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Recent advances on gamma-ray observations from SuperNova Remnants and Molecular Clouds

offer the possibility to study in detail the properties of the propagation of escaping Cosmic Rays

(CR). However, a complete theory for CR transport outside the acceleration site has not been

developed yet. Two physical processes are thought to be relevant to regulate the transport: the

growth of waves caused by streaming instability, and possible wave damping mechanisms that

reduce the growth of the turbulence. Only a few attempts have been made so far to incorporate

these mechanisms in the theory of CR diffusion. In this work we present recent advances in this

subject. In particular, we show results obtained by solving the coupled equations for the diffusion

of CRs and the evolution of Alfvén waves. We discuss the importance of streaming instabilities

and wave damping in different ISM phases.
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Non linear CR propagation Lara Nava

1. Introduction

We study the non-linear diffusion of a population of Cosmic Rays (CRs) after they escape from

the acceleration site (for example, a supernova remnant shock). As a zero order approximation the

problem can be described by an impulsive injection of CRs of a given energy at a given location

in the Galaxy. We study the transport of CRs taking into account the growth of Alfvén waves

caused by particle-wave interactions, and their back-reaction on the CR diffusion. We also consider

possible linear wave damping mechanisms that limit the growth of the waves. The problem is

described by two differential equations that govern the evolution of the CR pressure and of the

wave energy density as a function of time and distance from the acceleration site. We present

numerical solutions of these two coupled equations for different values of the physical parameters

involved in the problem.

2. The model

In our model the transport of CRs is assumed to be regulated by the resonant scattering off

Alfvén waves, i.e. a CR of energy E resonates with waves of wave number k = 1/rL(E) where rL

is the particle Larmor radius (see e.g. [1]). The (normalized) energy density I(k) of Alfvén waves

is defined as:
δB2

8π
=

B2
0

8π

∫

I(k)dln k , (2.1)

where B0 is the ambient magnetic field and δB the amplitude of the magnetic field fluctuations.

According to quasi–linear theory, CRs diffuse along the magnetic field lines with a diffusion

coefficient equal to [2]:

D =
4 c rL(E)

3π I(k)
=

DB(E)

I(k)
, (2.2)

which can be expressed as the ratio between the Bohm diffusion coefficient DB(E) and the energy

density of resonant waves I(k = 1/rL). Formally, quasi–linear theory is valid for δB/B0 ≪ 1. In

this limit the diffusion perpendicular to the field lines can be neglected, being suppressed by a

factor of (δBk/B0)
4
≡ I(k)2 with respect to the one parallel to B0 (see e.g. [3, 4]). This implies that

under the condition that δB/B0 remains small, the problem is one–dimensional.

We consider the streaming of CR to be the main source of Alfvénic turbulence. For CRs that

stream along the direction of B0 (that we consider aligned along the coordinate z) the growth rate

of Alfvén waves ΓCR is proportional to the product between the Alfvén speed VA and the gradient

of the pressure of resonant CRs, and can be defined as (see e.g. [3, 5]):

2ΓCRI =−VA

∂PCR

∂ z
. (2.3)

The sign indicates that only waves traveling in the direction of the streaming are excited. For

dimensional consistency, the pressure of CRs PCR has to be normalized to the magnetic energy

density B2
0/8π .

On scales smaller than the magnetic field coherence length, a flux tube characterized by a

constant magnetic field strength B0 and directed along the z–axis can be considered. Two coupled

equations (for the evolution of CRs and waves along the flux tube) must be solved: the diffusion
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Non linear CR propagation Lara Nava

coefficient of CRs of energy E (Eq. 2.2), indeed, depends on the energy density of resonant waves

I(k), and in turn the growth rate of these waves (Eq. 2.3) depends on the gradient of the pressure of

resonant CRs. The two coupled equations then read:

∂PCR

∂ t
+VA

∂PCR

∂ z
=

∂

∂ z

(

DB

I

∂PCR

∂ z

)

(2.4)

∂ I

∂ t
+VA

∂ I

∂ z
=−VA

∂PCR

∂ z
−2ΓdI+Q (2.5)

where the left side in both expressions is the time derivative computed along the characteristic of

excited waves:
d

dt
=

∂

∂ t
+VA

∂

∂ z
. (2.6)

The advective terms VA∂PCR/∂ z and VA∂ I/∂ z are neglected in the following since we verified that

they play little role in the situation under examination. The last two terms in Eq. 2.5 account for

possible mechanisms of wave damping, operating at a rate Γd , and for the injection Q of turbulence

from an external source (i.e. other than CR streaming). In this work we consider only linear

damping mechanisms, for which the damping rate is independent of space and time. The term

representing the external source of turbulence can be set to Q = 2ΓdI0, so that when streaming

instability is not relevant the level of the background turbulence is at a constant level I = I0.

As already pointed out by [6], the approach described above decouples the process of acceler-

ation of particles, which operates, for example, at a SNR shock, from the particle escape from the

acceleration site. Though such a separation might seem artificial, the problem defined above can

still be useful to describe the escape of particles form a dead accelerator, in which the acceleration

mechanism does not operate any more, or operates at a much reduced efficiency [6]. This situation

would probably apply to the case of old SNRs. On the other hand, [7] suggested that Equations. 2.4

and 2.5 could be also used to describe an intermediate phase of CR propagation in which the CRs

have left the source but are not yet completely mixed with the CR background. For the case of a

SNR shock, the equations above could thus be applied to those CRs characterized by a diffusion

length large enough to decouple them from the shock region. Typically, this happens during the

Sedov phase to the highest energy particles confined at the SNR shock when the diffusion length

DB/us gradually increases with time up to a value larger than some fraction χ of the SNR shock

radius Rs, where us is the shock speed and χ ≈ 0.05...0.1 [8, 9].

In both scenarios, the initial conditions for Eqs 2.4 and 2.5 can be set as follows:

PCR = P0
CR and I ≈ 1 for z < a (2.7)

PCR = 0 and I = I0 ≪ 1 for z > a (2.8)

where a is the spatial scale of the region filled by CRs at the time of their escape from the source.

Following [6], we introduce the quantity Π, defined as:

Π =
VA

DB

ΦCR (2.9)

where:

ΦCR ≡

∫ ∞

0
dz PCR = P0

CRa . (2.10)
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To understand the physical meaning of Π, consider the initial setup of the problem, in which CRs

are localized in a region of size a. The CR pressure within a is P0
CR, and then ΦCR = P0

CRa. The

initial diffusion coefficient outside the region of size a is equal to DB/I0. The problem of transport is

characterised by three relevant timescales: i) the growth time τg ≈ (VA/I0∂PCR/∂ z)−1
≈ aI0/VAP0

CR,

ii) the time it takes the CR cloud to spread due to diffusion τdi f f ≈ a2/D ≈ a2I0/DB, and iii) the

damping time τd = 1/2Γd . In order to have a significant growth of waves due to CR streaming, the

timescale for growth must be shorter than the two other timescales: τg < min(τdi f f ,τd). In terms of

the parameter Π this conditions reads: Π > max(1,τdi f f /τd). It is evident, then, that the parameter

Π regulates the effectiveness of CR–induced growth of waves. In the absence of a damping term for

waves, Π > 1 is a necessary condition for streaming instability to be relevant, while in the presence

of efficient wave damping, a more stringent condition on Π applies.

For Π . max(1,τdi f f /τd) CRs play no role in the generation of Alfvén waves, and Equa-

tion 2.4 can be solved analytically:

PCR =

√

I0

πDBt
ΦCR e

−
I0z2

4DBt (2.11)

Equation 2.11 is referred to as test–particle solution. When wave growth cannot be neglected,

the solution deviates from this analytic test-particle solution. In the extreme scenario Π >>

max(1,τdi f f /τd) waves grow so quickly that the the diffusive term in Eq. 2.4 becomes negligi-

ble when compared to advection term VA∂PCR/∂ z, and the advection term cannot be neglected

anymore. This describes a situation in which CRs are "locked" to waves and move with them at a

velocity equal to VA [10]. An identical result was found by [11] in a study of the escape of ≈ MeV

CRs from sources, and also suggested by [12].

3. The method

In order to solve Eqns. 2.4 and 2.5 it is convenient to perform the following change of coordi-

nates [6]:

s ≡
z

a
τ ≡

(

VA

a

)

t (3.1)

and re-normalise the parameters as follow:

PCR ≡

(

VAa

DB

)

PCR W ≡

(

VAa

DB

)

I Γ′
≡

(

a

VA

)

Γd (3.2)

In these notations (and after dropping the advection terms) the equations become:

∂PCR

∂τ
=

∂

∂ s

(

1

W

∂PCR

∂ s

)

(3.3)

∂W

∂τ
= −

∂PCR

∂ s
−2Γ′ (W −W0) (3.4)

Their solution (i.e., P and W as a function of the variables τ and s) depends only on three

parameters: the initial values P0
CR, W0, and Γ′

0. Note that: i) P0
CR = Π, ii) W0 =VAa/D0, and iii)

Γ′ = Γ′

0 (since we consider here only a linear damping constant in both time and space). In these

notations, the condition for effective growth of waves is Π > max(1,Γ′W0).
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Figure 1: Left: ion-neutral damping rate (ΓIN
d , solid curves), Farmer & Goldreich damping rate (ΓFG

d , dashed

curves) and ratio between Alfvén speed and initial size of the source (VA/a, dot-dashed curves), as a function

of the CR energy E . Different colours refer to two different ISM phases: warm ionised medium (WIM, red),

and warm neutral medium (WNM, blue). Right: parameter Π as a function of the CR energy for a WIM

and WNM (solid lines). In absence of efficient wave damping, values of Π < 1 correspond to a test particle

solutions, since the wave growth rate is inefficient. Conversely, for Π larger that Πmax ∼ 10 the growth rate

is large and the diffusion coefficient becomes smaller than the Bohm diffusion coefficient DB. In presence

of efficient wave damping, both these limits are shifted to higher values, depending on the value of Γd .

We present examples of numerical solutions to the coupled equations 3.3 and 3.4 for values

of the parameters in the ranges: Π = [2− 20], W0 = [10−5
− 10−2], and Γ′ = [0− 100]. In order

to understand why we chose these values, and to which physical conditions they correspond, it is

necessary to specify the values of VA,a,D0, DB, and the damping mechanisms. These quantities in

general depend on the properties of the ISM, and on the particle energy. We consider two different

ISM phases: a warm neutral medium (WNM) and a warm ionised medium (WIM). The typical

values of density, temperature, ionisation fraction, and magnetic field strength for these two phases

are taken from [13]. In these ISM phases, the two most relevant linear damping mechanisms are the

ion-neutral friction (ΓIN
d ) and the damping by background MHD turbulence suggested by Farmer &

Goldreich [14] (ΓFG
d ). The value of ΓFG

d as a function of the particle energy is shown in Fig. 1 (left

panel, long-dashed lines), for both ISM phases. The ion-neutral damping rate is estimated by nu-

merically solving the equations in [15]. The results are shown in Fig. 1 (left panel, solid lines), for

both ISM phases: at low energies ΓIN
d = νIN/2 (where νIN is the ion-neutral collision frequency),

while at high energies ΓIN
d ∝ E−2. The level of coupling between ions and neutrals affects also

the Alfvén speed, that is in the range 106
− 107 cm/s. Since it is useful for our calculations, we

show in Fig. 1 the value of the ratio Va/a, as a function of energy (dash-dotted lines). In order to

estimate a we consider a ≈ Resc(E), where Resc(E) is the escape radius and depends on the CR

energy. We model its dependence on the energy following [16]: we found that its value ranges

between a few pc (for the highest energy particles) and ∼20 pc (for ∼GeV particles). Since we are

interested in following the CR diffusion from the scale a where they are released up to a distance

z . 103 pc, this roughly corresponds to solve the normalised equations in a range of s from 1 to

several hundreds. Moreover, we want to study the CR pressure at different times t in the range

103 yr to . 105 yr. Considering the value of Va/a as a function of energy displayed in Fig. 1, this
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corresponds to τ = 10−2
−1.

In order to identify the relevant values of the parameters Π,W0,Γ
′ we proceed as follow:

• Γ′– the damping rate Γd = max(ΓIN
d ,ΓFG

d ) ranges between 10−9 and 10−12 s−1 (Fig. 1, left

panel), depending on the particle energy and ISM phase. This corresponds to 1 < Γ′ . 104.

• Π – the values of Π as a function of the CR energy, for the two different ISM is shown in

Fig. 1 (right panel, solid lines).

• W0 – for the background diffusion D0 we can refer to the average Galactic value D0 =DISM =

1028(E/10GeV)0.5 cm2/s. Since VAa ranges between 1027 cm2/s and 1025 cm2/s (at low and

high energies, respectively), the range of relevant values for W0 is 10−5 <W0 < 10−1.

4. Results and Discussion

We numerically solve Eqs. 3.3 and 3.4 and show the results for P(s,τ) vs. s (solid lines in

Fig. 2) at three different normalised times τ = 10−2,10−1,1 (corresponding to different colours in

the figure). The test particle solution is also shown for comparison (dotted lines). Each row in the

figure corresponds to results obtained by varying only one parameter at the time.

The upper row shows the impact of the parameter Π for fixed values of Γ′ = 10 and W0 = 10−4.

Since for Π < 1 the numerical solution coincides with the test particle solution, we show our results

for values of Π > 1. When Π = 2, the solution starts to deviate from the test particle case: due to

the growth of wave by streaming instability the diffusion is slower, the CR pressure in the vicinity

of the accelerator is larger, and the diffusion length is smaller. The effect is more and more evident

for increasing values of Π (upper row, middle and right panels).

The middle row shows the effect of wave damping, for fixed Π = 10 and W0 = 10−4. Since

Π >> 1, when wave damping is negligible (Γ′=0, left panel) the diffusion is suppressed as com-

pared to the test particle case. Larger values of Γ′ limit the growth of Alfvén waves and the solution

approaches the test particle solution. Note that Γ′=10 (middle row, central panel) corresponds to a

damping mechanism that becomes important at τ > 0.1. For this reason the solution at τ = 0.01

and τ = 0.1 are unaffected by the increased damping rate, and only the solution at late time τ = 1

is modified, and approaches the test particle solution. The right panel shows the case of a even

faster damping mechanism, Γ′=100, whose effect starts to be relevant at times corresponding to

τ > 0.01, explaining why the solution at intermediate and late times approaches the test particle

solution, while the solution at early time is unaffected by wave damping.

The bottom row shows calculations performed at Π = 5 and Γ′=10, with W0 varying from 10−5

to 10−2. A large W0 (left panel) corresponds to slow diffusion and small diffusion length, both in the

test particle case and in the numerical solution. The two solutions differ at early and intermediate

times because the growth rate is faster than the diffusion rate, and suppresses the diffusion. At later

times instead the growth rate decreases and the numerical solution does not appreciably differ from

the test particle case. A change in the initial value of the background turbulence has the same effect

on both the analytical and numerical solution: the diffusion is faster for decreasing values of W0

(see bottom row, from left to right), and the CRs can reach larger distances. The deviation from a

6



P
o
S
(
I
C
R
C
2
0
1
5
)
5
4
1

Non linear CR propagation Lara Nava

P
CR

P

P

CR

CR

Figure 2: Normalized CR pressure as a function of the variable s, which represents the distance from the

source z normalised to the size of the source a. In each row the results are shown by varying only one

of the three parameters (whose value is reported above each panel) and keeping the other two fixed to the

values reported in the shaded area. The solid curves show the results from the numerical computation, while

dotted curves represent the test particle solution, where the role of streaming instabilities in enhancing the

turbulence is neglected. Different colours refer to different normalised times τ = 10−2,10−1,1.
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test particle solution however remains unchanged, since both the growth rate and the diffusion rate

scale as W0.

This study outlines the importance of considering, in the physics of CR transport, both the

growth of waves due to streaming instability and the role of mechanisms that damp the turbulence.

When damping is neglected, even relatively small values of the integrated CR pressure Π = 10

(corresponding, for example, to particles of a few TeV, in a WIM - see Fig. 1) in a environment with

small background turbulence W0 = 10−4 (relevant for TeV particles when the background diffusion

coefficient D0 is similar to the average Galactic diffusion coefficient) lead to the conclusion that

diffusion is strongly suppressed by the efficient growth of waves, and particles cannot travel large

distances, even at late times. This situation is shown in Fig. 2 (middle row, left panel) where the

numerical computation is performed in absence of a wave damping term: the diffusion is strongly

suppressed also at τ = 1, corresponding to old remnants (tage ∼ 105 yr).
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