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Abstract Minor bodies of the solar system can be used to measure the spectrum
of the Sun as a star by observing sunlight reflected by their surfaces. To perform
an accurate measurement of the radial velocity of the Sun as a star by this method,
it is necessary to take into account the Doppler shifts introduced by the motion of
the reflecting body. Here we discuss the effect of its rotation. It gives a vanishing
contribution only when the inclinations of the body rotation axis to the directions
of the Sun and of the Earth observer are the same. When this is not the case, the
perturbation of the radial velocity does not vanish and can reach up to ∼ 2.4 m/s
for an asteroid such as 2 Pallas that has an inclination of the spin axis to the
plane of the ecliptic of ∼ 30◦. We introduce a geometric model to compute the
perturbation in the case of a uniformly reflecting body of spherical or triaxial
ellipsoidal shape and provide general results to easily estimate the magnitude of
the effect.

Keywords Techniques: radial velocities – methods: data analysis – Sun: general
– Sun: photosphere – minor planets, asteroids: general.

1 Introduction

Obtaining a spectrum of the Sun integrated over its disc, i.e., directly comparable
with stellar observations, is not an easy task. Generally, the spectrum reflected by
a minor body of the solar system or by one of the Galileian satellites has been used
as a proxy for the spectrum of the Sun as a star (cf. Molaro & Centurión, 2011).
An accurate measurement of the wavelength of a spectral line in a reference frame
at rest with respect to the barycentre of the Sun, or an accurate measurement of
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2 A. F. Lanza, P. Molaro

the radial velocity (hereafter RV) of the Sun as a star, require a correction for the
Doppler shift produced by the motion of the reflecting body (cf. Molaro & Monai,
2012; Molaro et al., 2013). The effect of the orbital motion with respect to the
barycentre of the Sun and to the observer on the Earth can be corrected using the
NASA Horizon ephemerides1, but the effect of the axial rotation of the body must
also be taken into account when a precision of the order of 0.1−1 m/s is required.
This is the case of the observations of the Sun as a star performed to understand
the impact of solar convection and magnetic activity on its disc-integrated RV.
These investigations are of fundamental importance to understand similar effects
in distant solar-like stars that are searched for Earth-like planets (e.g., Lanza et
al., 2011; Dumusque et al., 2012).

This work is dedicated to a precise computation of the effect of the axial
rotation of a reflecting body – hereinafter indicated, for simplicity, as an asteroid
– on the solar radial velocity. For simplicity, we shall assume that the body has a
spherical surface in Sect. 2.2, while the case of a triaxial ellipsoidal shape will be
considered in Sect. 2.4.

We consider a body of uniform albedo. Patches with a different albedo on the
surface of a rotating asteroid may produce distortions of the line profiles in the
reflected spectrum that are modulated with the rotation period of the body. The
origin of the line distortions is the different level of the continuum in the spectrum
reflected from an albedo inhomogeneity. For example, in the case of a dark spot,
the local lower continuum level produces a bump in the spectrum integrated over
the disc of the asteroid as in the case of a spotted star (cf. Fig. 1 in Vogt &
Penrod, 1983). This affects the measured solar RV with a periodic perturbation
having the same period of the rotation of the asteroid2. It is possible to correct for
this effect by fitting a sinusoid and its harmonics to the RV time series with their
fundamental period equal to the rotation period of the asteroid. The coefficients
of this Fourier series will be a slowly varying function of the viewing angle of the
asteroid spin axis that implies that this method can be applied only for time series
that are much shorter than the asteroid and the Earth orbital periods (Haywood
et al., 2015). On the other hand, the effect that we investigate in the present work
is not modulated with the rotation of the asteroid, but varies slowly with the
relative position of the body and of the Earth along their orbits. Therefore, it is
not possible to correct for this effect by the simple method applicable in the case
of the modulation arising from the albedo inhomogeneities.

2 Model

2.1 Reference frame

We consider a reference frame with the origin at the barycentre T of the asteroid.
Its spin axis points in the direction (`S, βS), where `S is the ecliptic longitude and

1 http://ssd.jpl.nasa.gov/?horizons
2 In principle, this effect can be used to measure the rotation period of an asteroid if the

amplitude of the modulation is comparable or larger than the intrinsic radial velocity variations
of the Sun on typical rotational timescales, i.e., a few hours or days. Those intrinsic variations
are dominated by surface convection and have amplitudes of a few m/s (cf. Dumusque et al.,
2011).
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βS the ecliptic latitude of the projection of its North pole onto the celestial sphere
as seen from T . The ecliptic longitude of the Sun and of the (geocentric) observer,
as seen from T at the epoch of sunlight reflection3, are indicated with `� and `⊕,
respectively. The inclinations of the asteroid spin axis to the direction of the Sun
and to the observer lying on the plane of the ecliptic, i� and i⊕, respectively, are
given by:

cos i� = cos(`� − `S) cosβS, (1)

cos i⊕ = cos(`⊕ − `S) cosβS. (2)

The ecliptic longitude of the Sun and of the geocentric observer as seen from T

can be obtained from the longitude of the asteroid as seen from the barycentre
of the Sun `0� and of the Earth `0⊕, respectively, given by the NASA Horizon
ephemerides, as: `� = π − `0� and `⊕ = π − `0⊕. From Eqs. (1) and (2), we see
that both the angles i� and i⊕ vary between βS and π−βS as the asteroid revolves
around the Sun.

2.2 Radial velocity variation induced by the asteroid rotation

We consider a Cartesian reference frame with the origin at T , the z-axis along
the spin axis of the asteroid and the x and y axes in the equatorial plane of
the asteroid. In addition to the Cartesian coordinates, we consider also spherical
coordinates (cf. Fig. 1). The origin of the longitude is chosen in such a way that
the longitude of the centre of the Sun is −α/2, while that of the observer is α/2 at
the time of sunlight reflection (cf. Fig. 2) – a similar approach has been introduced
to model asteroid photometric variations (cf., Harris et al., 1984). Therefore, the
unit vectors from T to the centre of the Sun S and to the geocentric observer O
have Cartesian components:

T̂O = (sin i⊕ cos(α/2), sin i⊕ sin(α/2), cos i⊕), (3)

T̂ S = (sin i� cos(α/2),− sin i� sin(α/2), cos i�). (4)

A generic point on the surface of the asteroid has Cartesian coordinates P ≡
R(sin θ cosλ, sin θ sinλ, cos θ), where 0 ≤ θ ≤ π is its colatitude measured from the
North pole, 0 ≤ λ ≤ 2π its longitude, and R the radius of the body assumed to be
spherical (see Fig. 1). Let us consider the angles ψ⊕ between the normal in P and
the direction to the observer T̂O, and ψ� between the normal and the direction
to the Sun T̂ S. By performing the scalar products between the unit vectors ÔP
and T̂O, and ÔP and T̂ S, the Cartesian components of which are given above, we
find:

µ⊕ ≡ cosψ⊕ = sin i⊕ sin θ cos(λ− α/2) + cos θ cos i⊕, (5)

µ� ≡ cosψ� = sin i� sin θ cos(λ+ α/2) + cos θ cos i�. (6)

3 For simplicity, we can neglect the delays due to the time taken by sunlight to travel from
the Sun to the asteroid and be reflected to the observer because the intervening variations in
the positions of the bodies are too small to significantly affect the angles entering in our model
(see below).
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The rotation velocity of the point P is found by differentiating its position vector
as a function of the time because the longitude of P increases steady in our fixed
reference frame owing to the rotation of the asteroid. Introducing the equatorial
rotation velocity Veq ≡ (2π/Prot)R, where Prot is the rotation period, we find:

V(P ) = Veq(− sin θ sinλ, sin θ cosλ, 0). (7)

The measured RV is a weighted average over the illuminated portion of the as-
teroid’s disc, where the weight of each disc element is proportional to the flux
received from it. Therefore, we need to define the limits of the visible disc from
which a non-zero flux is received by the observer. The limb of the visible disc is
defined by the condition µ⊕ = 0 that gives the longitude limits λ⊕(i)(θ) of the disc
for a given colatitude θ as:

cos(λ⊕(i) − α/2) = − cot i⊕ cot θ, i = 1, 2. (8)

On the other hand, the limb of the illuminated hemisphere of the asteroid is
defined by the condition: µ� = 0. Indicating with λ�(k) the longitude limits of the
illuminated hemisphere at a given colatitude θ, we find:

cos(λ�(k) + α/2) = − cot i� cot θ, k = 1, 2. (9)

We introduce the angles γ⊕ ≡ arccos(− cot i⊕ cos θ) and γ� = arccos(− cot i� cot θ).
For a given colatitude θ on the disc of the asteroid, the visible and illuminated lon-
gitude range [λ1(θ), λ2(θ)] is given by (cf. Fig. 3, where we show the case of the
equatorial plane, i.e., θ = π/2):

[λ1, λ2] = [max(−γ⊕ + α/2,−γ� − α/2),min(γ⊕ + α/2, γ� − α/2)]. (10)

A given point P on the illuminated and visible disc of the asteroid receives the
light coming from the Sun with a Doppler shift corresponding to its radial velocity
with respect to the barycentre of the Sun, VR(rot)1(P ), and reflects the spectrum
towards the observer without any further shift in its rest frame. For simplicity, we
consider here only the component of the radial velocity produced by the rotation
of the body, that we indicate with the subscript (rot). The observer on the Earth
is moving with respect to the reflecting point with a radial velocity VR(rot)(2),
also due to the rotation of the body, that introduces a further Doppler shift in
the spectrum. In conclusion, the observed spectrum coming from P is Doppler
shifted with a radial velocity corresponding to the sum of the two contributions,
i.e., VR(rot)(1)(P ) + V(rot)(2)(P ) (cf. Nieuwenhuijzen, 1969; Gjurchinovski, 2005,
2013).

The perturbation of the measured RV produced by the rotation of the reflecting
body is found by averaging the above Doppler shift over the surface of its visible
and illuminated disc, i.e.:

∆RV =

∫
DI

[VR(rot)(1)(P ) + V(rot)(2)(P )]dF (P )∫
DI
dF (P )

, (11)

where dF (P ) is the flux coming from the area element of the disc around the point
P ; the integration is extended over the illuminated portion of the disc DI.
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The flux coming from a given surface element at frequency ν is given by:

dF (P ) = I(ν, P )µ⊕(P )dA(P ), (12)

where I(ν, P ) is the specific intensity of the element at ν and dA(P ) = R2 sin θ dθdλ
the area of the surface element.

Since the asteroid is illuminated by the Sun, the intensity reflected at a given
point of its surface is given by Lambert’s law (e.g., Kopal, 1959):

I(ν, P ) = I0(ν)a(ν) cosψ� = I0(ν)a(ν)µ�, (13)

where I0(ν) is the intensity for normal reflection and a(ν) the albedo at frequency
ν. The total radial velocity difference produced at the point P by the rotation of
the asteroid is the sum of the projections VR(rot)(1) = V(P ) · T̂O and VR(rot)(2) =

V(P ) · T̂ S; therefore, we obtain:

VR(rot)(1) + VR(rot)(2) = −Veq sin θ [sin i⊕ sin(λ− α/2) + sin i� sin(λ+ α/2)] . (14)
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Fig. 1 The adopted Cartesian reference frame with its origin at the barycentre T of the
asteroid, the z-axis along its spin axis and the x-y plane in its equatorial plane. The spherical
coordinates of a generic point P on its surface are also indicated – θ colatitude from the North
pole; λ longitude; P ′ is the projection of P on the equatorial plane.
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The integral in the numerator of Eq. (11) at a given frequency ν becomes:∫
DI

[VR(rot)(1)(P ) + V(rot)(2)] dF (P ) =

= −VeqI0(ν)a(ν)R2

∫ π

0

dθ

∫ λ2(θ)

λ1(θ)

dλ sin2 θ [sin i⊕ sin(λ− α/2) (15)

+ sin i� sin(λ+ α/2)]µ⊕µ� ,

where the limits of integration λ1 and λ2 have been specified above. In general,
this integral can be evaluated only numerically owing to the non-closed expressions
giving the integration limits λ1,2 as a function of θ. The total flux F at frequency ν
received from the disc of the asteroid that appears in the denominator of Eq. (11),
becomes:

F = I0(ν)a(ν)R2

∫ π

0

dθ

∫ λ2(θ)

λ1(θ)

dλµ⊕µ� sin θ, (16)

that can also be integrated numerically.
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Fig. 2 The sub-observer point O and the sub-solar point S in the adopted reference frame with
the origin at the barycentre T of the asteroid. The initial meridian from which the longitude is
measured is chosen so that the longitude of the points S and O be −α/2 and α/2, respectively,
where α is the angle between the directions to the observer and to the Sun with its vertex
at the barycentre of the asteroid T (origin of the Cartesian reference frame). The inclinations
of the TO and TS directions to the spin axis of the asteroid are indicated as i⊕ and i�,
respectively.
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In conclusion, the radial velocity perturbation is given by:

∆RV =

= −Veq

∫ π
0

∫ λ2(θ)

λ1(θ)
sin2 θ [sin i⊕ sin(λ− α/2) + sin i� sin(λ+ α/2)]µ⊕µ� dθ dλ∫ π

0

∫ λ2(θ)

λ1(θ)
µ⊕µ� sin θ dθ dλ,

(17)

that is independent of the albedo and the specific intensity at the given frequency.
Therefore, this RV shift can be applied to the whole spectrum.

2.3 A particular case

When the spin axis of the asteroid is orthogonal to the plane of the ecliptic, i.e.,
βS = π/2, Eqs. (1) and (2) gives: i⊕ = i� = π/2. A more general case arises when
the longitudes of the Sun and of the observer are such that i⊕ = i� = i, where the
common inclination i is arbitrary. Now, we shall consider this particular case.
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Fig. 3 Projections of the TO and TS directions onto the equatorial plane of the asteroid
(θ = π/2). The extreme longitudes marking the limb of the observable disc (λ⊕(1,2)) and
of the illuminated hemisphere (λ�(1,2)) are indicated, respectively. The limits of integration
to be considered in the RV and flux calculations are λ1 = max(λ�1, λ⊕1) = λ⊕1 and λ2 =
min(λ�2, λ⊕2) = λ�2, in this specific case. For θ 6= π/2, the determination of the limits of
integration is similar (see the text).
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Comparing Eqs. (8) and (9), we see that:

λ⊕(i) = −λ�(k) with i 6= k. (18)

For a given colatitude θ, the longitude of the illuminated portion of the visible disc
ranges from λ1(θ) = λ(θ)⊕(1) to λ2(θ) = λ(θ)�(2) when the limb of the visible disc
at λ(θ)⊕(1) is illuminated (cf. Fig. 3), or from λ1(θ) = λ(θ)�(1) to λ2(θ) = λ(θ)⊕(2)

when the limb at λ(θ)⊕(2) is illuminated.

In the particular case that we are considering, the integral at the numerator
of Eq. (11) becomes:∫
DI

[VR(rot)(1)(P ) + V(rot)(2)] dF (P ) =

= −VeqI0(ν)a(ν)R2 sin i

∫
DI

sin2 θ [sin(λ− α/2) + sin(λ+ α/2)]µ⊕µ� dθ dλ (19)

= −VeqI0(ν)a(ν)R2 sin i

∫ π

0

dθ

∫ λ2(θ)

λ1(θ)

dλ sin2 θ [sin(λ− α/2) + sin(λ+ α/2)]µ⊕µ� ,

where λ1 and λ2 were specified above and are equal to zero when the colatitude θ
corresponds to a point outside the visible disc of the asteroid.

The evaluation of the integral (19) can be made by considering the symmetry
of the integrand function with respect to a change in the sign of λ. Considering
Eqs. (5) and (6), the product µ⊕µ� is invariant under a change in the sign of λ.
On the other hand, the same transformation changes the sign of [sin(λ − α/2) +
sin(λ + α/2)] thus making the integrand in Eq. (19) antisymmetric with respect
to the transformation λ → −λ. When we perform this change of variable in the
integral, the limits of integration changes according to Eq. (18), say, λ⊕(1) becomes
λ�(2) and λ⊕(2) becomes λ�(1). Together with the sign change in the differential
of the integration variable dλ, this results in no change in the limits of integration.
This implies that the integral (19) vanishes. In other words, by integrating the
Doppler shift over the visible disc of the asteroid, we find that the net change in
the solar RV is zero when i⊕ = i�.

2.4 An asteroid of ellipsoidal shape

The model in Sect. 2.2 can be extended to the case of an ellipsoidal asteroid whose
equation referred to the Cartesian reference frame with origin at T is:

f(x, y, z) ≡ x2

a2e
+
y2

b2e
+
z2

c2e
= 1, (20)

where x, y, z are the Cartesian coordinates of a point P on the surface of the body
and ae, be, and ce are its semiaxes (cf. Fig. 4). In the adopted spherical polar
reference frame, the Cartesian coordinates of P can be expressed as a function of
its spherical coordinates as: P ≡ (ae sin θ cosλ, be sin θ sinλ, ce cos θ). Using these
parametric equations for the ellipsoidal surface, we can compute the Cartesian
components of the elementary vectors tθ and tλ that are tangent to the surface
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at the point P in the colatitude and in the longitude directions, respectively. By
differentiating the equations, we find:

tθ = (ae cosλ cos θ, be sinλ cos θ,−ce sin θ)dθ and (21)

tλ = (−ae sinλ sin θ, be cosλ sin θ, 0)dλ. (22)

In general, tλ and tθ are not perpendicular to each other, except when ae = be.
The elementary surface area at the point P can be obtained as the modulus of
the cross product of the two tangent vectors, i.e., dA = |tθ × tλ| that can be easily
computed from their Cartesian components.

The unit normal n̂ at P is parallel to ∇f(x, y, z). Expressing the Cartesian
components of the gradient by means of the spherical coordinates:

n̂(P ) =
1

G

(
sin θ cosλ

ae
,
sin θ sinλ

be
,
cos θ

ce

)
, (23)

	
  

P’	
  

P	
  

T	
  

z	
  

x	
  

y	
  

ϑ	
  

λ	
  ae	
  

be	
  

ce	
  

tθ	
  
tλ	
  

	
  

Fig. 4 Illustration of the ellipsoidal model adopted to compute radial velocity variations in
Sect. 2.4. The semiaxes of the ellipsoid ae, be, and ce are labelled and are assumed to be
parallel to the axes of the Cartesian reference frame. The spherical polar coordinates λ and θ
of a generic point P on the surface of the ellipsoid are indicated together with the local unit
normal n̂ and the unit vectors tλ and tθ tangent in P in the directions of increasing longitude
and colatitude, respectively. P ′ is the projection of P onto the equatorial plane of the asteroid
with its rotation axis assumed to coincide with the ẑ-axis.
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where

G =

√(
cos2 λ

a2e
+

sin2 λ

b2e

)
sin2 θ +

cos2 θ

c2e
. (24)

The expressions of the unit vectors T̂O and T̂ S do not change for an ellipsoidal
asteroid (see Eqs. 3 and 4), while the projection factors µ⊕ = n̂·T̂O and µ� = n̂·T̂ S
can be obtained from the above components of the unit normal n̂ at each surface
point.

The components of the rotation velocity of a given point P (λ, θ) on the surface
of the ellipsoid can be obtained by differentiating its longitude with respect to the
time, as in the case of a spherical body. We obtain:

V(P ) =
2π

Prot
(−ae sinλ sin θ, be cosλ sin θ, 0) , (25)

where Prot is its rotation period. This equation can be used to compute the com-
ponents of the rotation velocity that appears in Eq. (11) by performing the scalar
products as in Sect. 2.2.

The integrations in Eq. (11) can be performed numerically by dividing the
ellipsoid into many surface elements and computing the contribution of each ele-
ment to the radial velocity perturbation, i.e., to its numerator, and to the total
flux, i.e, to its denominator. The expression for the elementary flux is not changed
and is given by Eqs. (12) and (13). Finally, the integrals are obtained by summing
the contributions of all the surface elements that are both illuminated by the Sun
(µ� ≥ 0) and visible from the observer (µ⊕ ≥ 0).

3 Results

For some bright asteroids, we list the mean radius, perihelion distance from the
Sun, rotation period, equatorial rotation velocity, ecliptic longitude and latitude
of the spin pole with respect to the J2000 reference frame, and the corresponding
reference in Table 1. Some of the rotation periods are taken from the NASA
Horizon Ephemerides. For 20 Massalia there is an ambiguity in the longitude
of the pole λS, so both values are listed. In our case, the maximum value of
Veq = 92.27 m/s is achieved in the case of 1 Ceres.

The angle α between the direction of the observer and that of the Sun at
the time of light reflection is virtually identical to the Sun-Target-Observer angle
(STO) as given by the Horizon ephemerides. The maximum value of α is estimated
as αmax ∼ arcsin(1.016/q), where q is the minimum heliocentric distance of the
asteroid in AU. This configuration corresponds to the Earth and the Sun seen in
quadrature from the asteroid, while it is at the perihelion and the Earth at the
aphelion. Using the data listed in Table 1, we find αmax ∼ 31◦. The maximum
values of ∆RV are listed in Table 2 in the case of a spherical body. They were
obtained by looking for the maximum radial velocity variation as given by Eq. (17)
when the difference `� − `S is varied from 0◦ to 360◦ and the difference `⊕ − `S =
(`�−`S)±αmax because these two extreme values lead to the largest radial velocity
perturbation.

The ratio of the maximum RV perturbation to the equatorial velocity vs. the
latitude of the spin pole is plotted in Fig. 5 for different values of the angle α,
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Asteroid q R Prot Veq `S βS Reference

(AU) (km) (hr) (m/s) (deg) (deg)

1 Ceres 2.55 480 9.075 92.27 346 82 1
2 Pallas 2.12 275 7.811 63.65 30 −16 2
3 Juno 1.98 117 7.210 28.31 108 38 3
4 Vesta 2.14 265 5.342 86.53 336 63 4

7 Iris 1.84 100 7.139 24.44 15 25 5
20 Massalia 2.06 73 8.098 15.72 31/208 69 3

Table 1 Asteroid parameters. References: 1: Drummond et al. (2014); 2: Carry et al. (2010);
3: Dotto et al. (1995); 4: Thomas et al. (1997); 5: de Pater et al. (1994).

considering a spherical body. This is an adequate assumption for large, bright as-
teroids that deviate from a spherical shape by a negligible amount for our purpose.
For instance, in the case of 1 Ceres, the surface has the shape of an oblate spheroid
with semiaxes ae = be = 967± 10 km and ce = 892± 10 km, i.e. an oblateness less
than 10 percent (Drummond et al., 2014). For 4 Vesta, a reference spheroid with
semiaxes ae = be ∼ 285 km and ce ∼ 229 km provides an approximated description
of the surface (Jaumann et al., 2012). These deviations from a spherical shape
produce a difference of a few cm/s at most owing to the rather high inclination
of the spin axes of 1 Ceres and 4 Vesta to the plane of the ecliptic (cf. Table 2).
In the case of 2 Pallas, the approximating ellipsoid has semiaxes: ae = 275 ± 4,
be = 258 ± 3, and ce = 238 ± 3 km (Carry et al., 2010). Together with the low
inclination of its spin axis to the plane of the ecliptic, this may produce a larger
deviation from the results computed with a spherical shape, of the order of a few
tens of cm/s.

Other reflecting bodies often used to measure the solar RV are the Galilean
satellites. Their parameters are listed in Table 3. Their spin axes are almost aligned
with their orbital angular momenta – the maximum deviation is 0.46 degrees
for Europa (e.g., Henrard & Schwanen, 2004) – and their rotation periods are
synchronized with their orbital periods owing to the strong tidal interaction with
Jupiter. Since their orbits are in the equatorial plane of Jupiter that is inclined
by less than ∼ 4◦ 30′ to the ecliptic, their spin axes are almost orthogonal to the
ecliptic plane and i⊕ ∼ i� ∼ 90◦. Moreover, their distance from the Sun is larger
than in the case of the main-belt asteroids, thus αmax ∼ 14◦. As a consequence,
their maximum radial velocity variation is found to be of a few cm/s.

4 Discussion and conclusions

We provide a method to compute the radial velocity perturbation induced by the
rotation of a solar system body on the reflected solar spectrum. We focus on the
case of a body with a uniform albedo and find that the perturbation depends in
a complex way on the direction of its spin axis and the angle Sun-body-Earth.
We treat both the case of a spherical reflecting body and of a triaxial ellipsoid.
The introduced approach is based on vector scalar products rather than on the
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Asteroid αmax ∆RVmax

(deg) (m/s)

1 Ceres 23.5 1.31× 10−4

2 Pallas 28.6 2.428
3 Juno 30.9 0.361
4 Vesta 28.3 0.060
7 Iris 28.9 0.602

20 Massalia 29.6 3.89× 10−3

Table 2 Maximum RV perturbation for the asteroids in Table 1.

application of spherical trigonometry. With a suitable choice of the reference frame,
we make the Cartesian components of the relevant vectors very simple so that the
scalar products are easily computed.

In the particular case when the angles i� and i⊕ of the body spin axis to the
directions of the Sun and the observer, respectively, are equal, we show that the
radial velocity perturbation vanishes. On the other hand, when the inclination of
the body spin axis to the plane of the ecliptic is less than about ±40◦ and the
Sun-body-Earth angle α ≥ 30◦, the radial velocity perturbation can reach up to

Fig. 5 Maximum values of the ratio ∆RV/Veq vs. the ecliptic latitude βS of the spin pole for
a spherical asteroid. Different linestyles indicate different values of the angle α as labelled.
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Satellite R Prot Veq
(km) (day) (m/s)

Io 1821 1.77 74.84
Europa 1605 3.55 31.98

Ganimede 2631 7.16 26.72
Callisto 2411 16.69 10.50

Table 3 Galileian satellite parameters.

∼ 0.1 of the equatorial rotation velocity of the body (cf. Fig. 5). In the case of
asteroid 2 Pallas that has a spin inclination of ∼ 30◦, the perturbation can reach
∼ 2.4 m/s. For other bright asteroids, such as 1 Ceres and 4 Vesta, the effect is
remarkably smaller, thanks to the rather high inclination of their spin axes to the
plane of the ecliptic (cf. Table 2). However, in the case of 4 Vesta, it is necessary to
take into account the present effect when an accuracy of a few cm/s is required. An
easy estimate of the amplitude of the effect of rotation can be obtained from Fig. 5
when the inclination βS of the spin axis to the ecliptic plane and the maximum
value of the Sun-body-Earth angle αmax are known (cf. Sect. 3).
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