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ABSTRACT

Aims. We investigate the increase of the differential emission measure (DEM) towards the chromosphere due to small and cool
magnetic loops (height <8 Mm, T < 10° K). In a previous paper, we analysed the conditions of existence and stability of these loops
through hydrodynamic simulations, focussing on their dependence on the details of the optically thin radiative loss function.
Methods. In this paper, we extend those hydrodynamic simulations to verify if this class of loops exists and is stable when using an
optically thick radiative loss function. We study two cases: constant background heating and a heating depending on the density. The
contribution to the transition region extreme-UV output of these loops is also calculated and presented.

Results. We find that stable, quasi-static cool loops can be obtained using an optically thick radiative loss function and a background
heating depending on the density. The DEMs of these loops, however, fail to reproduce the observed DEM for temperatures between
4.6 < logT < 4.8. We also show the transient phase of a dynamic loop obtained by considering constant heating rate and find that its
average DEM, interpreted as a set of evolving dynamic loops, reproduces the observed DEM very well.

Key words. Sun: transition region — Sun: UV radiation — hydrodynamics

1. Introduction

The origin of the extreme-UV (EUV) output at temperatures be-
low 1 MK is still widely debated in solar physics. The classical
picture that the transition region (TR) emission originates from
the base of the hot large-scale coronal loops greatly underesti-
mates the observed EUV emission below 0.1 MK, but no alterna-
tive, quantitative view has gained consensus to date. One of the
proposed explanations hypothesizes that much of the TR plasma
is confined in relatively small and cool magnetic loops (height
<8Mm, T < 10° K), which are directly connected to the chro-
mosphere but thermally insulated from the corona (Dowdy et al.
1986; Dowdy 1993; Feldman 1983; Feldman et al. 2001).

From an observational point of view, these loops are indeed
very difficult to observe. The first, presumed direct observations
present in the literature have been obtained with the instrument
Very High Angular Ultraviolet Telescope (VAULT, Korendyke
et al. 2001) in the HI Ly-« line. They show loop-like structures
with estimated temperatures and densities (T = 10*-3 x 10* K,
P = 0.1-0.3 dyne cm™?) that could be appropriate for the
low-temperature end of cool loops (Patsourakos et al. 2007;
Vourlidas et al. 2010). This interpretation has been debated by
Judge & Centeno (2008). More recently, the launch of the IRIS
spacecraft (De Pontieu et al. 2014), in June 2013, has provided
new possibilities to observe these loops. The analysis of the data
obtained in spectral lines and continua, covering a range of tem-
peratures logT = 3.7-7 K with a spatial resolution of ~0.4",
represents a very good opportunity to look for structures with
the dimension and temperatures of the class of loops described
above. It is therefore not surprising that observations have re-
cently been reported (Hansteen et al. 2014) of highly dynamical
cool, low-lying loops that are in many respects similar to those
we discuss.

Article published by EDP Sciences

In a previous paper (Sasso et al. 2012, hereafter referred to
as Paper I), we analysed the general properties of quasi-static
(velocity along the loop lower than 1 kms™') cool loops with
T < 0.1 MK and their conditions of stability and existence un-
der different and more realistic assumptions about the optically
thin radiative loss function with respect to previous works (i.e.
Cally & Robb 1991). In particular, we obtained stable low-lying,
cool loops through hydrodynamic simulations, even for a set of
parameters that would prevent the formation of rigorously static
loops. The existence of the loops we found is indeed due to small
departures from static conditions, i.e. to the presence of a small,
but non-zero conductive flux and velocities, and to the require-
ment of nearly constant pressure (implying that our loops are
limited to low heights above the chromosphere). In our simula-
tions, we only considered the case of constant heating rate. We
also showed that the emission of these cool loops, plus the emis-
sion of intermediate temperature loops (0.1 < 7 < 1 MK), can
account for the observed radiative output below 1 MK.

From a theoretical point of view, there are still several points
that need to be explored to determine the conditions under which
cool loops could exist in the solar atmosphere. One important
point is the shape of the radiative loss function below 0.1 MK,
due to the presence of the HI Ly-a peak, which is very important
for the existence of cool loops.

Our work is based on 1D hydrodynamic simulations and
aims to study the conditions of existence of cool loops to under-
stand, in particular, the mechanisms of their heating and energy
balance through comparison between their simulated differential
emission measure (DEM) and the observed DEM. Peter et al.
(2004, 2006) made the first successful attempt to reproduce the
shape of the DEM curve quantitatively and qualitatively, even
at temperatures below log7 = 5.3 K. They synthesized spec-
tra from three-dimensional (3D) MHD simulations of the whole
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Sun atmosphere, finding structures that could be related to the
kind of loops we are studying. However, the cool loops we de-
scribe would be covered by only very few resolution elements
in their simulation, and in any case resolving the gradients and
dynamics of the relevant quantities in our loop models would re-
quire a much higher resolution. Therefore, we regard our study
as complementary to large-scale 3D simulations.

As in Paper I, while looking for cool loops, we have also
found low-lying, quasi-static loops with temperatures in the
range 1-5 x 10° K. Following one of the latest loop classifi-
cations (Reale 2014), we should also refer to these loops as
cool coronal loops. We refer to these loops as intermediate-
temperature loops to avoid confusion.

In this paper, we want to make a further step in the direction
of considering more realistic assumptions for the simulations of
cool loops with respect to Paper I, by introducing an optically
thick radiative loss function. In Sect. 2, we describe the numer-
ical model and introduce the radiative loss function adopted. In
Sect. 3, we present the hydrodynamic simulations and loops ob-
tained (cool and intermediate-temperature loops) with different
assumptions about the heating rate, and we discuss and analyse
their properties. Section 3.4 is dedicated to the calculated DEMs
of the loops obtained and to the comparison with the observed
DEM. Finally, in the conclusions (Sect. 4), we treat the role of
the cool and intermediate-temperature loops in the solar atmo-
sphere and the comparison with the observations.

2. Numerical calculations

The set of hydrodynamic equations for mass, momentum, and
plasma energy conservation for a fully ionized hydrogen plasma
have been solved in a unidimensional, magnetically confined
loop of constant cross-section with ARGOS, a 1D hydrody-
namic code with the fully adaptive-grid package PARAMESH
(Antiochos et al. 1999; MacNeice et al. 2000). A fully adaptive-
grid is necessary to adequately resolve one or more evolving re-
gions of steep gradients. The hydrodynamic equations for mass,
momentum, and energy, respectively, solved by ARGOS are

g a

EP*‘&(PU)—O» (D
o0+ 2-(P+ ) = o (s @
ot s 1=

oU d 9 )

n + %(UU+FC)— Pasv+E(s,t) n“A(T, P), 3)
Fe = —10‘6T5/2£T, 4)

ds

where ¢ is the time, p the mass density, v the velocity, P, T and n
are the gas pressure, temperature, and electron number density,
respectively. The parameter U is the internal energy, s the curvi-
linear coordinate along the loop, E(s, f) the assumed form for the
input heating rate, n?A(T, P) the plasma radiative losses speci-
fied by the radiative loss function A(7, P), g;(s) the component
of the solar gravity along the loop axis, and F the thermal con-
ductive flux, in CGS units.

The code is based on a loop geometry, which assumes an
arched loop of a given length L and apex height above the chro-
mosphere / as described in Karpen et al. (2001), Spadaro et al.
(2003). At each footpoint of the loop there is a thick chromo-
sphere (26.7 Mm deep) acting as a mass reservoir, with temper-
ature set to 7 = 9.5 x 10° K. Since we take, by definition, the
top of the chromosphere as the level at which the plasma drops

AS54, page 2 of 10

below 9.5 x 103 K, the exact position of the top of the chromo-
sphere (s = =L;/2 at the beginning of the simulation, s being
the curvilinear coordinate along the field lines) changes during
the calculation with the plasma filling or evacuating the loop.
Hence, at end of the simulation, we find a new position for the
top of the chromosphere s = +L;/2 and, consequently, a new
value of & = hy, where Ky is no longer the geometrical parame-
ter defining the shape of the loop, but the height of the loop apex
above the 7 = 9.5 x 10° K level.

The main input parameters for the calculations are the ra-
diative loss function, heating rate, pressure (or the density) at
the chromospheric reference temperature, and loop geometry (h
and L). In Paper I, we used constant heating rates per unit vol-
ume throughout the loop. Following the more general approach
of Antiochos & Noci (1986), we also consider the case of a con-
stant heating rate per particle. The two cases are parametrized as
follows:

E(s, 1) = Ep f(s) [n(s,D)/n.]", &)

where y = 0 is the case of constant heating per unit volume, and
v = 1 corresponds to the case of constant heating per particle,
and n, = 3.9882 x 10° cm™ is the value of the density at the
base of the loop, taken from the work of Kuin & Poland (1991).
The function f(s) specifies the variability of the heating rate (per
particle or per volume) along the loop. With the exception of the
discussion of Sect. 2.2, we assume f(s) = 1 throughout. The
radiative loss function we adopt is described more in detail in
the following section.

2.1. Radiative loss function

To estimate the radiative losses in the optically thick H Ly-« line,
we used the calculations by Kuin & Poland (1991). Those au-
thors computed the contribution to radiative losses of hydrogen
and helium taking the effects of geometry and optical depths and
the non-local thermodynamic equilibrium (non-LTE) ionization
state of hydrogen and helium into account. They generated 3D
tables of radiative losses as a function of 7', P, and slab thick-
ness, for H and He. We combine those tables with the radiative
losses of the other elements from the CHIANTI database (ver-
sion 7.1, Landi et al. 2013) and the code interpolates these ta-
bles depending on the temperature and pressure of the loop. We
refer to the resulting radiative loss function as Ayp. In the fol-
lowing calculations, we only consider the case of slab thickness
equal to 200 km. This value is consistent with the dimensions of
these loops as inferred from observations (Vourlidas et al. 2010;
Hansteen et al. 2014).

There are other calculations of optically thick radiative
losses in the literature, such as the more recent work of Carlsson
& Leenaarts (2012). This work is dedicated to the radiative
cooling and heating only in the chromosphere, by combin-
ing detailed, non-LTE radiative transfer calculations and time-
dependent 2D MHD simulations. We decided to use the radia-
tive losses calculated by Kuin & Poland (1991), even if they are
older because their results are presented in a form that can be
easily incorporated in hydrodynamic flux-tube calculations and
are expressly aimed at flux-tube modelling. In addition, their cal-
culations are relevant to a broader temperature range more suit-
able for our calculations.

In Fig. 1 we show the radiative loss function Ay, plotted
for different pressure values (log P = -2, -1, 0, 3, red, yellow,
green, and blue lines, respectively) and that from the CHIANTI
database, version 7.1 (Landi et al. 2013, black line) from which
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Fig. 1. Radiative loss function Ay, plotted for different pressure values
(logP = -2,-1,0,3, red, yellow, green, and blue lines, respectively)
and radiative loss function from the CHIANTI database, version 7.1
(Landi et al. 2013, black line). Moreover, we plot some of the radiative
loss functions used in Paper I: Antiochos & Noci (AN, dark grey line,
1986); AN function plus a peak mimicking the H Ly-« losses (dark grey
line plus diamond symbols); from the CHIANTI database, version 6
(Dere et al. 2009), without the H contribution (light grey line).

we start to compute the radiative loss function used in this
work. They are compared to some of the radiative loss func-
tions used in Paper I, for which we obtained stable cool loops.
These include: power-law segments function equal to T2 for
logT < 4.95 K and T~' for logT > 4.95 K (AN, dark grey
line, Antiochos & Noci 1986); AN function plus a peak mim-
icking the H Ly-« losses (dark grey line plus diamond symbols);
from the work of Dere et al. (2009) without the H contribution
(light grey line). The black and blue lines represent the upper
and lower limits for the radiative loss functions, corresponding
to the optically thin and optically thick cases, respectively.

2.2. Preliminary considerations on cool loop solutions

Antiochos & Noci (1986) addressed the solutions of the hydro-
dynamic equations of loops with negligible conductive flux, and
studied the properties and conditions of existence of their so-
lutions under specific hypotheses about the radiative loss func-
tions. In particular, they approximated the optically thin function
A(T) with power-law segments: A(T) ~ T“ for T < 0.1 MK, and
A(T) ~ T~* for T > 0.1 MK, where a and b are positive values.
The conditions of existence and stability of these solutions were
studied more extensively by e.g. Klimchuk et al. (1987), Cally
& Robb (1991). Here we revisit some of those previous analy-
ses, extending the results to consider the specific radiation losses
functions we used in our simulations.

Antiochos & Noci (1986) solved the hydrodynamic equa-
tions Egs. (1)—(3), assuming negligible conductive flux. The en-
ergy equation, Eq. (3), can then be rewritten as

2

P A(T,P) = E(s, P), (6)
(2kT

where now we consider the more general case of optically thick
radiative loss function, A(T, P), while E(s, P) is given by Eq. (5).
It is convenient to define the following quantities:

H(T) = 2kT [(my g9), (7
n(s) = gy(s)/9, (8)
a(T, P) = dlog A(T, P)/dlog T, )

b(T, P) = dlog A(T, P)/dlog P. (10)

The quantity a(T, P) can be interpreted as the local power-law in-
dex of the radiative loss function at a given temperature and pres-
sure. The values of a(T, P) for Ay, in the interval log T = 4.3-5
range from ~0.5 to ~2. The values for b(T, P) are substantially
smaller, ranging from ~—0.15 to ~0.2 around the peak tempera-
ture of the Ly-« line.

Substituting Eqs. (6) and (5) into the momentum equa-
tion, Eq. (2), with the above definitions the the equation for T
becomes

dr 1 df(s) T,

[a(T, P)+y-2] o Tf(s) I + [b(T, P)+2—7] HTD

n(s),
(11)

where T, is the temperature at the lower boundary of the loop.

The special case a(T, P) = constant = 2 — y (power-law de-
pendence of A(T, P) with temperature, with exponent either 2
or 1, depending on the value of ), reduces the above differential
equation to the simpler expression, i.e.

4
Hm'[ 7 ds

In this case, any function f(s) that is monotonically decreasing
with height produces a loop solution, provided that b(T, P) >
—2 + 7y (true for Ayp). The case b = 0 and a = 2 is the case we
labelled “AN”, and is shown in Fig. 1 with a grey line.

In the remainder, we only consider the case f(s) = 1; for
simplicity, we further neglect the dependence of A on pressure,
i.e.: b(T, P) = 0. In this case, Eq. (11) can be integrated to obtain
an implicit dependence of 7 on s, i.e.

1
] (6T, P)+ 2 = ] n(s).

1 )
oT,T,) = f n(o) do, (12)
H, J,
where the function 8(T, T,) is defined as
a(T, T, -2|(T
oT, T.) = [u] (— - 1), (13)
2-vy T,
while the quantity a(7', T,) is the “mean” power-law index
1 T
a(T,T,) = T—T. ﬁ a(t)dr. (14)

The above equations highlights a first constraint for the existence
of this kind of solution: a(T, T,) > 2 — y. We mentioned before
that for the radiative loss function we are using, we have a < 2
for logT > 4.3, and it is clear that it would be very difficult
to obtain cool solutions for the case of uniform heating per unit
volume, y = 0.

The upper limit to the loop temperature as mapped by func-
tion 6(T, T,) is given by the maximum of fss n(o) do/H,; in the
case of a semicircular loop of radius £, this is h/H,. However,
a stronger constraint obviously follows from the consideration
that fs 5 n(o) do is a monotonically increasing function, whereas
(T, T,), in general, is not. Single-value solutions are therefore
limited to the first local maximum of 6(T, T,), shown in Fig. 2
for the radiative loss function of Fig. 1 in the case y = 0 and
v = 1. The simple considerations above highlight one of the
basic characteristics of cool loop solutions, namely, their strong
sensitivity to the details of the heating and of the radiation loss
function.
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3. Results and discussion

We ran numerous simulations, extensively exploring the param-
eter space, under different initial conditions. We consider a loop
in a quasi-static equilibrium state when the plasma velocities are
lower than 1-2 kms~'. We took as an initial equilibrium state
(t = 0 s) for new simulations some of the cool loops obtained in
Paper I, changing only the heating rate and radiative loss func-
tion. The list of simulated loops, together with the relevant pa-
rameters, is listed in Table 1 (cool loops) and Table 2 (interme-
diate temperature loops).

3.1. Loops from spatially uniform and temporally constant
heating rate per unit volume

We start by making simulations with constant heating rate
(y = 0) and using the radiative loss function Ay,. As expected
from the discussion in Sect. 2.2, we are not able to obtain sta-
ble cool loops since during the simulations, they become all hot
(T ~ 8 x 10° K).

As an example, Fig. 3 shows the evolution of the mean tem-
perature, density, and pressure of a loop (hereafter, Loop 0) dur-
ing a simulation started from a stable cool loop of a high tem-
perature ~1.2 x 10* K (Loop 24 of Table 1 in Paper I), assuming
constant heating rate.

Loop 0 stays for ~42 min in a cool state (T < 10° K) even if
it is not stable. The mean temperature of the loop oscillates be-
tween 1-2x 10* K (see left panel of Fig. 3) for ~38 min and then
in ~4 min reaches much higher values. It becomes a quasi-static
coronal loop, after ~2.5 h from the beginning of the simulation,
reaching a high temperature of ~8.5 x 10> K. ARGOS allows us
to follow the evolution of the loop by storing the loop’s param-
eters at previously defined time steps. During the four minutes
mentioned before, the simulation records three states character-
ized by maximum temperatures of ~5,7, and 9 x 10* K, progres-
sively. During the evolution of the loop, the maximum tempera-
ture is not always localized at s = O (loop centre) but also along
the loop, i.e. at different values of s.

In Paper I, we obtained indeed quasi-static cool loops by
using constant heating rate but we used different radiative loss
functions. From Fig. 1, it is clear that Ay, for pressure values

AS54, page 4 of 10

log T [K]

Fig. 2. Function (7T, T,) for the radiative loss
functions shown in Fig. 1 in the case of y = 0
(left panel) and y = 1 (right panel).
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Table 1. Cool loop parameters at the end of the simulations when the
loops reach a quasi-static condition (y = 1).

Loop E, Tinax P L/2 h
10*ergem™ s MK  dynecm™ Mm Mm
Loop;: 17
0.2 0.242 0.008 7 1.12
1 0.2 0.015 0.0003 7.7 1.90
2 1 0.042 0.0008 83 250
3 4 0.062 0.002 8.8 3.05
Loop;: 24
6 0.012 0.024 52 027
4 6 0.017 0.011 7.6 177
5 7 0.019 0.012 7.6 1.84
6 8 0.022 0.013 7.7  1.89
7 15 0.049 0.012 7.9  2.09
8 30 0.053 0.043 8.1 233
9 35 0.055 0.049 82 241
10 50 0.057 0.067 83 2.52
11 60 0.058 0.079 83 252
12 70 0.059 0.090 84 2.56
13 100 0.061 0.13 84 256
14 130 0.059 0.17 7.6 1.84
15 140 0.058 0.18 7.7  1.89
Loop;: 26
7.4 0.050 0.026 55 032
16 7.4 0.020 0.012 7.7 1.86
17 30 0.054 0.042 82 232
18 50 0.057 0.067 83 252
Loop;: 27
6 0.087 0.024 23 0.04
19 6 0.016 0.012 7.5 1.67
20 9 0.038 0.015 7.7 1.89
21 12 0.042 0.020 7.8  1.99
22 20 0.051 0.030 8.0 220
23 25 0.052 0.037 8.1 228
24 28 0.053 0.040 8.1 232

Notes. All loops are obtained starting from a loop of Paper I (the initial
loop parameters are at the top of each loop group).

characteristic of cool loops (log P ~ —2) is higher than the losses
used in Paper I and requires a higher thermal conductive flux
from warmer regions to be balanced.
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Fig.3. Evolution of the mean temperature,
mean density, and mean pressure of Loop 0, ob-
tained from a simulation starting from a stable
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Table 2. As in Table 1 for intermediate-temperature loops (y = 1).

Loop E, T max P L/2 h
10*ergem@s! MK dynecm™ Mm  Mm
Loop;: 17
0.2 0.242 0.008 7 1.12
25 5 0.206 0.008 89 3.14
26 10 0.431 0.036 9.2 344

3.2. Loops from constant heating rate per particle

We perform new simulations with the radiative loss function
Ayp, and use constant heating rate per particle, setting y = 1
in Eq. (5). We list in Table 1 and discuss below a representative
selection of cool loops in quasi-static equilibrium that we ob-
tained in these conditions. All loops are obtained starting from
four different loops of Paper I (Loops 17, 24, 26, and 27; the ini-
tial loop parameters are at the top of each loop group in Table 1)
by changing the value of the constant £}, and the radiative loss
function. We are able to obtain quasi-static cool loops with max-
imum temperatures between ~1.5 and 6.2 X 10* K, using Ep
in the range 0.2—140 x 107 ergs cm™ s~!. We are not able
to obtain cool loops with maximum temperatures in the range
4.3 5 logT < 4.5 K, since at those temperatures, a, defined in
Eq. (9), is lower than 1 (see Sect. 2.2) because of the change
of the slope of Ayp. The cool loops found have the properties
analytically predicted by Antiochos & Noci (1986), which are
small (L/2 = 7.5-8.8 Mm and h = 1.67-3.05 Mm), nearly iso-
baric, and in approximate balance between the heating rate and
radiative losses. They also have low-pressure values in the range
predicted by Antiochos & Noci (1986), even if some loops have
higher pressure (up to ~7 times) compared with the cool loops
obtained in Paper I. In Fig. 4 we plot the behaviour of the loop
parameters as well as of the terms of the energy equation for
three loops chosen as examples (loops 13, 16, and 22 from top
to bottom) at the end of the simulation. The left panels show the
temperature (solid line) and pressure (dashed line) profiles as a
function of the curvilinear coordinate, s, while the right panels
show the radiative losses energy term, n’A (crosses), the heat-
ing rate, E (solid line), and the divergence of the conductive
flux, VF . (asterisks), as a function of the temperature. For all the
loops, the pressure is constant along the loop (within 1% above

0 20 40 60 80 100120 140
t/ minutes

cool loop of high temperature ~1.2 x 10* K and
constant heating rate per unit volume.

the chromosphere) and the terms n”>A and E are in approximate
balance, while the divergence of the conductive flux is only a
small term. From the left panels of Fig. 4 we see that the temper-
ature of the loops starts to increase slowly up to a certain value
of s and then increases rapidly up to the maximum temperature
value reached by the loop. The values of L/2 in Table 1 for these
loops include the piece where the temperature rises slowly.

Using the same radiative loss function and y = 1, we also
obtained quasi-static intermediate-temperature loops (0.1 < T <
0.5 x 10° MK), listed in Table 2. These loops are obtained by
starting the simulations from the quasi-static cool loop 17 of
Table 1 in Paper I. We show in Fig. 5 the behaviour of the tem-
perature and pressure as a function of s (left) and of the terms
of the energy equation as a function of the temperature (right)
for loop 26. The divergence of the conductive flux, comparable
to the radiative losses, contributes to dissipating the heating in
excess.

3.3. Relations between loop parameters and scaling laws

In Fig. 6 we show the relations between the thermodynamic
parameters (P, Trmax and L/2) and E} for the loops in Table 1
(loops 1-3 are represented by triangles, loops 4—15 by crosses,
loops 16-18 by asterisks, and loops 19-24 by diamonds) and
Table 2 (represented by squares). The solid lines in the bottom
panels of Fig. 6 represent the “static” scaling laws for coro-
nal loops described by Rosner et al. (1978, hereafter RTV) for
different values of L/2. The pressure of all cool loops with
T < 0.1 MK is proportional to Ey and is dependent on their
length and maximum temperatures. Indeed, in the simulations,
we increase Ey to obtain higher temperature loops, which also
yields higher pressure and longer loops. There is, however, a
maximum limit of Ey, (different for each initial condition loop)
at which, even increasing its value, the loops continue increasing
their pressure but not their maximum temperatures (see bottom
left panel of Fig. 6).

Intermediate-temperature loops obey the RTV scaling law
for coronal loops for temperature and pressure (see bottom left
panel of Fig. 6) in the same way as the intermediate-temperature
loops we found in Paper 1. Observed intermediate-temperature
loops do not obey the coronal scaling laws (Brown 1996), but as
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Fig. 4. Top panel, left: temperature (solid line) and pressure (dashed line) as a function of the curvilinear coordinate along the field lines, s. Right:
divergence of the conductive flux (asterisks), radiative losses (crosses) and heating rate, E (solid line), as a function of the temperature, for loop 13.
Middle and bottom panels: as in the top panels for loops 16 and 22, respectively.
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we already discussed in Paper I, the static model used by Rosner
et al. (1978) to derive the relationships between coronal tem-
perature, pressure, length and heating in coronal loops does not
seem to predict the physical conditions of these loops accurately.
We obtained intermediate-temperature loops with pressures that
are 1-2 orders of magnitudes lower than measured in observed
loops with the same temperatures (Brown 1996). Loops 25-26
have the correct pressure to fall on the scaling law lines.
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3.4. Calculated DEMs for cool and intermediate-temperature
loops

The theoretical DEMs for a single or isolated loop were com-
puted for the quasi-static loops we found according to Spadaro
et al. (2003), with a temperature bin of 0.05 dex on a log 7" scale
along the loop

,ds

DEM = n"—-

dTr (15)
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This simplified approach permits us to study the overall proper-
ties of the DEM of this class of loops without the need for taking
details into account, such as the shape of the loop, geometry of
the observations, loop cross-section, etc.

The top panel of Fig. 7 shows the calculated DEMs versus
temperature of the quasi-static cool loops 1-3 (solid blue lines),
4—15 (black), 16-18 (red), 19-24 (green) of Table 1, and the
quasi-static, intermediate-temperature loops 25-26 (magenta) of
Table 2. In Fig. 7 and in the figures that follow, we plot, for
comparison, the observed DEMs of the quiet Sun and active re-
gion (dashed and dotted lines, respectively), derived using the
Vernazza & Reeves (1978) average quiet Sun and active re-
gion intensities, and produced as part of the CHIANTI atomic
database collaboration (Landi et al. 2013). In the bottom panel of
Fig. 7, we plot the total theoretical DEMs for each group of loops
obtained starting from a different initial loop condition (distin-
guished with the different colours). Assuming that the loops are
equiprobable (uniformly distributed in log 7') and with the same
cross-section, we divided the temperature range into bins of am-
plitude 0.2 dex on a log T scale, and for each bin considered
a representative loop, i.e. a loop whose maximum temperature
belongs to that bin (our loops are almost isothermal). The total
DEMs are obtained by summing the DEMs of these representa-
tive loops. When more loops have their maximum temperatures
falling in the same bin, we averaged their DEMs.

We obtain cool loops with maximum temperatures covering
the temperature range up to the position of its peak (log 7 ~
4.8 K), except for the interval 4.3 < log T < 4.5, using Ay, (and
v = 1). By adding the DEMs of the intermediate-temperature
loops 25-26, the resulting DEM (black solid line in Fig. 8)
follows the shape of the observed DEMs, except for the inter-
val 4.6 < log T < 4.8, where we have an excess of emission
due to the high density of the loops with maximum tempera-
tures falling in that interval. Only loops 2 and 3, with max-
imum temperatures belonging to this interval, have pressures
such that their DEMs would resemble the observed DEM, but
the solar total pressures at these temperatures and heights, ac-
cording to the model of Avrett & Loeser (2008), are estimated
around 0.1 dyne cm™2, which is much higher than the pressures
of loops 2 and 3 and closer to that of all other loops of Table 1.

lines represent the RTV scaling laws for coro-

-2
(dy ne cm ) nal loops for different values of L/2.
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Fig. 7. Top: calculated DEMs for the quasi-static cool loops 1-3 (solid
blue lines), 4—15 (black), 1618 (red), 19-24 (green) of Table 1, and the
intermediate-temperature loops 25-26 (magenta) of Table 2, compared
to the DEMs of the quiet Sun (dashed) and active region (dotted) from
the CHIANTI atomic database (Dere et al. 2009). Bottom: total DEMs
for each group of loops shown in the fop panel.

Moreover, the presence of the Ly-a peak at log 7 ~ 4.2 K and,
in particular, the negative slope of the radiative loss function
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Fig. 8. Total DEM resulting from the combination of the DEMs of the
loops 1-24 and 25-26 (solid line), compared to the DEMs of the quiet
Sun (dashed) and active region (dotted) from the CHIANTI atomic
database (Landi et al. 2013).

(as explained in Sect. 2.2), produces a relative minimum in all
DEMs, which remains in the total DEM (bottom panel of Fig. 7,
blue, black, green, or red lines). In the literature, however, there
are derived quiet Sun DEMs (Macpherson & Jordan 1999) that
exhibit a minimum around log T ~ 4.2 K.

There is a also minimum in the total DEM at around log T =
4.9 K, which is caused by the lack of cool loops with that max-
imum temperature. This minimum almost corresponds to the
maximum of the function Ay, or better to the point where its
slope starts to change and we have a < 1. Therefore, the lack of
cool loops with maximum temperatures around log 7' = 4.9 K is
not caused by an incomplete exploration of the parameter space,
but by the negative slope of Ay, that prevents their formation.
However, the shape of the averaged DEM of the loops 25-26,
with a flat minimum and a tail extended towards low tempera-
tures, helps fill this gap, improving the agreement with the ob-
served DEM. Since we considered a filling factor of 100% the
total DEM has its highest value. The height of the DEM would
be lower with a lower filling factor.

We also calculate the emission due to Loop 0, obtained in
Sect. 3.1 by performing a simulation using constant heating rate
per unit volume (y = 0) and starting from a quasi-static cool loop
of maximum temperature Ty, ~ 1.2 X 10* K. The loop becomes
a quasi-static coronal loop, after ~2.5 h from the beginning of
the simulation, reaching a high temperature of ~8.5x 10° K. The
evolution of Loop 0’s mean temperature, density and pressure is
shown in Fig. 3.

The discussion that follows is based on considering each
recorded step of the simulation as a single dynamic loop at a
particular instant of its evolution (for example, cooling down or
heating up depending whether we keep the heating on or we shut
it down). Indeed, we show in Fig. 9 that the DEM of each loop
obtained at each time step of the simulation (black dot-dashed
lines) during the first 42 min in which Loop O evolves keep-
ing its temperature lower than 10° K. The red line is the total
DEM obtained by combining all the loops as already explained.
Another possible way to calculate the total DEM is described
in Susino et al. (2010). They simulated the DEM of a multi-
stranded loop by averaging instantaneous DEMs calculated at
n different times, randomly selected throughout the simulation.
This approach is based on the assumption that the states of the
model at n randomly selected times can be used to describe the
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Fig. 9. Calculated DEM of Loop 0 over the first 42 min of the simulation
(red line). This DEM is obtained by averaging the DEM of each loop
obtained at each time step of the simulation (black dash-dotted lines),
and is compared to the DEMs of the quiet Sun (green dashed line) and
active region (green dotted line) from the CHIANTI atomic database
(Landi et al. 2013).

behaviour of n independent strands observed at the same time. In
this analysis, we do not want to concentrate on how the loops are
obtained, rather we only want to show what the emission mea-
sure produced by this particular distribution of loops looks like.
The total DEM resembles the observed DEM very well and we
do not have any of the problems observed with the total DEM
obtained from static loops. We are also able to obtain loops with
maximum temperatures that are prohibitive for the quasi-static
loops (log T ~ 4.2 and ~4.9 K).

Obviously, the resulting DEM depends on the assumption
we are making, and, in particular, on the number of the loops
that fall in a certain temperature interval and/or filling factor,
and in addition, the resulting DEM depends on the distribution
of the loops, and, ultimately, on the distribution of the heating
rates (Antiochos & Noci 1986).

3.5. Non-equilibrium phase of Loop 0

We have additionally examined the behaviour of the vertical
component of velocites in Loop 0. At each time step of the sim-
ulation we computed the mean value weighted by the DEM (e.g.
Spadaro et al. 2003) of the vertical component of velocities in
the temperature bins of 0.20 dex in log T, considering the two
halves of the loop separately. The temperature bins chosen are
centred at log 7 = 4.1, 4.3, 4.5, 4.7, and 4.9. The last two bins
are populated only towards the end of the transient phase. We
found that in the transient phase we are considering, the vertical
velocities are of the same magnitude and sign at both footpoints.

During the transient phase, the mean vertical component of
velocities averaged on the whole loop for the different temper-
ature bins appear in a few bursts lasting 1-4 min and reaching
values of the order of 5~10 kms~' or more in absolute value.
After the first 10—15 min of the simulation, the velocities in
these bursts are systematically negative, adopting a sign con-
vention that corresponds to negative Doppler shifts (redshifts).
Considering the episodic character of these Doppler shifts, the
average values in each temperature bin over the 42 min interval
correspond to redshifts of the order of —1 kms~! or less. These
redshifts, however, are limited to the range of temperatures cov-
ered by the transient phase (see Fig. 9). At later times, as the loop
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reaches near coronal temperatures, the vertical velocities start
to oscillate between blue- and redshifts, with decreasing am-
plitudes until a quasi-static situation is attained. Peter & Judge
(1999) report observed values of about —5 kms~! in the range
logT = 4.5-5, with one exception of nearly zero wavelength
shift. These redshifts are higher than our average redshifts, even
though it should be noted that there are only a few measurements
in the temperature range best covered by the transient phase of
the simulations (log 7' < 4.6). Their Table 3 lists only three lines
nominally forming at or below log7 = 4.7, i.e. Hel 584 A,
C1 1036 A and Cu 1037 A. It is encouraging, however, that
our results for transient phase of Loop 0 show a predominance of
redshifts, although this result should be confirmed and extended
with simulations spanning a variety of loop parameters.

4. Conclusions

We have studied the conditions of existence and stability of cool
loops with T < 0.1 MK through hydrodynamic simulations, in-
troducing an optically thick radiative loss function. We analysed
two different cases, i.e. the constant heating rate either per vol-
ume or per particle. We found that it is possible to obtain quasi-
static (velocities lower than 1 kms™") cool loops, as predicted by
Antiochos & Noci (1986), only by using a constant heating rate
per particle, unlike the previous work in which we used different
radiative loss functions, with a less pronounced Ly-a peak.

We also obtained quasi-static loops with maximum temper-
atures in the range 1-5 x 10° K, using the same optically thick
radiative loss function. These loops are smaller with respect to
coronal loops, but have different characteristics compared to the
static cool loops proposed by Antiochos & Noci (1986) and oth-
ers. These loops obey the scaling laws for coronal loops, con-
trary to results of previous works based on observational data
(e.g. Brown 1996). The loops obtained have indeed low pres-
sures that make their parameters obey the RTV scaling laws, but
these pressures are 1-2 orders of magnitudes lower than those
estimated from observations (Brown 1996).

We examined and discussed the quasi-static solutions
we found and analysed the contributions of the cool and
intermediate-temperature loops to the TR DEM. We find that a
combination of these loops, precisely because of their computed
pressures and assuming that they were uniformly distributed,
can yield a DEM with a shape that is not too far from the ob-
served DEM for log7 < 4.3 and log T > 5.0. However, there
is a pronounced excess emission due to the high density of the
cool loops between 4.6 < log Thax < 4.8 and a deficit around
logT ~ 4.4 (see Sect. 2.2).

We also showed a dynamic loop (Loop 0) obtained by per-
forming a simulation using constant heating rate per unit vol-
ume and starting from a quasi-static cool loop of maximum tem-
perature Ty ~ 1.2 X 10* K. The loop becomes a quasi-static
“coronal” loop, after ~2.5 h from the beginning of the simula-
tion, reaching a high temperature of ~8.5 x 10° K. While the
final state does not reproduce the observed DEM for temper-
atures lower than 10° K, the average DEM of LoopO0, inter-
preted as a combination of a set of evolving dynamic loops, re-
produces the observed DEM very well. The whole simulation
that we called Loop0O can also be considered the evolution of
a single loop emerging from lower atmospheric layers to the
corona. The dimensions of this emerging loop, its initial and final
temperatures, and the timescale of the event are comparable to
the observations and simulations of an emerging magnetic loop,
from photosphere to low corona, as that described in the work of
Guglielmino et al. (2010).

In principle, cool and intermediate-temperature loops could
be observed with current telescopes, but to resolve them in all
their temperature extension, we would need multi-temperature
observations, i.e. different UV lines formed at temperatures be-
tween 0.01-1 MK with resolution of at least 1””. Highly dy-
namical cool, low-lying loops have recently been reported by
Hansteen et al. (2014) using observations obtained with the IRIS
spacecraft (De Pontieu et al. 2014). These kinds of loops are usu-
ally observed as time-dependent, short-lived segments, and not
as complete loops. This could depend on the fact that those loops
extend over a range of temperatures not entirely covered by the
IRIS spectral lines. These observations suggest that the class
of loops reported by Hansteen et al. (2014) is related to short-
lived, episodic heating, and “temporary” loops would therefore
be created and then rapidly collapse. Hansteen et al. also stress
that these are high-density structures and postulate that these
loops follow a near-horizontal magnetic field; hence, they are
low-lying.

Based on the work of Antiochos & Noci (1986) and Paper I,
we expect cool loops to be low-lying even though we focus our
attention on steady-state heating. In this work, we confirm that
the existence, stability, and properties of cool loops greatly de-
pend on the details of the radiative loss function. We also find
that considering a more realistic function, the derived DEMs
depart from the observations (see Fig. 7). On the other hand,
transient loops, like Loop 0, display characteristics that are ap-
pealingly closer to observations, and this class of transient loops
does not necessarily imply impulsive heating. The similarity be-
tween the DEM of the transient phase of Loop 0 and the observed
DEM, together with the new observations of dynamic small scale
structures on the Sun, suggest that we focus our attention on sim-
ulating dynamic cool loops. In addition, we emphasize that this
dynamical loop is characterized, in its non-equilibrium phase,
by the predominance of redshifts at its footpoints appearing in
bursts of the order of —5——10 kms~! and on average of the or-
der of —1 kms™" or less over the 42 min of the transient phase.
Redshifts of this magnitude could be marginally consistent with
existing spectroscopic observations of redshifts in the transition
region in the relative low-temperature range best covered by the
transient phase of the simulation (log7 < 4.6). The episodic
nature of these redshifts could be investigated by IRIS time-
resolved, spectroscopic observations. We also plan to further in-
vestigate this intriguing result with more simulations spanning a
wider range of loop parameters.

With this perspective, an important point to consider is the
effect of partial ionization of hydrogen on the hydrodynam-
ics of the loop plasma. The equations for mass, momentum,
and energy conservation we adopt are for a fully ionized hy-
drogen plasma. This assumption is well verified in our cool
loops, which are characterized by plasma pressures in the range
102-10"" dyne cm~2, according to the calculations reported in
Table 3 of Kuin & Poland (1991). In only three cases, the pres-
sure in the loop is above 107! dyne cm~2, resulting in a signifi-
cant fraction of neutral hydrogen just below 2 x 10* K (see Kuin
& Poland 1991). The fraction increases and becomes impor-
tant even at higher temperatures as the pressure becomes higher.
Since Hansteen et al. (2014) stress that the episodically heated
loops they observe are high-density structures, the simulation of
dynamic cool loops should take the fraction of neutral hydrogen
in the hydrodynamic equations into account.
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