ N (Zi, σX|Z), (8)

Yi ∼ N (αY |Z + βY |ZZi, σY |Z). (9)

The distribution of true masses is approximated as a normal function
of mean μZ and standard deviation σ Z,

Zi ∼ N (μZ, σZ). (10)

The Gaussian distribution provides a good approximation for signal-
selected samples. In fact, at low masses the number of clusters is
limited by the selection threshold. At high masses, there are a few
clusters because of the steepness of the mass function. The result-
ing mass distribution is then approximately lognormal for realistic
cases, see CoMaLit-IV. Furthermore, the Gaussian function is flex-
ible enough to accommodate for a large range of fairly unimodal
distributions (Kelly 2007) or even the uniform distribution, which
is approximated in case of very large variance.

We chose non-informative priors. For the variances, i.e. the
squared scatters, we considered inverse Gamma distribution (An-
dreon & Hurn 2010),

1/σ 2
X|Z, 1/σ 2

Y |Z, 1/σ 2
Z ∼ �(ε, ε), (11)

where ε is a small number. In our calculation we took ε = 10−3

(Andreon & Hurn 2010). We adopted uniform priors for the intercept
αY|Z and the mean μZ,

αY |Z, μZ ∼ U(−1/ε, 1/ε). (12)

For the slope βY|Z, we assumed a Student’s t1 distribution with one
degree of freedom, which is equivalent to a uniform prior on the
direction angle arctan βY |Z (Andreon & Hurn 2010),

βY |Z ∼ t1. (13)

The unknowns of the regression are the intercept αY|Z, the slope
βY|Z, and the scatter σ Y|Z of the scaling Y–Z, the scatter σ X|Z of
the scaling X–Z, the values of the independent variable Zi and the
parameters describing their distribution μZ and σ Z, and the values
of the covariate variables Xi and Yi.

We implemented the above Bayesian methodology with
JAGS.1 The scripts used for our analysis can be found at
http://pico.bo.astro.it/~sereno/CoMaLit/JAGS/.

The bias in the estimate of the slope due to the intrinsic scatter in
the mass estimate can be studied through a simple simulation. Let
us consider a sample of 100 true (logarithmic) masses drawn from a
Gaussian distribution with mean μZ = 1.0 and σ Z = 0.35. The mass
proxies are measured with an observational uncertainty δx = 0.05.
The intrinsic scatter is σ X|Z = 0.15. The proxy Y is linearly related to
Z with αY|Z = −0.2 and βY|Z = 1.5. The scatter around the relation
is σ Y|Z = 0.2. The observational uncertainty is fixed to δy = 0.05.
We model scatters and errors with normal distributions.

As a first step, we verified that the regression retrieves unbiased
parameters when we compare observable Y and true mass Z, see
equation (4). In this simple case, we do not need equations (6)
and (8). We found αY|Z = −0.22 ± 0.07, βY|Z = 1.49 ± 0.07 and

1 The package JAGS (Just Another Gibbs sampler) by M. Plummer performs
analysis of Bayesian hierarchical models using Markov Chain Monte Carlo
simulation. It is publicly available at http://mcmc-jags.sourceforge.net/.
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Table 1. Characteristics of the X-ray and WL samples used in the analysis. Ncl is the number of clusters in the sample.

Acronym Ncl WL instrument WL reference X-ray instrument X-ray reference notes

RA12 60 – Rasia et al. (2012) – Rasia et al. (2012) Simulations
CCCP-WL 55 CFHT Hoekstra et al. (2012) – –
CCCP-HE 50 – – Chandra, XMM Mahdavi et al. (2013) –
WTG 51 Subaru, CFHT Applegate et al. (2014) – – –
CLASH-WL 20 Subaru Umetsu et al. (2014) – – –
CLASH-CXO 25 – – Chandra Donahue et al. (2014) –
CLASH-XMM 18 – – XMM Donahue et al. (2014) –
E10 44 – – XMM Ettori et al. (2010) –
L13 35 – – Chandra Landry et al. (2013) –
B12 25 – – Chandra Bonamente et al. (2012) Additional SZ data from SZA

σ Y|Z = 0.17 ± 0.02. Regression results are statistically consistent
with the input parameters.

We then considered the evolution of Y with the mass proxy X, see
equation (5). In this case, we are not interested in the true values Zi

and we can substitute equations (9) and (10) with

Yi ∼ N (αY |X + βY |XXi, σY |X), (14)

and

Xi ∼ N (μX, σX), (15)

respectively. As before, we do not need equations (6) and (8).
We found αY|X = 0.00 ± 0.08, βY|X = 1.25 ± 0.07 and
σ Y|X = 0.23 ± 0.02. The relation is flatter than the intrinsic one
Y–Z and the estimated scatter is larger. On turn, the flatter relation
causes a higher intercept.

To avoid biases, we have to consider that X is a scattered proxy
of the true mass. Equations (3) and (4) have to be fitted simultane-
ously and the full scheme in equations (6)–(14) has to be adopted
with the additional parameter σ X|Z. We found αY|Z = −0.18 ± 0.16,
βY|Z = 1.43 ± 0.15, σ Y|Z = 0.15 ± 0.07 and σ X|Z = 0.11 ± 0.05.
Intrinsic parameters are well recovered even though statistical un-
certainties are larger.

More details on this statistical model are provided in Appendix A,
which also provides some ready-to-use approximate corrections.
Correcting αY|X and βY|X as suggested in equation (A11), we found
αY|Z ∼ −0.22 and βY|Z ∼ 1.48, in agreement with the input param-
eters.

The correction for the biased slope estimated through the widely
used BCES method is suggested in Appendix B.

3 C LUSTER SAMPLES

We looked in the literature for public catalogues compiled in the
last few years with either WL or HE masses. The main properties
of the samples, which we are going to introduce in the following,
are summarized in Table 1.

When quoted mass values were provided with asymmetric errors,
we estimated the mean value and the standard deviation as suggested
in D’Agostini (2004). All the considered masses refer to the fiducial
cosmological model. Conversions were performed as described in
Appendix C. A full account of references of WL analyses and
standardization methods can be found in CoMaLit-III.

3.1 Numerical simulations

Rasia et al. (2012, hereafter RA12) compared the WL and
X-ray properties of a sample of 20 numerically simulated mas-
sive clusters at redshift z = 0.25. The haloes were the most massive

(Mvir > 5 × 1014 M� h−1) from a set of radiative simulations in a
cosmological volume of 1(Gpc h−1)3, evolved in the framework of
a WMAP-7 normalized cosmology (Fabjan et al. 2011).

Each cluster was later re-simulated at higher resolution and
with more complex gas physics. The simulations included: metal-
dependent radiative cooling and cooling/heating from a spatially
uniform and evolving UV background; a star formation model
where a hot ionized phase coexists in pressure equilibrium with
a cold phase, which is the reservoir for star formation; a description
of metal enrichment from different stellar populations; the effect of
supernovae feedback through galactic winds.

The clusters were finally processed to generate optical and X-ray
mock observations along three orthogonal projections. The final
sample consists of 60 cluster realizations. WL and HE masses are
estimated within rTr

500, the overdensity radius corresponding to the
true mass.

3.2 Canadian Cluster Comparison Project

The Canadian Cluster Comparison Project (CCCP; Mahdavi et al.
2013) assembled a sample of 50 rich clusters of galaxies in the
redshift range 0.15 < z < 0.55. All of the clusters were observable
from the Canada-France-Hawaii Telescope (CFHT), which restricts
the sample to systems at −15 deg < declination < 65 deg. Most
of them were selected to have an ASCA (Advanced Satellite for
Cosmology and Astrophysics) temperature kBTX > 3 keV. X-ray
properties were measured either with Chandra or XMM–Newton.
WL studies for five additional clusters without X-ray analyses can
be found in Hoekstra et al. (2012).

Lensing masses were determined with aperture statistics (Hoek-
stra et al. 2012). This approach relies on shear measurements at large
radii and reduces the effects of contamination by cluster members.
The 3D masses were computed from the model-independent 2D
aperture masses with a de-projection method based on an NFW
density profile.

Mahdavi et al. (2013) performed the X-ray analysis of the sample
using both Chandra and XMM observations. They found that due
to temperature discrepancies, the XMM cluster masses were sys-
tematically ∼15 per cent smaller than Chandra masses. In order to
combine the data, Mahdavi et al. (2013) down-weighted the high-
energy effective area of Chandra. X-ray quantities were estimated
either within rWL

500 , the radius evaluated from the WL mass mea-
surement, or rHE

500, as evaluated from the mass estimate assuming
HE.2

2 Values of MWL
500 and MHE

500 for the CCCP sample are publicly available at
http://sfstar.sfsu.edu/cccp.
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Mahdavi et al. (2013) identified a subsample of 20 cool-core (CC)
systems with core entropy at 20 kpc smaller than 70 keVcm2 and
eight systems with low offsets between the brightest cluster galaxy
(BCG) and the X-ray surface brightness peak, DBCG < 10kpc.

3.3 Cluster Lensing And Supernova survey with Hubble

The CLASH programme (Postman et al. 2012) has been mapping
the matter distribution of 25 rich clusters drawn largely from the
Abell and MAssive Cluster Survey (MACS; Ebeling et al. 2010)
cluster catalogues. Umetsu et al. (2014) performed a joint shear-and-
magnification WL analysis of a subsample of 16 X-ray regular and
four high-magnification galaxy clusters in the redshift range 0.19 �
z � 0.69. A complementary analysis exploiting strong lensing data
was presented in Merten et al. (2014).

To make the comparison with the other data samples easier, we
will use the mass estimates in Umetsu et al. (2014), whose method-
ology exploits only the WL regime, whereas results in Merten et al.
(2014) strongly rely on information from the inner regions. Mass
estimates in Umetsu et al. (2014) were based on joint WL shear
plus magnification measurements based on ground-based wide-
field Subaru data. On the other hand, the analysis in Merten et al.
(2014) combined the Subaru shear profile with WL constraints from
the Hubble Space Telescope (HST) in the intermediate regime and
strong lensing constraints from HST.

All of the CLASH clusters have been observed with the Chandra
satellite (Postman et al. 2012). A subsample of 18 clusters was
targeted by XMM too. The X-ray analysis was presented in Donahue
et al. (2014), which computed HE masses and gas fractions.

Based on Chandra data, Donahue et al. (2014) identified 10
clusters (nine of them with WL mass) with a strong CC, i.e. with
an excess core entropy smaller than 30 keVcm2.

3.4 Weighing the Giants

The Weighing the Giants (WTG; von der Linden et al. 2014) pro-
gramme targeted 51 X-ray luminous clusters from the MACS and
the Brightest Cluster Survey (BCS; Ebeling et al. 2000). The clus-
ters span a large range in redshift (0.15 � z � 0.7) and dynamical
state. Seven clusters are classified as relaxed (von der Linden et al.
2014).

The values of the scale radius and the concentration are provided
in Applegate et al. (2014, table 4). We derived MWL

500 and rWL
500 using

the NFW density profile adopted in the WTG analysis.

3.5 X-ray samples

Ettori et al. (2010, E10) studied a sample of 44 X-ray luminous
galaxy clusters observed with XMM–Newton in the redshift range
0.1 � z � 0.3. They applied two different techniques (the back-
ward ‘method 1’, which we take as the reference method, and the
forward ‘method 2’) to recover the gas and the dark mass properties,
described with an NFW profile. Clusters were classified according to
their core properties. E10 identified a subsample of 16 low-entropy-
core systems, which represent the prototype of relaxed clusters with
a well-defined CC at low entropy.

Landry et al. (2013, L13) presented Chandra X-ray measure-
ments of the hydrostatic mass and of the gas mass fraction out to
r500 for the complete sample of the 35 most luminous clusters from
the BCS and its extension at redshift 0.15 � z � 0.30. The clus-
ters span a large range of dynamical states. The data were analysed
using two independent pipelines and two different models for the

gas density and temperature, the ‘Polytropic’ (which we take as our
reference case) or the ‘Vikhlinin’ model.

Bonamente et al. (2012, B12) derived the hydrostatic masses
and the pressure profile of a sample of 25 massive relaxed galaxy
clusters with a simultaneous analysis of SZ data from the Sunyaev-
Zel’dovich array (SZA) and archival Chandra observations.

4 M A S S C O M PA R I S O N

Even though in principle WL and X-ray masses could be unambigu-
ously determined from a given set of observations, calibration issues
and hidden systematics make these measurements very difficult.

In this section, we compare either WL or HE masses from differ-
ent catalogues. It is nowadays customary to quote masses within a
given overdensity and to derive scaling relations in terms of them.
These masses can be related to the virial mass and most cluster
properties are expected to be self-similar if rescaled by their value
at r�. To limit extrapolation of published results, we then consid-
ered the masses within r500, rather than extrapolating the results up
to a fixed length.

On the other hand, the relationship between M� and r�

exacerbates problems connected to aperture differences, which
complicate the comparison between different samples. Since the
total mass within a fixed radius scales nearly linearly with the ra-
dius, differences in mass within a given overdensity are inflated by
∼100/3 per cent with respect to differences within a fixed physical
radius.

Differences among properties measured within a fixed length are
not inflated but they refer to physically different regions in dif-
ferently sized clusters. A promising alternative is to express the
results in terms of the circular velocity v2

Circ = GM(r)2/r . In fact,
the circular velocity is almost independent of cosmology and it
is nearly unaffected by aperture problems (Donahue et al. 2014).
Within a given overdensity radius, the velocity scales with mass
as v� ∝ M

2/3
� . Quoted results for central estimate and scatter of

�ln M500, as well as fractional changes, can be translated in ana-
logue results for �ln v500 by simply multiplying by the factor 2/3.

To compare different samples, we considered the (natural) loga-
rithm of mass ratios (Rozo et al. 2014a). The central estimate and
the scatter were computed as bi-weight estimators of the distribu-
tion. Uncertainties were estimated with bootstrap resampling with
replacement. The main advantage in using logarithms is that their
difference is (anti)symmetric. This solves the problem affecting
those estimators of ratio which are not symmetric with respect to
the exchange of numerator and denominator.

Quoted errors in compiled catalogues may account for different
sources of statistical and systematic uncertainties. Furthermore, it
can be argued that the published uncertainties are unable to account
for the actual variance seen in sample pairs (Rozo et al. 2014a). We
then conservatively performed unweighted analyses.

4.1 WL masses

In principle, WL masses could be determined to an accuracy of
�8 per cent (Umetsu et al. 2014; von der Linden et al. 2014), but
differences between masses reported by distinct groups are off by
∼20–50 per cent (Applegate et al. 2014; Umetsu et al. 2014). On
the other hand, comparisons show that mass measurements correlate
quite tightly (Applegate et al. 2014).

The CCCP and the WTG samples share 17 clusters, see Table 2.
M500 from CCCP are smaller by ∼30 per cent with a scatter of
∼20 per cent. This difference is way larger than the claimed mass
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Table 2. Comparison of WL masses from indepen-
dent analyses. We quote the mean ln differences in
mass for sample pairs. Entries are in the format:
(Ncl), μ( ± δμ) ± σ ( ± δσ ), where Ncl is the num-
ber of clusters in common between the samples, μ is
the central estimate of the difference in natural log-
arithm ln(M row

500 /Mcol
500), with associated uncertainty

δμ; σ is the dispersion with associated uncertainty
δσ . M row

500 (Mcol
500) refers to the sample indicated in

the corresponding row (column). Quoted values are
the bi-weight estimators.

CLASH-WL WTG

(6) (17)
CCCP-WL −0.45( ± 0.12) −0.31( ± 0.05)

±0.25( ± 0.10) ±0.21( ± 0.09)
– (17)

CLASH-WL – 0.01( ± 0.10)
– ±0.37( ± 0.06)

Figure 2. Ratio of WL masses estimated by CCCP and WTG as a
function of redshift.

calibration uncertainty and highlights the difficulties connected to
unbiased calibrations in WL measurements. We found no trend with
redshift, see Fig. 2.

The CCCP masses are notably underestimated with respect to the
CLASH clusters too. On the other hand, the agreement between the
WTG and the CLASH results is substantial, even though the scatter
in the mass ratios is quite large. Usually the two mass estimates of a
given cluster from WTG and CLASH coincide within �30 per cent
of the combined error.

The scatters in the mass ratio are of the order of 20–40 per cent
and are consistent with the quoted statistical uncertainties on the
WL mass estimates, which are of the order of 20 per cent or larger.
In fact, if statistical errors are properly estimated, the combined
scatter in the mass ratios should be approximately given by the
quadratic sum of the typical errors of the two considered samples.

4.2 X-ray masses

X-ray properties of galaxy clusters reported by competing groups
may reach discrepancies of 50 per cent (Rozo et al. 2014a). Here,
we consider the off-set and the scatter in the estimate of HE masses.
Discrepancies may stem from either differences in the considered
data sets (to the larger extent if taken with different instruments),

Table 3. Comparison of HE masses from independent meth-
ods but from the same data sets. E10-M1 and E10-M2 denote
the two methods used in Ettori et al. (2010). L13-Vick and
L13-Poly denote the two methods used in Landry et al. (2013).
Ncl (col. 3) is the number of clusters in common between the
samples listed in cols. 1 and 2. M

(1)
500/M

/2)
500 (col. 4) is the cen-

tral estimate of the ratio between masses in the two samples; σ
is the dispersion. Quoted values are the bi-weight estimators.

Sample 1 Sample 2 Ncl M
(1)
500/M

(2)
500 σ

E10-M2 E10-M1 44 0.98 ± 0.05 0.25 ± 0.03
L13-Vick L13-Poly 35 0.99 ± 0.04 0.23 ± 0.03

or from not consistent data reduction pipelines, or from different
techniques to recover the mass.

This last issue can be quantified by comparing mass estimates
obtained from the same data sets but with different methodologies.
This is the case of the analyses in either E10 or L13, for which we
could compare the scatter in the mass estimate due to the different
modelling, see Table 3.

The typical statistical error in an HE mass estimate is of the order
of ∼15 per cent. The observed scatter in the mass ratios is then
consistent with the propagation of this error. This comparison sug-
gests that mass estimates are not biased due to different techniques,
whose associated variance is negligible with respect to the statistical
uncertainty.

Larger variations are mainly related to different data sets, see
Table 4. Discrepancies of order of �30 per cent may be in place. This
is the case for results based on Chandra (CLASH-CXO, B12, L13)
versus XMM analyses (E10, CLASH-XMM), whose temperature
estimates may disagree at large radii (Donahue et al. 2014).

Each method/analysis may systematically either under- or over-
estimate the cluster mass. X-ray masses in the CLASH sample
based on Chandra (XMM) data are systematically larger (smaller)
than other estimates. On the other hand, masses from B12 and L13
are lower than other samples.

A significant role can be played by additional data sets exploited
in the analysis. The inclusion of SZ data, which are more sensitive
to the outer regions, might lower the mass values in B12.

The large differences in estimated masses and the large scatters
suggest that quoted formal statistical uncertainties in HE masses,
usually of the order of ∼10–15 per cent, might be underestimated.

5 R EGRESSI ON RESULTS

We measured biases and intrinsic scatters of WL and HE masses
through the statistical model detailed in Section 2. To simplify the
analysis, we assumed that the lensing and the hydrostatic masses
scale linearly with the true mass, βWL = 1 and βHE = 1. In relation to
the notation in Section 2.2, the logarithm of the WL mass (ln MWL),
of the HE mass (ln MHE), and of the true mass (ln MTr) can be
identified with X, Y and Z, respectively.

The true masses are known only in simulations. For observed
samples, we can estimate only the relative bias between WL and
HE masses and we fixed αWL = 0. The effective bias MHE/MTr

(MWL/MTr) can be defined as exp [αHE] (exp [αWL]). The relative
bias MHE/MWL can be defined as exp (αHE − αWL). Bias and scatter
are largely uncorrelated. We tested that the estimates of scatter and
relative bias do not change whether we consider αHE = 0 rather
than αWL = 0.

The intrinsic distribution of the independent variable, ln MTr, was
approximated with a Gaussian function, see Section 2.2. We tested
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Table 4. Comparison of HE masses from independent analyses. For the CCCP-HE sample, we considered
masses within rHE

500. We quote the mean ln differences in mass for sample pairs. Entries are in the format: (Ncl),
μ( ± δμ) ± σ ( ± δσ ), where Ncl is the number of clusters in common between the samples, μ is the central
estimate of the difference in natural logarithm ln(M row

500 /Mcol
500), with associated uncertainty δμ; σ is the dispersion

with associated uncertainty δσ . M row
500 (Mcol

500) refers to the sample indicated in the corresponding row (column).
Quoted values are the bi-weight estimators.

CCCP-HE CLASH-XMM CLASH-CXO L13 B12

(11) (3) (3) (11) (6)
E10 0.22( ± 0.08) ∼0.17 ∼−0.15 0.35( ± 0.14) 0.25( ± 0.10)

±0.28( ± 0.11) ±(∼)0.06 ±(∼)0.28 ±0.30( ± 0.09) ±0.19( ± 0.08)

(5) (6) (18) (5)
CCCP-HE – 0.03( ± 0.21) −0.38( ± 0.14) 0.12( ± 0.07) 0.24( ± 0.22)

±0.29( ± 0.16) ±0.34( ± 0.21) ±0.33( ± 0.14) ±0.35( ± 0.17)

(18) (2) (10)
CLASH-XMM – – −0.38( ± 0.09) ∼−0.05 0.14( ± 0.15)

±0.35( ± 0.10) ±(∼)0.18 ±0.46( ± 0.30)

(4) (12)
CLASH-CXO – – – ∼0.31 0.45( ± 0.14)

±(∼)0.01 ±0.37( ± 0.13)

(4)
L13 – – – – ∼0.03

±(∼)0.06

Table 5. Intrinsic scatter and bias of mass proxies
MWL

500 and MHE
500 for the RA12 clusters.

MProxy M
Proxy
500 /MTr

500 σ

MWL
500 0.95 ± 0.03 0.13 ± 0.03

MHE
500 0.71 ± 0.01 0.11 ± 0.02

that results based on more complex distributions, such as mixtures
of Gaussian functions (CoMaLit-II), were indistinguishable from
the simplest case.

5.1 Simulated sample

As a first step, we analysed the simulated sample from RA12. In
the realm of simulations, we know the true masses of the clusters.
We can exploit this information to compute the bias and the in-
trinsic scatter of each mass proxy separately by direct comparison
with the true mass. WL and HE masses can be compared to true
masses autonomously. Regression results are in agreement with the
original analysis in RA12 and are summarized in Table 5. Note that
differently from RA12, we estimated the intrinsic rather than the
total scatter and we focused on logarithmic variables.

The level of bias for each proxy is approximately constant with
respect to the true mass, see Fig. 3.

The intrinsic scatter plays an important role when we analyse the
bias as a function of the mass proxy, see Fig. 4. The decreasing
trend of the ratio MHE

500/M
WL
500 as a function of MWL

500 is an effect of
the scatter of MWL

500 around the true mass, see Section 2.1.
Due to the combined action of selection effect and intrinsic scat-

ters, at small (large) values of WL masses, MWL
500 is biased low (high)

with respect to the true mass whereas MHE
500 is unbiased. As a conse-

quence, the ratio MHE
500/M

WL
500 decreases with MWL

500 . At intermediate
values, clusters can be scattered into a given range in MWL

500 from
either above or below, and the ratio MHE

500/M
WL
500 is not biased. The

larger the scatter, the steeper the trend in the mass ratio as a function

Figure 3. Masses in the RA12 sample. Top panel: WL mass versus HE
mass. Clusters are grouped in four bins in true mass (black points). The
red line is the bisector MHE

500 = MWL
500 . Lower panel: bias of the proxy as a

function of the true mass. Clusters are grouped in four bins in true mass.
Black (blue) points correspond to the bias of the WL (HE) mass. The solid
error bars denote the 1σ uncertainties for the central estimate. The dashed
error bars denote the dispersion. All masses are computed within rTr

500.
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Figure 4. Comparison of WL and HE masses for the RA12 sample. Masses are measured within rTr
500, the overdensity radius related to the true mass. In the

left- (right-)hand panels, clusters are grouped in four bins according to their measured WL (HE) mass. Green points mark the predictions based on the analytical
model discussed in the paper. Top-left panel: MHE

500 as a function of MWL
500 . Black (green) points mark clusters (analytical predictions) binned in MWL

500 . Errors
bars for the binned points are computed as the dispersion around the central value. Bottom-left panel: logarithm of MHE

500/M
WL
500 as a function of MWL

500 . The
solid error bars denote the 1σ uncertainties for the central estimate. The dashed error bars denote the dispersion. Top-right panel: MWL

500 as a function of MHE
500.

Black points marks clusters binned in MHE
500. Bottom-right panel: logarithm of MHE

500/M
WL
500 as a function of MHE

500.

of the mass proxy. The scatter also flattens the MHE
500–MWL

500 relation
towards larger values of MWL

500 . For similar reasons and being MHE
500

at the denominator, the ratio MWL
500 /MHE

500 increases as a function of
MHE

500.
The statistical model summarized in equations (1) and (2) and de-

tailed in Section 2.2 accounts for these effects and can be validated
by comparing its predictions to the RA12 sample. We generated
a sample of simulated clusters whose true masses are drawn from
a Gaussian distribution. The corresponding measured WL and HE
masses were simulated assuming intrinsic scatters and observa-
tional uncertainties as measured in the RA12 sample. This model
successfully reproduces the trends in the observed mass ratio, see
Fig. 4.

As a second step, we tested the regression algorithm with the
mock observations of the simulated RA12 sample, see Table 6.
Differently from the first step, we used the manifest estimated values
of the mass proxies but we did not exploit the information on the
latent true mass. We could then not calibrate the bias in either
MWL

500 or MWL
500 in an absolute way, but we had to normalize one

bias relatively to the other one. We assumed αWL = 0, i.e. we
measured MHE

500/M
Tr
500 in units of MWL

500 /MTr
500. The level of relative

bias and the intrinsic scatters are recovered within the statistical
uncertainties.

5.2 Observed samples

We considered a number of samples of clusters with observed WL
and HE masses: (i) the CCCP sample; (ii) the CLASH sample with
X-ray estimates based on either Chandra or XMM data; (iii) the
WTG clusters with HE masses from either B12 (WTG-B12) or
L13 (WTG-L13). For the CCCP sample, we could consider either
masses within the same radius, i.e. rWL

500 , or alternatively WL masses
within rWL

500 and HE masses within rHE
500.

Results for the real clusters are summarized in Table 6 and in
Figs 5–8. Thereafter in the text, when necessary we rescale the
values of bias and scatters reported in Table 6 to the corresponding
values within the same length by simply multiplying by a factor 2/3.

The parameter determination is not degenerate, see Fig. 5. In fact,
when comparing HE to WL masses, the relative intrinsic scatters
acts in orthogonal directions.

HE masses are biased low with respect to WL masses by
�15 per cent if we rely on the CCCP sample or by � 25–35 per cent
if we consider the WTG estimates. The results for the CLASH sam-
ple depend on the X-ray analysis. The bias is ∼10 per cent for
Chandra data and ∼30 per cent for XMM data.

The difference in the level of the bias among the various samples
reflects the different absolute mass calibrations in the WL and the
X-ray samples, see Section 4. The bias ascertained with either the
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Table 6. Biases and intrinsic scatters of the WL and HE masses. Col. 1: sample; col. 2: number of clusters in the
sample, Ncl; cols. 3, 4: radius within which the WL lensing and the HE mass were computed, respectively; col. 5:
effective ratio between the true mass and the WL mass; the WL mass is assumed to be an unbiased proxy; col. 6:
intrinsic scatter of ln MWL

500 /MTr
500; col. 7: effective ratio MHE

500/M
WL
500 ; col. 8: intrinsic scatter (as in col. 6 but for

HE masses). Quoted values are bi-weight estimators of the posterior probability distribution.

Sample Ncl rWL rHE MWL
500 /MTr

500 σWL MHE
500/M

WL
500 σHE

RA12 60 rTr
500 rTr

500 [1] 0.14 ± 0.04 0.75 ± 0.03 0.13 ± 0.04

CCCP 50 rWL
500 rWL

500 [1] 0.14 ± 0.06 0.85 ± 0.05 0.24 ± 0.07

CCCP-CC 16 rWL
500 rWL

500 [1] 0.18 ± 0.10 0.93 ± 0.11 0.24 ± 0.12

CCCP-Low Offset 20 rWL
500 rWL

500 [1] 0.18 ± 0.10 0.82 ± 0.09 0.30 ± 0.11

CCCP 50 rWL
500 rHE

500 [1] 0.20 ± 0.09 0.81 ± 0.07 0.45 ± 0.07

CLASH-CXO 20 rWL
500 rHE

500 [1] 0.17 ± 0.09 0.78 ± 0.09 0.34 ± 0.12

CLASH-CXO-CC 9 rWL
500 rHE

500 [1] 0.22 ± 0.14 0.77 ± 0.14 0.31 ± 0.17

CLASH-CXO-Low Offset 8 rWL
500 rHE

500 [1] 0.31 ± 0.17 0.70 ± 0.15 0.34 ± 0.17

CLASH-XMM 16 rWL
500 rHE

500 [1] 0.17 ± 0.10 0.56 ± 0.08 0.45 ± 0.14

WTG-L13 14 rWL
500 rHE

500 [1] 0.32 ± 0.14 0.64 ± 0.09 0.16 ± 0.08

WTG-B12 14 rWL
500 rHE

500 [1] 0.19 ± 0.12 0.47 ± 0.07 0.34 ± 0.15
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Figure 5. Probability distributions of the scatter σWL of WL masses, of the scatter σHE of HE masses, and of the logarithm of the effective bias, αHE =
ln MHE

500/M
WL
500 , for the CCCP sample. HE masses were measured within rWL

500 , the overdensity radius related to the WL mass. The thick (thin) lines in the
two-dimensional plots include the 1(2)σ confidence region in two dimensions, here defined as the region within which the value of the probability is larger
than exp ( − 2.3/2) (exp ( − 6.17/2)) of the maximum.
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Figure 6. Same as Fig. 4 but for the clusters in the CCCP sample. Masses are measured within rWL
500 , the overdensity radius related to the WL mass. Blue points

plot the results for clusters in the RA12 sample grouped in the same mass bins as the CCCP clusters. Masses for the RA12 sample are computed within rTr
500.

WTG or the CLASH-XMM sample is in agreement with results
from numerical simulations whereas results based on the CCCP
and CLASH-CXO slightly underestimate it.

Apart from the overall normalization, results from different data
sets are qualitatively and quantitatively consistent. The intrinsic
scatter on WL masses is of order of ∼10–15 per cent, in very
good agreement with numerical simulations. On the other hand,
the estimated scatter on HE masses is ∼25 per cent, a factor of
2 larger than theoretical predictions. The large value of σ HE is
evident in the plots of MWL

500 /MHE
500 versus the HE mass. The ob-

served ratio increases much more steeply than the simulated ratio in
RA12.

For the CCCP and the CLASH samples, we could restrict the
analysis to either CC clusters or systems with low offsets between
the BCG and the X-ray surface brightness peak. The HE mass of
CC clusters in the CCCP sample is less biased. Due to the lim-
ited number of clusters, we could not confirm this result for the
CLASH sample. There is no evident trend for the low off-sets
clusters.

We verified a posteriori how well the statistical model repro-
duce the observed trends of the mass ratio, see Figs 6–8. We
generated a number of ‘true’ masses from the normal distribu-
tions derived in the regression analyses and the corresponding
‘true’ latent WL and HE masses, scattered according to the mea-
sured σ WL and σ HE. The observed manifest WL and HE masses
were finally generated considering the measured statistical uncer-
tainties. The masses were then binned as the real clusters. The

observed trends in bias and scatter are well recovered. This test
further validates a posteriori the assumptions of the Bayesian
modelling, in particular that scatters are approximately lognor-
mal as well as that the mass distribution can be described as a
Gaussian.

The observed trends were also compared to the numerical sim-
ulations, see Figs 6–8. The extent of this comparison is limited.
First, the simulated clusters are not representative of the observed
samples, even though both observed and simulated clusters should
sample the tail at large values of the halo mass function. The dis-
crepancy is further mitigated since we compared clusters in the same
mass bins. Nevertheless, the dynamical and morphological proper-
ties of the simulated clusters may differ from the observed ones.
Secondly, WL and HE masses of the simulated clusters were mea-
sured within the true r500 differently from the real clusters, whose
overdensity radii were estimated based on the WL/HE mass. This
may limit the scatter of the simulated clusters compared to the real
ones.

Due to these differences only qualitative considerations can be
made. Nevertheless some trends seem to further validate the picture
detailed before. In particular, the observed mass bias MHE/MWL

scales with the WL mass as in simulations, which further supports
that the scatter of measured WL masses agree with theoretical pre-
dictions. On the other hand, the observed mass bias as a function
of the HE mass is significantly steeper than that in the simulated
sample, which points to a larger than theoretically predicted scatter
in HE masses.
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Figure 7. Same as Fig. 6 but for the clusters in the CLASH sample with Chandra-based X-ray analyses. WL (HE) masses are measured within rWL
500 (rHE

500).

6 D ISCUSSION

The main sources of bias and scatter in WL mass measurements are
due to the presence of substructures and triaxiality (RA12; Giocoli
et al. 2014). These effects are dominated by the dark matter compo-
nent and are more easily reproduced in numerical simulations than
the more complex processes involving gas physics. Reassuringly,
the level of scatter we ascertained from observations is in very good
agreement with the theoretical prediction of σWL � 10 per cent.

The observed relative bias between HE and WL masses is con-
sistent within the statistical errors with predictions from simula-
tions (RA12). Based on a suite of different numerical simulations
(Battaglia et al. 2012; Kay et al. 2012), Planck Collaboration XX
(2014) estimated b = 1 − M500

HE /M500
Tr = 0.2+0.1

−0.2. However, the in-
herent uncertainty in the HE/WL calibrations prevents firmer con-
clusions. For some samples, the bias is as large as ∼50 per cent.

The measured intrinsic scatter in HE masses is larger than the
theoretical prediction. The disagreement may hinge on several plau-
sible causes. The formal statistical uncertainty in X-ray mass es-
timates is usually of the order of ∼10–15 per cent. However, the
observed discrepancies among mass estimates from independent
analyses are as large as 45 per cent (∼30 per cent within the same
physical radius). The underestimation of the formal error on the HE
masses could determine an overestimation of the intrinsic scatter.

6.1 Gas physics

Scatter in simulations may be underestimated due to their cur-
rent limits (Rasia et al. 2014). Estimates of bias and scatter from

numerical simulations are still uncertain, showing dependences on
the physical treatment of the gas, and, possibly, on the hydrody-
namical scheme adopted. Each simulation suite has circumstantial
prescriptions for gas physics. Different treatments of radiative cool-
ing and cooling/heating from the UV background play an important
role. Thermal conduction in hot clusters may be effective in re-
moving cold blobs and in making the thermal structure of the ICM
more homogeneous. This leads to an increase of the spectroscopic
temperature and therefore of the hydrostatic mass. Feedback from
active galactic nuclei and supernovae can significantly reduce the
temperature inhomogeneity.

The impact of each ingredient is significant and each process may
be more or less effective in different clusters. Theoretical predictions
based on specific descriptions may then significantly underestimate
the intrinsic scatter in the HE mass.

6.2 Simulation scheme

Some disagreement among theoretical predictions is also caused by
the adopted simulation scheme. Smoothed particle hydrodynamics
(SPH) simulations produce larger temperature variations connected
to the persistence of both substructures and their stripped cold gas
than adaptive-mesh-refinement (AMR) codes (Sijacki, Springel &
Haehnelt 2011; Rasia et al. 2014), which lead to a more efficient
mixing of gas entropy. Low-entropy gas residing in high-density
clumps is more efficiently mixed to the high-entropy ICM than in
SPH simulations. The simulated temperature distribution is then
more homogenous and the relative bias introduced in the estimate
of X-ray temperature is smaller (Vazza et al. 2011). Around r500, the
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Figure 8. Same as Fig. 6 but for the clusters in the CLASH sample with XMM-based X-ray analyses. WL (HE) masses are measured within rWL
500 (rHE

500).

temperature inhomogeneities of the SPH simulations can generate
twice the typical HE mass bias of the AMR sample (Rasia et al.
2014).

These variations between simulation schemes make predictions
less certain. A better understanding of the physical processes
responsible for the complex thermal structure in ICM requires
improved resolution and high-sensitivity observations, first of all
for higher temperature systems and larger cluster-centric radii (Ra-
sia et al. 2014).

6.3 Mass dependence

A further source of disagreement might be ascribed to any depen-
dence of the bias on cluster mass. Neglecting such dependence can
inflate the estimate of the scatter. The massive objects are expected
to be the most disturbed ones, and they should have a complex tem-
perature structure (RA12). This would imply a bias larger for the
more massive clusters. We tested this hypothesis by repeating the
analysis of Section 5 without fixing the slope βHE to unity.

Due to the addition of a new free parameter to be determined
with the regression, we could obtain well-constrained results only
for the two richer samples. For the CCCP sample (all masses within
rWL

500 ), we obtained σ WL = 0.17 ± 0.07, βHE = 1.19 ± 0.24 and
σ HE = 0.20 ± 0.09. For the CLASH-CXO sample, we obtained
σ WL = 0.21 ± 0.10, βHE = 1.29 ± 0.63 and σ HE = 0.30 ± 0.16.

For both samples, with respect to the results obtained fixing
βHE = 1, the measured σ WL is slightly larger whereas σ HE is smaller.
However, σ HE is still larger than both σ WL and the scatter predicted
by numerical simulations.

The estimated βHE is slightly larger than unity, but still consistent
within the statistical uncertainty. This scenario would then imply
a still larger than expected scatter in HE masses at the expense
of a not so plausible bias decreasing with mass (βHE > 1). This
alternative scenario is then more complex but does not solve the
main incongruences it was supposed to address. Since the estimated
βHE is consistent with unity within the errors, we then disfavour this
scenario.

7 C O N C L U S I O N S

In this paper, the first in a series which aims to critically revise
the status quo in measuring cluster masses and calibrating scaling
relations, we studied the biases and the intrinsic scatters of WL
and hydrostatic masses. Either WL or HE masses determined from
different groups may differ by ∼40 per cent, which hinders the
absolute calibration of any scaling relation and the assessment of
the relative bias between WL and HE masses.

We found that the intrinsic scatter of WL masses is of the order of
∼10–15 per cent, in line with theoretical predictions. The intrinsic
scatter of HE masses turned out to be larger, ∼20–30 per cent,
at odds with results from numerical simulations. The discrepancies
may hinge on underestimated statistical uncertainties in HE masses.
A better understanding of the physical processes responsible for the
complex thermal structure in the ICM and improved simulation
schemes are also required to improve the theoretical predictions.

Most of the sources of scatter in the estimates of WL and HE
masses are of well-known origin. The assumption of spherical sym-
metry causes an over- or underestimate of the WL mass whether
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the cluster is elongated in the plane of the sky or towards the ob-
server, respectively. Departures from HE or the difficult assessment
of non-thermal contribution to the pressure limit the accuracy of
HE masses.

Oversimplified modelling inflates the intrinsic scatter. The joint
analysis of multiwavelength observations, from the X-ray to the
optical band to the SZ effect in the radio, can provide unbiased esti-
mates of the cluster mass (De Filippis et al. 2005; Sereno et al. 2006,
2013; Morandi et al. 2012; Sereno, Ettori & Baldi 2012; Limousin
et al. 2013). In fact, the combined information from the different
data sets enables us to recover the triaxial structure and the orienta-
tion of the cluster and to quantify the non-thermal contributions to
the pressure.

An alternative approach is focusing on well-behaved clusters,
where bias and scatter are intrinsically small. Biases are lower in
morphologically regular and isolated clusters (RA12). However,
there are a few of them and they are rare to find. Even apparently
spherical clusters with a regular morphology might significantly
deviate from hydrostatic thermal equilibrium (Sereno et al. 2013).
Furthermore, a projected circular shape is well suited to either spher-
ical systems or strongly prolate haloes elongated along the line of
sight towards the observer.

Scatter and bias in WL and X-ray estimates play a fundamental
role in the calibration of mass proxies. Ongoing programmes are
making significant efforts to understand the sources of systematics
and to solve the related calibration issues (Donahue et al. 2014; Rozo
et al. 2014b). We quantified the size of the intrinsic scatter in WL and
HE masses and discussed the effect of scatter in the determination
of scaling relations. The scatter makes relation systematically flatter
and more scattered. Proper statistical treatments could and should
account for this.
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APPENDIX A : BIAS

The intrinsic scatter biases the average of the intrinsic variables with
respect to the observable proxy. Here, we focus on intrinsic scatter
and we assume that observational uncertainties are negligible. Let
us consider a proxy X of the independent variable Z,

X = αX|Z + βX|ZZ ± σX|Z, (A1)

where αX|Z is the bias, βX|Z accounts for rescaling, and σ X|Z is the
intrinsic scatter of the linear relation. We assume that the scatter is
Gaussian,

p(X|Z) ∝ exp

[
−1

2

(
X − (αX|Z + βX|ZZ)

σX|Z

)2
]

. (A2)

The intrinsic scatter can bias average values if the true variables
are not uniformly distributed. The average intrinsic value of an
ensemble of objects with the same measured X can differ from X.
The average is given by

〈Z〉(X) ∝
∫

Z p(X,Z)dZ. (A3)

The analytical treatment of the bias is particularly simple when the
distribution of the intrinsic variable is Gaussian,

p(Z) ∝ exp

[
−1

2

(
Z − μZ

σZ

)2
]

. (A4)

A simple application of the Bayes’ theorem shows that p(X) is
normally distributed too, with the same mean μZ and standard de-
viation

σX =
√

σ 2
Z + σ 2

X|Z. (A5)

In this case, the integral in equation (A3) can be solved in terms of
simple functions,

〈Z〉(X) = bσ X + �bσ , (A6)

where bσ is the multiplicative bias due to the intrinsic scatter,

bσ = 1

βX|Z

1

1 + σ 2
X|Z/(βX|ZσZ)2

, (A7)

and �bσ is an additive bias,

�bσ =
(

μZ

σ 2
X|Z

β2
X|Zσ 2

Z

− αX|Z
βX|Z

)
1

1 + σ 2
X|Z/(βX|ZσZ)2

. (A8)

The contribution to the bias due to intrinsic scatter is negligible
either if the intrinsic scatter is very small (σ X|Z → 0) or if the
intrinsic variable is uniformly distributed (σ Z → ∞).

If we have to calibrate a linear relation,

Y = αY |Z + βY |ZZ, (A9)

but we have only measurements of the proxy X instead of Z, we
cannot just study the relation

Y = αY |X + βY |XX, (A10)

and take βY|X as un unbiased estimator of βY|Z. In the Gaussian
case,

αY |X = αY |Z + �bσ βY |Z, (A11)

βY |X = bσ βY |Z. (A12)

The intrinsic scatter apparently flattens the slope of the relation. The
most convenient statistical approach requires a proper treatment
of the selection effects and of the intrinsic scatter in the linear
regression. De-biasing the data as suggested in equation (A6) would
correct each measured scattered proxy by the expected mean bias
instead of the actual one, which is random for objects with the same
measured X. Nevertheless this mean correction may provide a useful
tool to quickly evaluate the effect of the intrinsic scatter.

If the intrinsic scatter is lognormal, as it is usually the case, in the
above discussion X can be read, for example, as ln MWL or ln MHE,
whereas Z stands for ln MTr.

APPENDI X B: BCES

The BCES method is a well-known regression technique with good
performance for data sets with heteroscedastic and correlated errors
on both axes as well as intrinsic scatter in the linear relation (Akritas
& Bershady 1996). The slope of the conditional linear relation in
equation (A10) can be estimated as

β(Y |X) =
∑

i(yi − 〈y〉)(xi − 〈x〉) − ∑
i δxy,i∑

i(xi − 〈x〉)2 − ∑
i δ2

x,i

, (B1)

where xi (yi) is the observed values of Xi (Yi), with associated obser-
vational uncertainty δx, i (δy, i), and δxy, i is the covariance between
errors; 〈x〉 and 〈y〉 are the mean values.

If the variable X is scattered too, see equation (A1), the slope
in equation (B1) is a biased estimator of βY|Z. For αX|Z = 0 and
βX|Z = 1, the unbiased slope is

β(Y |Z) =
∑

i(yi − 〈y〉)(xi − 〈x〉) − ∑
i δxy,i∑

i(xi − 〈x〉)2 − ∑
i(δ

2
xi

+ σ 2
X|Z)

. (B2)

The modified BCES estimator should be used to evaluate the slope
of the conditional linear relation if the covariate X is scattered, i.e.
X is the scattered response variable of the covariate Z.

A P P E N D I X C : M A S S E S A N D C O S M O L O G Y

Masse estimates depend on the cosmological model. A conversion
from other cosmological parameters may be required to convert to a
reference model. The mass within a given cosmological overdensity
� is defined as

M� = 4π

3
�ρcr(Ddθ�)3, (C1)

where θ� is the angular radius enclosing the overdensity and Dd is
the angular diameter distance to the cluster.

Lensing 3D masses within a radius r = Ddθ , where θ is the
aperture radius, scale as

MWL ∝ �cr(DdθE)Ddθf (θ ), (C2)

where �cr ≡ (c2 Ds)/(4πG Dd Dds) is the critical surface density
for lensing, θE is the angular Einstein radius and Ds and Dds are
the source and the lens-source angular diameter distances, respec-
tively. The function f(θ ) ∼ θδγ quantifies the deviation of the mass
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profile from the isothermal case. At r500, mass profiles are nearly
isothermal, i.e. δγ ∼ 0.

Solving for equations (C1) and (C2), we obtain

MWL
� ∝ D

− 3δγ
2−δγ

d

(
Dds

Ds

)− 3
2−δγ

H (z)−
1+δγ

1−δγ /2 (C3)

=
(

Dds

Ds

)−3/2

H (z)−1˜for˜δγ = 0. (C4)

Hydrostatic masses within θ scales as

MHE ∝ Ddθ
1+δγ ; (C5)

the HE mass within a given cosmological overdensity is then

MHE
� ∝ D

− 3δγ
2−δγ

d H (z)−
1+δγ

1−δγ /2 (C6)

= H (z)−1forδγ = 0. (C7)

For δγ = 0, MHE
� /r� is independent of the adopted cosmology.

When it was required, we used the above relations with δγ = 0
to make the proper conversion from different cosmological pa-
rameters. We refer to CoMaLit-III for further details. An analogue
treatment for X-ray observables can be found in Mantz et al. (2010).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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