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ABSTRACT

Aims. We assess the importance of tidal evolution and its interplay with magnetic braking in the population of hot-Jupiter planetary
systems.
Methods. By minimizing the total mechanical energy of a given system under the constraint of stellar angular momentum loss, we
rigorously find the conditions for the existence of dynamical equilibrium states. We estimate their duration, in particular when the
wind torque spinning down the star is almost compensated for by the tidal torque spinning it up. We introduce dimensionless variables
to characterize the tidal evolution of observed hot Jupiter systems and discuss their spin and orbital states using generalized Darwin
diagrams based on our new approach.
Results. We show that their orbital properties are related to the effective temperature of their host stars. The long-term evolution of
planets orbiting F- and G-type stars is significantly different owing to the combined effect of magnetic braking and tidal dissipation.
The existence of a quasi-stationary state, in the case of short-period planets, can significantly delay their tidal evolution that would
otherwise bring the planet to fall into its host star. Most of the planets known to orbit F-type stars are presently found to be near this
stationary state, probably in a configuration not too far from what they had when their host star settled on the zero-age main sequence.
Considering the importance of angular momentum loss in the early stages of stellar evolution, our results indicate that it has to be
considered to properly test the migration scenarios of planetary system formation.

Key words. planets and satellites: dynamical evolution and stability – planet-star interactions – stars: late-type – methods: analytical

1. Introduction

Over the past two decades, detection and characterization of
hundreds of exoplanets has revealed an unexpectedly broad di-
versity of planets and orbital configurations. Among the various
detection methods, the radial velocity and transit techniques, two
indirect methods, have so far been the most successful. When
they are combined, they allow one to infer the masses and radii
of the star and planet up to a one-parameter degeneracy (see e.g.
Wright & Gaudi 2013). The easiest planets to detect and fully
characterize are those with a mass comparable to that of Jupiter
in close-in orbits (≤0.1 AU) around main-sequence stars. They
form a significant proportion of the known exoplanets, usually
called the “hot Jupiters”. For these planets, the orbital, plane-
tary, and stellar host main parameters can be precisely and accu-
rately determined. Many of their observed properties, however,
still have to be understood, such as the “radius anomaly” (Guillot
et al. 2006; Laughlin et al. 2011), the origin of the observed ec-
centricities (Ford & Rasio 2008), obliquities (Triaud 2011), or
the very fact that they are orbiting so close to their host stars.
Those properties can result directly from the formation processes
or could have been acquired during the evolutionary lifetime of
the system.

According to the prevailing theory (Pollack et al. 1996;
Mordasini et al. 2008), giant planets are formed within a pro-
toplanetary disk, and require a solid core to first be assembled
to allow efficient subsequent capture and growth within the
relatively short disk lifetime (<∼5 Myr for ∼50 percent of
the protostars, Mamajek 2009). This implies that giant plan-
ets must form beyond the snow line located typically at a few

? Table 4 is available in electronic form at http://www.aanda.org

astronomical units from the star. Hot Jupiters have a semi-major
axis a . 0.1 AU, so they must have undergone some kind of
migration. Two main mechanisms have been proposed: either
migration occurs within the protoplanetary disk and involves
torques between the planet and the surrounding gas (Lin et al.
1996), or alternatively, it can be the result of dynamical insta-
bilities associated with the gravitational interactions among two
or more bodies orbiting the star after the evaporation of the disk
(Rasio & Ford 1996). Those migration theories involve differ-
ent halting mechanisms that can be tested by comparing their
predictions with the observed orbital properties of exoplanets
(Plavchan & Bilinski 2013).

Further secular changes in the orbits of exoplanets can still
be induced by tidal interaction between the planet and the star,
even when the primordial migration mechanism is no longer ef-
fective. The tidal torque scales as the inverse of the sixth power
of the semi-major axis a−6, consequently it is especially impor-
tant in the case of hot Jupiters. To test the migration scenarios, it
is thus crucial to estimate the efficiency of tidal dissipation and
its effects over the evolutionary lifetime of the star. We do not
engage in an exhaustive review but rather recall the three major
limitations for that kind of study: the knowledge of the actual
mechanism responsible for tidal dissipation, its efficiency, and
the effects of the loss of angular momentum of the system
through the magnetic braking of the host.

In the present work, we first review our current knowledge of
the processes ruling the evolution of the angular momentum in
a planetary system, considering both tides and stellar magnetic
braking (Sect. 2). A new general discussion of the equilibrium
configurations that a system can attain during its tidal evolution
including stellar magnetic braking is introduced in Sect. 3. Then
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we apply our theory to a sample of planetary systems and discuss
their evolution using a particularly simple graphic approach that
generalizes the classic Darwin tidal diagrams (Sects. 4 and 5).
Finally, we discuss the implications of our results for tidal dis-
sipation efficiency in late-type stars and for the mechanisms of
formation and evolution of planetary systems (Sect. 6).

2. Tides and angular momentum evolution
in late-type stars

2.1. Tidal dissipation theories

The response of a fluid body to tidal forcing can be separated
into two components: the equilibrium tide that represents a large-
scale, quasi-hydrostatic distortion of the body, and the dynamical
tide, which corresponds to the response of the oscillation modes
that are excited by the time-dependent tidal potential. Since the
first attempts to derive a theory of tides in a fluid body (Zahn
1966a,b,c), the main difficulty has been to identify the physical
processes that are actually responsible for the conversion of the
tidal torque mechanical energy into heat. While turbulent vis-
cosity acting on the equilibrium tide can successfully reproduce
the circularization of stars possessing a large convective enve-
lope (Verbunt & Phinney 1995; Zahn & Bouchet 1989), it fails
to provide sufficient dissipation when the convective turnover
timescale is much longer than the tidal period, which is usu-
ally the case for gaseous planets or low-mass main-sequence
stars (Goodman & Oh 1997). For short-period planets, this re-
duced efficiency of the turbulent viscosity would imply circu-
larization times that are considerably longer than the ages of
their host stars (Ogilvie & Lin 2004). On the other hand, the
development of the dynamical tide theory, including the effects
of the Coriolis force, stellar evolution, magnetic braking, and
resonance locking (Savonije & Witte 2002; Witte & Savonije
2002; Ogilvie & Lin 2004), has improved the estimation of the
efficiency of dissipation in the case of solar-type stars, but the
details of wave excitation and damping have not yet been fully
understood (Goodman & Lackner 2009).

The efficiency of tidal dissipation is usually parametrized by
the dimensionless quality factor Q proportional to the ratio of
the total kinetic energy of the tidal distortion to the energy dis-
sipated in one tidal period (e.g. Zahn 2008). It is convenient to
introduce the reduced quality factor Q′ ≡ (3/2)(Q/k2), where k2
is the Love number of the body and it measures its density strati-
fication, so that Q′ = Q for a homogeneous body without rigidity
(for which k2 = 3/2)1. A lower value of Q′ implies a stronger
tidal dissipation. While some authors have treated Q′ as a con-
stant (Goldreich & Soter 1966; Ferraz-Mello et al. 2008; Jackson
et al. 2008, 2009) many studies have stressed the importance of
including the dependence of Q′ on the tidal frequency, both for
the equilibrium tide (Goldreich & Nicholson 1977; Goodman &
Oh 1997; Leconte et al. 2010; Penev & Sasselov 2011; Remus
et al. 2012) and the dynamical tide (Ogilvie & Lin 2004, 2007).
Specifically, Ogilvie & Lin (2007) have shown in the framework
of the dynamical tide that for solar-type stars, the value of Q′ de-
creases by two to four orders of magnitude when the orbital fre-
quency becomes less than twice the stellar rotational frequency,
because tidal dissipation in the convective zone is substantially
enhanced by the excitation of inertial waves. More massive stars
do not experience as much frequency dependence because the
Coriolis force has little net effect due to their thin convective
envelope.
1 Note that k2 is twice the apsidal motion constant of the star, often
indicated with the same symbol as in e.g. Claret (1995).

Another consequence of the strong effect of the dissipation
of inertial waves is that the average value of Q′ is expected to be
greater for F-type stars than for G-type stars for a given rotation
rate because the former have a shallower convection zone than
the latter. Moreover, since the mass of the outer convection zone
decreases rapidly with increasing stellar mass among F-type
stars, the average value of Q′ is expected to increase by three
to four orders of magnitude when the mass ranges between 1.2
and 1.5 M� (Barker & Ogilvie 2009). Tidal dissipation efficiency
thus strongly depends on the extension of the outer convective
zone, but also on the rotational evolution of the star for which a
quantitative global theory is still needed, as discussed in the next
section.

2.2. Evolution of the rotation of late-type stars

The observed rotational period of stars show a clear, although
not simple dependence with stellar mass and age (see e.g. Kraft
1967; Irwin & Bouvier 2009). While early-type stars remain fast
rotators until the end of the main-sequence, F-, G-, and K-type
stars have a mean rotation velocity that decreases in time. It is
now generally admitted that the convective zone of late-type
stars host a hydromagnetic dynamo at the origin of their mag-
netic activity, which is in turn responsible for the angular mo-
mentum loss (AML). This is generally explained by magnetic
braking, where a magnetized wind can efficiently extract angular
momentum from the star with a very low mass loss rate. In a sim-
plified formulation (see e.g. Kawaler 1988), the wind torque can
be computed considering that the charged particles of the wind
follow the field lines of the corona that are frozen in the plasma
and rotate with the star as if it were a solid body. The angular mo-
mentum is then extracted from the system at a radial distance rA
where the wind velocity equals the Alfvén velocity.

How the Alfvén radius rA depends on the mass, radius, mag-
netic field strength and rotation speed is currently not very well
known. Reliable computations require knowledge of the wind
acceleration profile and the magnetic field geometry above the
surface of the star, which remains a challenge. Using a dipole
field geometry in magnetohydrodynamic simulations, Matt et al.
(2012) computed the mass loss rate expected for different values
of rotational speed and magnetic field strength, and found sig-
nificant differences with the usual analytic prescriptions, such as
those by Kawaler (1988), especially concerning the dependence
of rA on the stellar parameters. Moreover, it may depend on the
geometry of the magnetic field, as shown in Matt & Pudritz
(2008) in the case of a pure quadrupolar field. It is, however,
not yet clear how more complex magnetic configurations will
change the scaling (Pinto et al. 2011). Recent observations in-
deed show a wide variety in the basic properties of stellar mag-
netic fields (Donati & Landstreet 2009), with very different field
strengths, configurations and degree of axi-symmetry, implying
possibly different braking laws with complex dependences on
the stellar parameters and rotation rate.

Another characteristic of the rotation of low-mass stars is
that there is a wide spread in rotation periods at different ages
(Gallet & Bouvier 2013). Interactions with the protoplanetary
disk must play a role during the first 5 Myr or so, but the per-
sistence of fast rotators after a few hundred Myr, and the fi-
nal homogeneous rotation rate at the age of the Sun can only
be produced by different braking laws (Irwin & Bouvier 2009)
between fast and slow rotators. This trend is also observed in
short-period late-type binaries (van’t Veer & Maceroni 1988,
1989; Maceroni & van’t Veer 1991). Initially fast rotators can re-
tain a fast spin on the main sequence if some mechanism induces
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a saturation of the AML rate beyond some threshold angular ve-
locity (Barnes & Sofia 1996). The actual mechanism responsi-
ble for saturation has not yet been clearly identified (Cranmer &
Saar 2011), and the threshold angular velocity ranges between 3
and 15 Ω� depending on the braking law considered (cf. Table 4
in Gallet & Bouvier 2013), where Ω� = 2.85 × 10−6 s−1 is
the present rotation rate of the Sun. Moreover, the surface rota-
tion period is also affected by the internal magnetohydrodynam-
ical transport mechanisms that redistribute angular momentum
inside the stars themselves (see e.g. Charbonnel et al. 2013).

The detailed evolution of the surface rotation thus depends
on physics that has neither been modelled nor observed to date,
but there are two observational facts that can be considered ro-
bustly established. First, the observed specific angular momen-
tum of stars decreases by one (respectively two) order of magni-
tude for initially slow (respectively fast) rotating solar-type stars
between the disappearance of the disk and the age of the Sun.
Second, F-type stars lose angular momentum very slowly dur-
ing main-sequence evolution, and their characteristic spin down
time can be as much as 10 to 100 times longer than that of G-type
stars (Wolff & Simon 1997).

2.3. Effects of magnetic braking on tidal evolution
on short-period planets

Most studies on tidal evolution of close-in planets have consid-
ered individual systems, and they generally neglect the effect
of stellar magnetic braking (e.g. Pätzold et al. 2004; Carone &
Pätzold 2007; Ferraz-Mello et al. 2011). However, the orbital an-
gular momentum of hot Jupiters is of the same order of magni-
tude of the rotation angular momentum of their host stars, and in
some cases, magnetic braking has been shown to be essential to
describe the past evolution of orbital elements (cf. Lanza et al.
2011). In a more general approach, Dobbs-Dixon et al. (2004)
have considered how the evolution of the spin of the host star
can affect the eccentricity of a planetary orbit, and propose that
all main-sequence dwarfs attain a quasi-steady equilibrium state
in which the host star’s AML through the stellar wind is bal-
anced by the tidal transfer of angular momentum from their plan-
ets. Due to insufficient data at the time, their theory remained
conjectural.

A formulation of the long-term tidal evolution of close-in
planets, including dissipation in both the star and planet and the
braking torque, has been proposed by Barker & Ogilvie (2009)
or Bolmont et al. (2012). The former emphasize the importance
of the coupled evolution of rotational and orbital elements, for
it can result in a much faster evolution than simple timescale
estimates predict. The latter show that different stellar spin evo-
lutions have an effect on the orbital evolution mainly for giant
planets and that close-in planets orbiting initially slow rotators
have a significantly shorter lifetime than those around faster ro-
tators. They conclude, however, that differentiating one spin evo-
lution from another, given the present position of planets, can be
very tricky and that better estimates of stellar ages are needed to
constrain tidal-dissipation efficiency. As a consequence, there is
to date no general description of the observed orbital properties
of hot Jupiters as a result of their tidal evolution under the influ-
ence of the magnetic braking of their star. As a matter of fact,
the total angular momentum of the star-planet system is not con-
served in this case and is decreasing with time. This last point
presents a major difficulty when trying to infer the initial prop-
erties of the orbits, and especially the question of primordial ec-
centricity, because the problem is not holomic, and the final state
depends on the initial conditions, as well as on the path taken.

This makes general conclusions on the global properties of the
population of known exoplanets impractical, especially consid-
ering that the unknown quantities can vary from one system to
the other.

There is a way to assess the general outcome of tidal evolu-
tion even when the details of the dissipation mechanism are not
known, using energy considerations alone. Indeed, by examining
the extrema of the total energy of a binary system under the con-
straint of conservation of its total angular momentum, Darwin
(1879) illustrated with a graphical method that the outcome of
tidal evolution can be twofold: either the two bodies spiral in
towards each other until one of them reaches the Roche limit
or an equilibrium state is reached asymptotically. It has become
customary to call the latter systems “Darwin stable”. The exis-
tence of such a stable equilibrium depends on the total angular
momentum of the system, while its fate depends on the rela-
tive distribution of the total angular momentum between stellar
spins and orbital motion. Darwin’s approach consisted in plot-
ting some quantity related to the spin angular momentum of the
system versus another proportional to the orbital angular mo-
mentum. We propose to adopt the same approach but without im-
posing the conservation of total angular momentum on the sys-
tem. This is appropriate in the framework of our consideration of
magnetic braking, because angular momentum is extracted from
the star by the stellar wind. In other words, given that magnetic
braking exerts a torque on the star, the total angular momentum
of the star-planet system is not conserved.

3. Pseudo-stability of tidal equilibrium

3.1. Characterization of the equilibrium
We consider a system formed by a star and a gravitation-
ally bound companion of masses M? and Mp, respectively,
and radii R? and Rp. The periodically varying potential expe-
rienced by both objects generates a tidal disturbance in the fluid.
Regardless of the mechanism, dissipation of the tides is directly
associated with the secular transfer of angular momentum be-
tween the spin and the orbit, as well as a loss of energy from the
system. Hut (1980) used the method of Lagrange multipliers to
rigorously prove that, under the constraint of conservation of to-
tal angular momentum, the minimum of energy yields only one
possible type of equilibrium that is characterized by co-planarity,
circularity, and co-rotation. Including magnetic braking in our
problem then means that the minimization of the energy is no
longer carried out under the constraint of constant angular mo-
mentum, but imposing that it shall be some unknown function.
To rigorously estimate the magnetic braking, the dependence
on the mass loss rate, strength of the magnetic field, stellar ra-
dius, surface gravity, and spin rate must be included (Matt et al.
2012). In the case of the Sun, the mass loss rate is very low
(Ṁ ∼ 10−14 M� yr−1), we assume that comparable mass-loss
rate can be expected for late-type stars on the main-sequence,
and we neglect its effect on the moment of inertia and gravita-
tional forces. For the sake of generality, we consider some sim-
plifications (e.g. dipolar magnetic field and field strength propor-
tional to the rotation rate to some power), and we thus assume
that magnetic braking depends only on the mass, radius, and
rotation rate of the star (as in Kawaler 1988). Thus, for given
star (i.e. for R? and M? fixed), our optimization is carried out
by assuming that the total angular momentum is a function of
the stellar angular velocity alone f (Ω?), which has continuous
first derivative.

The dynamical state of a binary system can be specified by
12 parameters: here we choose to take the six classical orbital
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elements together with the angular velocity vectors of the two
objects. To investigate the exchange and dissipation of energy
and angular momentum, only three orbital elements are relevant:
the semi-major axis a, the eccentricity e, and the angle i between
the orbital angular momentum h and the total angular momen-
tum of the binary L. It is convenient to choose the z-axis along L
and the x-axis such that

L =

00
L

 , h =

h sin i
0

h cos i

 . (1)

with i ∈ [0, π/2[ and h =

√
G M2

?M2
p

M?+Mp
a(1 − e2), G being the grav-

itation constant. In this frame of reference, the angular veloc-
ity of the star and the planet can be defined by their Cartesian
components, i.e.

Ω? =

Ωx
Ωy
Ωz

 , and ωp =

ωx
ωy
ωz

 (2)

where |Ω?| = Ω and |ωp| = ω. The total angular momentum of
the binary can be written as

L = h + C?Ω? + Cpωp, (3)

where Cp and C? denote the moment of inertia about the ro-
tation axis of the planet and the star, which are considered as
rigid bodies, respectively. Both those moments can be written as
C = M(rgR)2 where rg is the non-dimensional radius of gyra-
tion. The total energy of the system is the sum of the mechanical
energy of the orbit and the rotational kinetic energy of the star
and the planet:

E = −G
M?Mp

2a
+

1
2

C?|Ω?|
2 +

1
2

Cp|ωp|
2. (4)

Let x = (a, e, i,Ωx,Ωy,Ωz, ωx, ωy, ωz) be the nonuple of our nine
parameters. We want to find the stationary points of the total
energy E(x) subject to the set of constraints L(x) = f (Ω?) or
equivalently Ψ(x) = L(x) − f (Ω?) = 0. With the chosen z-axis,
we can write f (Ω?) = (0, 0, fz(Ωx,Ωy,Ωz)). We introduce the
Lagrange function Λ defined as

Λ(x, λx, λy, λz) = E(x) +

3∑
j = 1

λ jΨ j(x), (5)

where j is the subscript for the (x, y, z) Cartesian coordinates.
The stationary points of the energy under the given constraint
necessarily satisfy the following condition

∇Λ(x, λx, λy, λz) = 0. (6)

Considering the simplifying assumptions regarding the magnetic
braking introduced above, we assume that fz is a function of
only the stellar angular velocity Ω, and we can write the partial
derivatives of fz for j ∈ {x, y, z} as

∂ fz
∂Ω j

=
d fz
dΩ

∂Ω

∂Ω j
· (7)

Since we have Ω =
√

Ω2
x + Ω2

y + Ωz
2, Eq. (7) is simply

∂ fz
∂Ω j

=
d fz
dΩ

Ω j

Ω
≡ f ′

Ω j

Ω
· (8)

Using Eq. (8) in Eq. (6) gives the following system of twelve
equations:

GM?Mp

a
+ h (λx sin i + λz cos i) = 0 (9)

e
1 − e2 h (λx sin i + λz cos i) = 0 (10)

λx cos i − λz sin i = 0 (11)

Ωx

(
C? − λz

f ′

Ω

)
+ C?λx = 0 (12)

Ωy

(
C? − λz

f ′

Ω

)
+ C?λy = 0 (13)

Ωz

(
C? − λz

f ′

Ω

)
+ C?λz = 0 (14)

ωx + λx = 0 (15)
ωy + λy = 0 (16)
ωz + λz = 0 (17)
h sin i + C?Ωx + Cpωx = 0 (18)
C?Ωy + Cpωy = 0 (19)
h cos i + C?Ωz + Cpωz − fz = 0. (20)

The solutions of this system of twelve equations yield e = i = 0
and Ωx = Ωy = ωx = ωy = 0. The stationary points of the energy
are thus characterized by circularization and co-planarity as in
the case of conserved angular momentum. On the other hand,
the synchronization condition now becomes

ω = n (21)

Ω = n
(
1 −

1
C?

d fz
dΩ

)
(22)

where n is the mean orbital motion, and provided that 1
C?

d fz
dΩ
, 1.

We recover a result similar to the case where magnetic braking is
neglected, but the equilibrium is now characterized by the quasi-
co-rotation of the stellar spin with the orbital mean motion. Let
us define

β ≡ 1 −
1

C?

d fz
dΩ

, (23)

so the equilibrium is characterized by Ω = βn. Now let us ex-
amine the possible values of β. The derivative of the function fz
with respect to Ω can be computed, noting that

d fz
dΩ

=
dL
dt

(
dΩ

dt

)−1

· (24)

Thus Eq. (23) can be written as

dL
dt

= (1 − β)C?
dΩ

dt
· (25)

The rotation rate of the star is controlled by two torques: a)
the magnetized wind torque that can only spin down the star;
and b) the tidal torque, that can only spin up the star when Ω < n.
The parameter β can be seen as the ratio of the tidal torque to the
total torque acting on the star. A value β ≈ 1 corresponds to
the case where the total angular momentum of the system is ap-
proximately conserved and is equivalent to the case where mag-
netic braking is neglected. A value β ≈ 0 corresponds to the case
where the total AML of the system is the AML of the star where
the tidal torque is negligible. Since the total angular momentum

A39, page 4 of 20



C. Damiani and A. F. Lanza: Evolution of angular-momentum-losing exoplanetary systems

of the system can only decrease so that L̇ ≤ 0 at all times, we
immediately see that if β ≤ 1, then necessarily Ω̇ ≤ 0, and if
β ≥ 1 then Ω̇ ≥ 0. In this way, whenever Ω/n > 1, both the tidal
and the wind torques act to spin down the star, i.e. Ω̇ ≤ 0. The
quasi-co-rotation equilibrium of Eq. (22) would then be Ω = nβ
with β > 1, but this is forbidden by Eq. (25) because it would
imply L̇ > 0. The equilibrium state is thus possible only when
Ω/n < 1, or β < 1.

Equation (6) provides necessary but not sufficient conditions
for the minimization problem. The nature of the stationary point
must be investigated using a second partial derivative test to as-
sess whether it is a local minimum, maximum, or saddle point. If
the stationary point of the energy under the constraint of AML is
a minimum, then it would be a stable equilibrium point if the
constraint were constant in time. Since the AML of the star
is time-dependent, a minimum of the energy under this con-
straint can only be a dynamical equilibrium i.e. a pseudo-stable
equilibrium.

3.2. Stability of the equilibrium

Following Hut (1980), we can compute the Hessian matrix H of
the energy using the hypothesis that L(x)− f (Ω?) = 0 to express
the total energy as

E = −G
M?Mp

2a
+

1
2

Cp(ω2
x + ω2

y + ω2
z ) +

1
2C?

((
h sin i + Cpωx

)2

+
(
Cpωy

)2
+

(
fz − h cos i −Cpωz

)2
)
. (26)

Then the Hessian at an equilibrium configuration (i.e. solution
of Eq. (6)) takes the form given in Table 1 with

α =
M?Mp

M? + Mp
a2. (27)

We note that when e = 0, α takes the simple form α = h/n.
If the Hessian is positive definite at an equilibrium point,

then the energy under the constrain of magnetic braking attains a
local minimum at that point. If the Hessian has both positive and
negative eigenvalues at an equilibrium point, then it is a saddle
point. This is also true even if the stationary point is degenerate.
The eigenvalues of H are the real solutions x of the equation

det(H − xI) = 0 (28)

where I represents the unit matrix of dimension (6, 6). After
some algebra, Eq. (28) can be shown to be equivalent to[(

GM?Mp

4a3

(
α

C?
+ β − 4

)
− x

) (
Cp

C?

(
Cp + C?

)
− x

)
−

(
Cp

C?

GM?Mp

2a2n

)2 (GM?Mp

a
β − x

)
×

(
Cp

C?

(
Cp + C?

)
− x

)
×

[(
GM?Mp

a

(
α

C?
+ β

)
− x

) (
Cp

C?

(
Cp + C?

)
− x

)
−

(
Cp

C?

GM?Mp

an

)2 = 0. (29)

The first two solutions come from the two factors on the third
line of Eq. (29):

x1 =
Cp

C?
(Cp + C?), (30)

x2 =
GM?Mp

a
β. (31)

The other factors of Eq. (29) are polynomials of second degree
whose discriminants can be shown to always be positive regard-
less of the value of β. They yield the following four real roots:

x3 =
1
2

(
GM?Mp

4a3

(
α

C?
+ β − 4

)
+

Cp

C?

(
Cp + C?

))
−

1
2

(GM?Mp

4a3

(
α

C?
+ β − 4

)
+

Cp

C?

(
Cp + C?

))2

−
GM?Mp

a3

(
α

C?
+ β − 4

)
Cp

C?

(
Cp + C?

)
+

(
Cp

C?

GM?Mp

na2

)21/2

,

(32)

x4 =
1
2

(
GM?Mp

4a3

(
α

C?
+ β − 4

)
+

Cp

C?
(Cp + C?)

)
+

1
2

(GM?Mp

4a3

(
α

C?
+ β − 4

)
+

Cp

C?
(Cp + C?)

)2

−
GM?Mp

a3

(
α

C?
+ β − 4

)
Cp

C?

(
Cp + C?

)
+

(
Cp

C?

GM?Mp

na2

)21/2

,

(33)

x5 =
1
2

(
GM?Mp

a

(
α

C?
+ β

)
+

Cp

C?
(Cp + C?)

)
−

1
2

(GM?Mp

a

(
α

C?
+ β

)
+

Cp

C?

(
Cp + C?

))2

−4
GM?Mp

a

(
α

C?
+ β

)
Cp

C?
(Cp + C?) + 4

(
Cp

C?

GM?Mp

na

)21/2

,

(34)

x6 =
1
2

(
GM?Mp

a

(
α

C?
+ β

)
+

Cp

C?

(
Cp + C?

))
+

1
2

(GM?Mp

a

(
α

C?
+ β

)
+

Cp

C?

(
Cp + C?

))2

−4
GM?Mp

a

(
α

C?
+ β

)
Cp

C?

(
Cp + C?

)
+ 4

(
Cp

C?

GM?Mp

na

)21/2

·

(35)

From Eq. (30) it is clear that x1 > 0. From Eq. (31) we have

x2 > 0⇔ β > 0. (36)

Next, we have from Eq. (32)

x3 > 0⇔ β > 4 −
α

Cp + C?
· (37)

It follows from Eq. (33) that x3 > 0 ⇒ x4 > 0. Finally, Eq. (34)
yields

x5 > 0⇔ β > −
α

Cp + C?
, (38)

and Eq. (35) provides the last condition x5 > 0 ⇒ x6 > 0. Note
that x2 > 0 ⇒ x5 > 0. We thus conclude that there are two
conditions to be fullfilled to have a pseudo-stable equilibrium:

β > 4 −
α

Cp + C?
(39)

and

β > 0. (40)
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Table 1. Hessian of the energy at an equilibrium point.

H =

GM?Mp

4a3 ( α
C?

+ β − 4) 0 0 0 0 GM?Mp

2a2n
Cp
C?

0 GM?Mp
a β 0 0 0 0

0 0 GM?Mp
a ( α

C?
+ β) Cp

C?

GM?Mp
an 0 0

0 0 Cp
C?

GM?Mp
an

Cp
C?

(Cp + C?) 0 0
0 0 0 0 Cp

C?
(Cp + C?) 0

GM?Mp

2a2n
Cp
C?

0 0 0 0 Cp
C?

(Cp + C?)

Since at equilibrium β = Ω/n, Eq. (40) means that the equi-
librium is pseudo-stable only for prograde orbits. From hereon,
we use the term stable equilibrium to denote what is actually a
pseudo-stable equilibrium of this kind.

Rewriting Eq. (39) at equilibrium, we can show that this
point is characterized by

h > (4 − β)(Cp + C?)n, (41)

which means that the orbital angular momentum at a stable equi-
librium point is greater than 4−n/Ω times the total spin momen-
tum that we would have if the stellar rotation were synchronized
with the orbit.

Our equations reduce to the classical result when magnetic
braking is neglected. Indeed, in this case we have in our formu-
lation β = 1 and Eq. (40) is always fulfilled. This also means
that n = Ω at equilibrium and the stability criterion is then
h > 3(Cp + C?)n, as already found by Hut (1980).

Thus we have rigorously demonstrated that the existence of
a pseudo-stable equilibrium is possible even when taking mag-
netic braking into account. The equilibrium is characterized by
quasi-co-rotation, which follows from Eq. (3) to be

L = G2/3 M?Mp

(M? + Mp)1/3 n−1/3 + (βC? + Cp)n. (42)

This means that the quasi-co-rotation is possible only when the
total angular momentum exceeds a critical value Lc given by

Lc = 4

G2

33

M3
?M3

p

M? + Mp

(
βC? + Cp

)1/4

. (43)

This value depends on β, which is time dependent. Thus as
the system evolves the conditions for the existence of equilib-
rium also change, but the pseudo-stable equilibrium state can be
reached only when 0 < β < 1. When L > Lc there are two
orbital mean motions consistent with the quasi-co-rotation con-
dition, which are pseudo-stable if the orbital angular momen-
tum h exceeds a value hs ≡ (4 − β)(Cp + C?)n. Contrary to the
case where magnetic braking is neglected, this condition does
not always mean that one equilibrium is stable while the other
is not when L > Lc. Indeed, at L = Lc the unique mean motion
corresponding to quasi-co-rotation is

nc =

G2

33

M3
?M3

p

M? + Mp

1/4

(βC? + Cp)−3/4, (44)

but the unique mean motion corresponding to quasi-co-rotation
and h = hs is

ns =

G2
M3
?M3

p

M? + Mp

1/4

(4 − β)−3/4(C? + Cp)−3/4. (45)

At n = ns the total angular momentum is

Ls =

G2
M3
?M3

p

M? + Mp
(4 − β)(C? + Cp)

1/4 (
1 +

βC? + Cp

(4 − β)(C? + Cp)

)
·

(46)

Thus

ns

nc
= 33/4

(
βC? + Cp

(4 − β)(C? + Cp)

)3/4

(47)

and

Ls

Lc
=

33/4

4

(
(4 − β)(C? + Cp)

βC? + Cp

)1/4 (
1 +

βC? + Cp

(4 − β)(C? + Cp)

)
· (48)

Only when β = 1 do we have nc = ns, Lc = Ls and one stable and
one unstable equilibrium state, as in Hut’s theory. Since we have
already established that 0 < β < 1 at a pseudo-stable equilibrium
point, there is one stable and one unstable equilibrium if L > Ls,
since we then have ns < nc and Ls > Lc. The stable equilibrium
has n < ns because it requires h > hs, and h increases with
decreasing n, as can be seen by considering its expression in the
first term on the right-hand side of Eq. (42). This can be seen in
Fig. 1, where the quasi-co-rotation curves are given for different
values of β, and the corresponding values of Lc, nc, and ns are
shown. When Lc < L < Ls, the two quasi-synchronous states
corresponding to L are unstable because n > ns and h < hs.

In conclusion, if L > Ls, there are two possible equilibrium
states, one that is stable, and the other one unstable. This gen-
eralizes the criteria for stability previously defined by Darwin
(1879). Since β evolves in time when we account for the AML,
a system that is at some time Darwin stable might become un-
stable during its evolution. But if the system can keep 0 < β < 1
and n < ns, it will evolve along a series of stable states with
Ω = βn. As long as the wind torque dominates the tidal torque,
i.e. Ω̇ < 0, the in-fall of the planet into the star is delayed. On
the other hand, if L < Lc or Lc ≤ L ≤ Ls, there is no pseudo-
stable equilibrium possible, and the system can be considered
Darwin unstable. This formally establishes the conditions for
quasi-equilibrium when accounting for AML, so in this way, the
tidal evolution of exoplanetary systems can indeed be studied in
terms of Darwin stability.

4. Pseudo-stability of hot Jupiters

For the reasons explained in Sect. 2.3, we only consider the case
of circular and aligned systems. Let us consider the critical angu-
lar momentum Lc in the absence of magnetic braking, i.e. when
β = 1. We denote it as

Lc0 = 4

G2

33

M3
?M3

p

M? + Mp
(C? + Cp)

1/4

. (49)
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Fig. 1. Quasi-co-rotation curves given by Eq. (42) for different values
of β, from top to bottom β = 1, 0.5, 0.25, and 0.1. The critical val-
ues Lc and nc are indicated by vertical and horizontal black lines whose
linestyle corresponds to the different values of β. The red vertical lines
indicate the value of ns, again with the linestyle corresponding to the
different values of β. On each plot, the quasi-co-rotation condition cor-
responds to a pseudo-stable equilibrium for n < ns (i.e. on the part of
the curve on the left of the red line n = ns), provided that the wind
torque dominates the tidal torque. The numerical values correspond to
a 1 M� star and a 1 MJ planet.

At L = Lc0 , the unique mean motion corresponding to co-
rotation, in the absence of magnetic braking, is

nc0 =

G2

33

M3
?M3

p

M? + Mp

1/4 (
C? + Cp

)−3/4
· (50)

The values of Lc0 and nc0 only depend on the masses and radii of
the star and the planet, and there is no need to know the actual
value of β or even the form of f (Ω) to compute them. Using
these notations, the total angular momentum of a circular and
aligned system in units of the critical angular momentum can be
written as

L
Lc0

=
1
4

3 (
n

nc0

)−1/3

+
C?

C? + Cp

Ω

nc0

+
Cp

C? + Cp

ω

nc0

 · (51)

The first term on the right-hand side of Eq. (51) corresponds
to the contribution of the orbital angular momentum h, the sec-
ond and third terms to the stellar and planetary rotational mo-
menta L? and Lp, respectively. We notice the simple relationship
between the critical values with and without AML:

Lc

Lc0

=

(
βC? + Cp

C? + Cp

)1/4

(β > 0), (52)

nc

nc0

=

(
βC? + Cp

C? + Cp

)−3/4

(β > 0), (53)

Ls

Lc0

=
33/4

4
(4 − β)1/4

(
1 +

βC? + Cp

C? + Cp

)1/4

(β < 4), (54)

ns

nc0

=

(
3

4 − β

)3/4

(β < 4). (55)

Fig. 2. Critical orbital period as a function of planetary mass for a stellar
mass and radius corresponding to a G0 (solid) or F0 (dashed) main-
sequence star. If L < Lc, systems with period shorter than the critical
one are Darwin unstable.

Considering that for typical Jupiter-sized planets Cp < 10−4C?,
we can neglect Cp and write

L
Lc0

≈
1
4

3 (
n

nc0

)−1/3

+
Ω

n
n

nc0

 , (56)

Lc

Lc0

≈ β1/4 (β > 0), (57)

nc

nc0

≈ β−3/4 (β > 0), (58)

Ls

Lc0

≈

(
3

4 − β

)3/4

(β < 4). (59)

A given system can have a pseudo-stable equilibrium if
0 < β < 1, which implies Lc < Ls < Lc0 and ns < nc0 < nc.
In Fig. 2, we illustrate the values of the critical orbital period Pc0

corresponding to nc0 for a range of planetary mass and stellar
parameters, neglecting Cp.

Using the dimensionless form given by Eq. (56), we can plot
all the known systems in a Darwin diagram and see how they
relate to the quasi-synchronous (or pseudo-equilibrium) state.
Considering the Exoplanet Orbit Database2, we selected a sam-
ple of transiting planets that orbit a single F-, G-, or K-type
star, with known planetary mass and stellar rotation rate, and for
which no additional companion has been detected. Furthermore,
we restrict our study to the subsample of systems with negligible
eccentricity and projected obliquity λ (e < 0.1 and |λ| < 30◦).
This results in a sample of 109 systems whose parameters are
listed in Table 4.

We plot in Fig. 3 the total angular momentum as a function of
the observed mean motion of the orbit in units of Lc0 and nc0 , re-
spectively. We assumed that the rotation of the planet has already
reached synchronization with the orbit, but, as said previously,
the spin of the planet is negligible. To compute the moments
of inertia we used, for the star, the gyration radius given by the
models of Claret (1995) as a function of mass and Teff , while,
for the planet, we considered a polytropic model of index 1. To
estimate the rotation rate of the star, we computed it from the
measured projected rotational velocity v sin i and stellar radius.
Considering that we have selected transiting systems with neg-
ligible obliquity, it is reasonable to assume that sin i ≈ 1, but
strictly speaking we obtain a lower limit on L.

2 As of May 2014, see http://exoplanets.org
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Fig. 3. Darwin diagram showing the 109 transit-
ing systems known to date with negligible obliq-
uity and eccentricity. The total angular momen-
tum in units of the critical angular momentum
for a conservative system is plotted vs. the ob-
served mean motion of the orbit of the planet in
units of the critical mean motion. The solid line
is, for a given orbit, the contribution of the or-
bital angular momentum to the total momentum,
while the dashed line is the locus of spin-orbit
synchronization. Thin dashed-three-dotted lines
indicate the values L = Lc0 and n = (3/4)3/4nc0 ,
respectively. The red domain corresponds to sys-
tems that cannot be evolving towards a stable
state, whatever the efficiency of tides or AML.
The purple and blue domains contain systems
that could be evolving towards their stable state,
while some of the systems in the blue domain
could already be in their asymptotically stable
orbit.

Since Darwin stable systems must have L > Ls, but Ls < Lc0 ,
comparing the value of the current total angular momentum L
to the critical value Lc0 does not necessarily allow their stabil-
ity to be inferred. Nevertheless, we can reach a conclusion for
some of them as indicated in Fig. 3. First, for the few systems
that currently have L > Lc0 and Ω > n (highlighted in purple in
Fig. 3), the star is necessarily spun down both by the tides and
the wind. Those systems are not currently in a stable state but
could evolve towards it. Second, the systems that have Ω < n
could have 0 < β < 1 and L > Ls, so that they could have a
possible stable state. However the stable state in this case would
imply n < ns < nc0 . Since in this part of the diagram, the tides
can only bring the planet closer to the star, the stable state is im-
possible to reach for systems that have n > nc0 (highlighted in
red in Fig. 3). Regardless of the value of β, they will eventually
plunge into their star, but those that have 0 < β < 1 could first
evolve towards their unstable equilibrium state. When β > 1,
there is no equilibrium possible, and the planet falls directly into
the star. Third, the systems that have n < nc0 and Ω < n (high-
lighted in blue in Fig. 3) are potentially Darwin stable. They
can evolve towards their pseudo-stable state if 0 < β < 1 and
L > Ls. Since ns/nc < (3/4)3/4 when β < 0, the systems that
have n/nc0 < (3/4)3/4 could already be in their pseudo-stable
state if 0 < β < 1.

As previously noted by Matsumura et al. (2010), we see
at once in Fig. 3 that most of the systems of our sample are
indeed Darwin unstable. But accounting for the balance be-
tween the magnetic braking and the tidal torque creates a new
possibility for equilibrium. Matsumura et al. (2010) find that
all planetary systems known at the time were unstable ex-
cept CoRoT-3, CoRoT-6, HD 80606, and WASP-7. Our results
agree for CoRoT-6, but we have rejected CoRoT-3 and WASP-
7 from our sample because they have a measured |λ| > 30◦
and HD 80606 because the star has a stellar companion. We
find in addition that our updated list contains 18 more systems
that fulfil the condition L & Lc0 within the error bars, but for
most of them it is only marginally significant, and only four
systems have L > Lc0 significant at more than 1σ. They are
CoRoT-11, CoRoT-6, Kepler-14, and WASP-38. Among these,

two have n < Ω, therefore, they are migrating outwards and are
thus currently Darwin pseudo-stable. Kepler-14 and WASP-38,
on the other hand, have n > Ω, and with most of their angular
momentum in the form of orbital momentum (h = 26±6(L?+Lp)
and h = 12 ± 1(L? + Lp) respectively), they also have n/nc0 <

(3/4)3/4. They could be in the pseudo-stable state. If we also con-
sider the marginally significant systems with L > Lc0 , we have
14 other systems. Among these, ten have n > nc0 and cannot
evolve toward a stable equilibrium. The other four are CoRoT-
27, HAT-P-20, Kepler-40, and WASP-59, and they could all be
in their pseudo-stable state. In addition, there are two more sys-
tems that could be Darwin stable even if they have L < Lc0 ,
namely HAT-P-16 and WASP-10.

Finally, we note that HAT-P-20 might be mistakenly in-
cluded in our sample because a stellar neighbour has been de-
tected, although the gravitational bound to the primary remains
to be confirmed (Bakos et al. 2011). We also note that the
parameters inferred from the first analysis of CoRoT-11 sug-
gested a circular orbit (Gandolfi et al. 2010), and this is the
value we have adopted. However, a recent re-analysis of CoRoT
light curves based on a Bayesian model selection (Parviainen
et al. 2013) claims to have detected a statistically significant
secondary eclipse, and inferred an eccentricity of the orbit e =
0.35 ± 0.03 from its phase. They have neither performed a de-
tailed light curve modelling nor considered consistency with ra-
dial velocity data, but if this value is confirmed, this would po-
tentially change the derived parameters of the planet. Not only
would this system be discarded from our sample, but a detailed
study would be impossible until a consistent fit of the light curve
and radial velocity data is available.

Even without detailed knowledge of the AML law or tidal
dissipation mechanisms, the use of Darwin diagrams allow the
assessment of the state of tidal evolution and its likely outcome.
For circular and aligned systems, the evolution of the orbital el-
ements only depends on the initial distribution of the angular
momentum between the spin of the star and the orbit. Darwin
diagrams can be used to infer the past evolution of the systems,
as we show in the next section.
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5. Evolution in the Darwin diagram

The temporal evolution of the orbital parameters depends on the
efficiency of tidal dissipation and magnetic braking, which are
currently theoretical challenges as reviewed in Sects. 2.1 and 2.2.
If their actual values are not well known, we expect, however, to
observe a qualitative difference between F- and later-type stars,
because both tidal dissipation and magnetic braking are related
to the extension of their convective zone. We have rigorously
demonstrated that Ω = n is not an equilibrium state when in-
cluding magnetic braking. The conditions for the existence of
a pseudo-stable orbit are time dependent and, if the evolution
could proceed indefinitely, the continuous loss of angular mo-
mentum from the star would eventually bring any systems to an
energy state where no equilibrium is possible. Nevertheless, the
existence of a dynamical equilibrium state is possible even when
L < Lc0 . In this case, the orbit does not necessarily shrink expo-
nentially, but can be first brought towards the quasi-equilibrium
state, which is a time-dependent function of the magnetic brak-
ing law. The pseudo-equilibrium state requires Ω̇ < 0, mean-
ing that angular momentum loss via stellar wind must compen-
sate for the angular momentum gain from the orbit as the planet
attempts to spin up the star.

To find the location of the equilibrium, we need to assume
some form of tidal dissipation and magnetic braking. We use
a formulation based on Barker & Ogilvie (2009), obtained in
the framework of the equilibrium tide assuming a constant Q′.
Adopting a constant Q′ implies that the time lag between the
maximum of the tidal potential and the tidal bulge in each body
scales with the orbital period and that the relevant tidal frequency
is the orbital frequency. This may not give identical numeri-
cal factors in the resulting equations to other formulations of
tidal friction (Goldreich & Soter 1966; Zahn 1977; Hut 1981;
Matsumura et al. 2008). Given our uncertainties on the value
of Q′ and its dependence on the tidal frequency, we feel this is
the most practical way to study the general effects of tidal fric-
tion. We use a Skumanich-type law for magnetic braking with
a torque of magnitude Γmb = −αmbC?Ω3, where the value of
αmb is estimated from observed rotational velocities of stars in
clusters of different ages. Neglecting tides in the planet and the
planetary spin, the following set of dimensionless equations can
be used to describe the temporal evolution of the stellar spin
frequency and the orbital mean motion,

dΩ̃

dt̃
= ñ4

(
1 −

Ω̃

ñ

)
− AΩ̃3, (60)

dñ
dt̃

= 3ñ16/3
(
1 −

Ω̃

ñ

)
, (61)

where Ω̃ and ñ are dimensionless variables that are related to the
ones previously defined by the following relationships:

ñ =
n

nc0

3−3/4, Ω̃ =
Ω

nc0

3−3/4, (62)

and A is a non-dimensional constant defined as

A =
2

39/4αmbQ′nc0

M?

Mp
r5

g

(
Mp

M? + Mp

)−5/2

· (63)

The stationary state, i.e when the torque exerted on the star by
the wind is balanced by the tidal torque, is equivalent to Ω̇ = 0.
According to Eq. (60), this means

Ω̃3 +
ñ3

A
Ω̃ −

ñ4

A
= 0· (64)

Table 2. Model parameters.

Model M? (M�) Mp (MJ) Q′ γ A

#1 1 1 107 1 62
#2 1 10 107 1 0.1
#3 1.4 1 107 0.1 12
#4 1.4 10 107 0.1 0.02

Fig. 4. Stellar rotation period corresponding to torque balance as a func-
tion of the orbital period in days. The solid line is for Model #1, the dot-
ted line for Model #2, the dashed line for Model #3, and the dash-dotted
line for Model #4.

The discriminant of this cubic equation in Ω̃ is always negative
when ñ > 0, thus for each positive ñ there is one real value Ω̃sta
corresponding to the torque balance. Using Cardano’s method,
the real root of Eq. (64) can be written as

Ω̃sta = ñ
3

√
ñ

2A

 3

√
1 +

√
1 +

4ñ
27A

+
3

√
1 −

√
1 +

4ñ
27A

 · (65)

We can then use this expression in Eq. (56) and find the locus
of total angular momentum yielding Ω̇ = 0 in a Darwin dia-
gram. The value of A depends on the masses of both planet and
star, but also on the uncertain parameters Q′ and αmb. For il-
lustration purposes, we computed the stationary locus and the
evolution of Ω and n using Eqs. (60) and (61) for four systems:
two with a solar-like host and a planet of 1 and 10 MJ, respec-
tively (Models 1 and 2), and the other two for the same plane-
tary masses, but with an F-type star (Models 3 and 4). Following
Barker & Ogilvie (2009) and Dobbs-Dixon et al. (2004), we take
αmb = 1.5× 10−14 γ yr where γ = 1.0 for G stars and γ = 0.1 for
F stars. To better appreciate the effect of magnetic braking, we
use the same value of Q′ = 107 for all the models (Jackson et al.
2009). The parameters and the corresponding values of A for the
four models are given in Table 2. In the Darwin diagram, the
locus of the stationary state defines for each orbital frequency a
unique stellar rotational velocity. It is illustrated in Fig. 4 by dis-
playing the corresponding stellar rotation period as a function of
the orbital period. For the more massive planet, the stationary
state is very close to synchronization for a wide range of the or-
bital mean motion, regardless of the mass of the star, whereas the
frequency ratio takes a greater value for the Jupiter-size planet,
and is more dependent on the mass of the star.

To understand how and when a system can reach the locus
of stationary rotation rate, we computed for each model several
evolutionary paths characterized by different initial stellar and
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Fig. 5. Darwin diagram showing the evolution of the angular momentum of planetary systems under the action of both tidal dissipation and
magnetic braking. The evolutionary tracks are shown in different colours for different combinations of stellar and planetary mass. Models include
a solar-like star (top) or an F-type star (bottom) and a Jupiter mass (left) or 10 times the mass of Jupiter (right) planet. The black dashed line is the
locus of synchronization Ω = n, while the dotted line is the locus of balance between the rate of AML due to the wind and the rate of AM transfer
with the orbit (Ω̇ = 0). The solid black vertical line gives the Roche limit where the computation stops. Different initial conditions are indicated
by numbers corresponding to their sets as listed in Table 3. The end of the evolutionary track is symbolized by a star for the planets that reach
the Roche limit in less than 13 Gyr.

orbital periods, using stellar periods of 8, 5, or 2 days typical of
young stars, and took the initial orbital period as half, equal, or
twice the initial stellar rotation period. The different sets of ini-
tial conditions are listed in Table 3. We do not regard all the ini-
tial conditions considered here as equally probable, but only as-
sume them for illustration purposes. We let the system evolve for
13 Gyr or until the planet reaches the Roche limit aR defined as

aR = 2.422Rp

(
M?

Mp

)1/3

, (66)

taking Rp = 1.3RJ for all masses. The results are presented in
Fig. 5. When the planet reaches the Roche limit before 13 Gyr,
we indicate the end of the track by a star. An evolution lasting
13 Gyr is remarkably longer than the main-sequence lifetime of
a G- or a F-type star, but we assume this as a conservative value
considering that the tidal dissipation efficiency could be stronger
than considered here, which would result in faster evolution.

The global features of tidal evolution under the constraint of
AML and the connection with the pseudo-equilibrium we have
found in Sect. 3 can be understood as follows. When the stellar
rotation rate is greater than the orbital frequency Ω > n, the tides
and the wind act to spin down the star. In Fig. 5 this corresponds

Table 3. Initial parameters for the different paths shown in Fig. 5.

Set Prot (days) Porb (days)
1 8 16
2 5 10
3 2 4
4 8 8
5 5 5
6 2 2
7 8 4
8 5 2.5
9 2 1

to the domain above the dashed curve where the orbit is slower
than the stellar spin. The first stages of Sets. 1, 2, and 3 fall in
this part of the diagram. There, the value of the parameter β at
the pseudo-equilibrium is bounded by 0 < β < 1, as can be de-
duced from Eq. (25) because dL/dt < 0 and dΩ/dt < 0. If the
wind torque is much greater in magnitude than the tidal torque
exerted on the star, (e.g. G-type star and long-period low-mass
planet), the pseudo-equilibrium is characterized by β → 0 be-
cause the total angular momentum loss in Eq. (25) corresponds
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to the decrease in the stellar angular velocity. In this case, the
star spins down faster than the orbital adjustment of the planet
and its orbital migration is reduced, leading to an almost vertical
evolution in the diagram. This can be seen on Tracks 1, 2, and 3,
above the dashed line, in the top left-hand panel of Fig. 5. If the
wind torque is smaller in magnitude than the tidal torque (e.g.
F-type star and short-period massive planet), the total angular
momentum loss rate decreases and β → 1−. The planet can mi-
grate outwards toward the pseudo-stable state characterized by
Ω = βn . n. This can be seen on Track 3, above the dashed line,
in the bottom right-hand panel of Fig. 5.

In both cases, the successive stage of the evolution is char-
acterized by the spinning down of the star. If the system reaches
the locus of synchronization Ω = n, the tidal torque vanishes,
and the corresponding β at pseudo-equilibrium tends to zero. The
evolution towards the minimum of energy proceeds, Ω becomes
smaller than n, the orbit is now faster than the stellar spin, and
the tidal torque and wind torque have opposite signs. As long as
the magnitude of the wind torque is greater than the magnitude
of the tidal torque, Ω̇ < 0, the star keeps braking down, but the
magnitude of the wind torque also decreases. In Fig. 5 this cor-
responds to the part of the evolution taking place between the
dashed line and the dotted line. It can be described as follows.

If the increase in the tidal torque and the decrease in the
magnitude of the wind torque are slow enough that the former
remains small compared to the latter (e.g. a long-period planet),
then at pseudo-equilibrium β → 0+ as L̇ → 0− and Ω̇ → 0−.
The system can evolve towards the pseudo-equilibrium charac-
terized by Ω/n = β. As long as there is more orbital angu-
lar momentum than 4 − β times the spin momentum that we
would have if the stellar rotation were synchronized with the or-
bit (e.g. long-period high-mass planet), the pseudo-equilibrium
state is pseudo-stable. In fact, a succession of stable states will
be reached, evolving asymptotically towards Ω̇ → 0, L̇ → 0
and β → 0. This is what happens, for example, along Track 4,
in the top right-hand panel of Fig. 5. The system remains in a
pseudo-stable state for an extended period of time. This results
in slow orbital migration and total angular momentum loss over
the 13 Gyr of the simulation. If there is not enough orbital an-
gular momentum to ensure the stability of the equilibrium, the
system can only evolve towards an unstable pseudo-equilibrium
state when L > Lc and the tidal torque increases. This is what
we see for Track 7, in the top right-hand panel of Fig. 5. The
pseudo-stable state cannot be maintained long enough to prevent
the in-fall of the planet within the time span of the simulation.

In any case, no equilibrium point can be indefinitely sta-
ble under the constraint of angular momentum loss. As the ris-
ing tidal torque becomes larger than the falling wind torque,
eventually β → −∞ as Ω̇ → 0−, but L̇ does not vanish (cf.
Eq. (25)). First, the rising tidal torque approaches the decreasing
wind torque and the evolution proceeds at almost constant stel-
lar rotation frequency, following the locus Ω = Ωsta. This can
be seen, for example, in Track 5, in the top left-hand panel of
Fig. 5. The track approaches the dotted line and follows it for
a while. However, this is not a stable pseudo-equilibrium state,
because there β < 0, but it can be maintained until the tidal
torque becomes equal to the wind torque, Ω̇ reverses its sign,
and β becomes singular as given by Eq. (25). When Ω̇ ≥ 0, the
tidal torque dominates the wind torque, and necessarily β > 1.
This corresponds in Fig. 5 to the domain below or to the right
of the dotted curve. The pseudo-equilibrium cannot be reached
because it would mean Ω > n.

There are here two possible courses of evolution. On
one hand, if the tidal torque rises faster than the increase

in magnitude of the wind torque, i.e., β → 1+, the planet will
start an almost horizontal evolution in the diagram falling to-
wards the star. This can be seen for all the tracks of the bot-
tom left-hand panel of Fig. 5 below the dotted line. On the other
hand, if the increase in the tidal torque and the increase in the
magnitude of the wind torque are comparable so that Ω̇ ' 0, the
evolution will proceed at almost constant rotation frequency as
long as the wind torque stays comparable to the tidal torque. For
example, this is what happens for Track 7 in the bottom right-
hand panel of Fig. 5. The track starts in the region where Ω̇ < 0,
below the dotted curve. The tidal torque is at first rising faster
than the wind torque and the beginning of the track is almost
horizontal. But when the wind torque and tidal torque become
comparable, the track follows the locus Ω = Ωsta. Eventually,
when the tidal torque overcomes the wind torque, the evolution
resumes an almost horizontal trajectory until the engulfment of
the planet.

In conclusion, we find that in all the cases the continuous
loss of angular momentum due to the stellar wind braking pre-
vents our system from maintaining the pseudo-equilibrium state
because, even if it is reached at some stage of its evolution, it
will eventually become unstable.

5.1. Characteristic timescales of evolution

Our model is too simplistic to accurately describe the angular
momentum evolution of actual stars and planets. But we can
consider that there are different stages of the evolution charac-
terized by different relative importance of the tidal and the wind
torques. Indeed, there are two different processes that impact the
evolution of the system: the loss of angular momentum by the
stellar wind and the transfer of angular momentum from the or-
bit to the spin of the star by tides. Their respective characteristic
timescales can be estimated as

tw =

∣∣∣∣∣L?τw

∣∣∣∣∣ , (67)

where L? is the stellar spin angular momentum and τw is the
wind torque; and

tt =

∣∣∣∣∣ h
τt

∣∣∣∣∣ , (68)

where h is the orbital angular momentum and τt is the tidal
torque. This allows us to set different characteristic timescales of
evolution for different zones of the Darwin diagram. Timescale
estimates are a very rough way of describing the evolution of the
angular momentum exchanges, as already stressed by Barker &
Ogilvie (2009), and we consider here only approximate cases for
simplicity. As discussed in the previous section, there are three
typical regimes that could be encountered at some stages during
the tidal evolution of typical hot Jupiters. Those three regimes
correspond to the wind torque that either dominates, is compara-
ble to, or is dominated by, the tidal torque. We treat them here in
this order, but they do not necessarily all happen for all possible
exoplanetary systems. This depends on the initial distribution of
angular momentum in the system. Furthermore, the stationary
rotation rate ΩSta and all the thresholds introduced to separate
different regimes are sensitive to our model assumptions and
parameter choices. Still, those timescales can be used to infer
trends that can be tested against observations.

We now consider the phases of evolution that are mainly
dominated by the wind AML. When the wind torque is much
greater in amplitude than the tidal torque, we can consider that
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the stellar spin sets the pace of evolution, as long as the ra-
tio of tidal torque to wind torque is not greater than the ratio
of orbital to rotational angular momentum (i.e. tw � tt from
Eqs. (67) and (68)). This is the case for typical stellar rotation
rates of young stars and planets not closer than the 2:1 mean mo-
tion resonance. For moderate rotators, the stellar spin is evolving
with the characteristic timescale τw = α−1

mbΩ−2. For stellar ro-
tation periods of about 7, 10, and 30 days, this corresponds to
about 0.5 Gyr, 1 Gyr, and 10 Gyr, respectively, for G-type stars
(10 times longer for F-type stars). For faster rotators, the satu-
ration of the wind must be accounted for and τw = α−1

mbΩ−1Ω−1
sat.

If we take Ωsat = 5.5 Ω� (Spada et al. 2011), this yields val-
ues of τw of about 50 Myr and 200 Myr for rotation periods of
one and four days for G-type stars (again 10 times longer for
F-type stars). Extremely close-in planets around very fast rota-
tors, if formed, would have tt � tw, so a different evolutionary
timescale would apply.

When the wind torque is comparable to the tidal torque, the
system can enter a stationary state where tidal evolution pro-
ceeds at almost constant stellar spin frequency, which allows
slowing down the migration of the planet. A necessary con-
dition for the establishment of the stationary state is that the
tidal torque be opposite in sign and comparable in magnitude
to the wind torque, and this can be maintained as long as there
is enough orbital angular momentum compared to the stellar
rotational angular momentum to maintain the torque balance.
Therefore, a rough estimation of the minimum possible duration
of the stationary state τsta is given by

τsta =
∆L
L̇

(69)

where ∆L = Lsta − Lstac is the excess of total angular momen-
tum over the minimum value allowing the existence of torque
balance, and L̇ is the angular momentum loss rate correspond-
ing to the value of Ω at the beginning of the stationary phase
assumed to remain constant. Using Eqs. (65) and (56), we can
estimate Lstac and compute the corresponding duration of the sta-
tionary state as a function of the initial mean motion when a sys-
tem enters into the stationary state, given in Fig. 6 for different
stellar and planetary masses.

Stars losing less angular momentum through their wind
(F-type stars) can generally maintain the stationary state longer
than stars with a more efficient wind. For a given orbital dis-
tance, more massive planets can remain in the stationary state
longer than less massive planets. However, the existence of the
stationary state is limited to a maximum value of n/nc0 , which
decreases for increasing mass. For Jupiter-sized planets, the sta-
tionary state cannot be maintained when n & 3.7nc0 , while mas-
sive planets cannot maintain their stationary state when n &
1.3nc0 . In some cases, the stationary state can be maintained for
a timescale longer than the main-sequence lifetime of the star.
For example, this would be the case of a 10 MJ planet entering
the stationary state with n . 0.15−0.3nc0 depending on the mass
of the host star, which represents orbital periods greater than five
to six days. For a Jupiter-sized planet, this would be the case if
it starts with n . 0.4 − 0.9nc0 , which is about a 12−15 day or-
bital period. Finally, lighter planets can remain in the stationary
state for tens of Gyr as long as they enter it when n . 1 − 3nc0

depending on the mass of the host, which corresponds to orbital
period greater than 20 days.

The final stages of the evolution see the planet spiralling into
the star. This part of the evolution happens at almost constant an-
gular momentum. We can calculate the tidal in-spiral time using

Fig. 6. Top: estimates of the maximum possible duration of the station-
ary state τsta as a function of the orbital mean motion in units of the
critical mean motion nc0 . The computations were done for a G-type star
(black) or F-type star (blue) and planetary masses of 0.1 (dashed), 1
(solid), and 10 (dotted) Jupiter masses. We used Q′ = 107 for both G-
and F-type stars, while the magnetic braking coefficient αmb is reduced
by a factor of ten for F-type stars (see text). Bottom: the same, but the
orbital mean motion is in units of n3d = 2π/(3 days), hence independent
of planetary and stellar mass.

the usual formula (see e.g. Barker & Ogilvie 2009):

τa ≡ −
2
13

a
ȧ

(70)

' 7 Gyr
(

Q′

106

) (
M?

M�

)1/2 (
MJup

Mp

)17/4 (
R�
R?

)5

(
C?

C�

)13/4 (
n

nc0

)−13/3 (
1 −

Ω

n

)−1

· (71)

To enter the final phase where the planet spiral inwards, we must
have Ω̇ > 0 and L < Lstac . For a Jupiter-size planet in orbit
around a solar-type star this means n > 3.7nc0 which corresponds

to 0.1 ≤ Ω
n ≤ 0.5 as long as a < aR, so 1 <

(
1 − Ω

n

)−1
< 2.

The in-spiral time is dominated by
(
n/nc0

)−13/3; this implies τa ≤

100 Myr when n > 3.7nc0 for Q′ = 107.
More massive planets enter the final phase of evolution for

lower values of n/nc0 and greater values of n/Ω, but the in-
spiral time is dominated by the factor containing the planet mass.
Typically, for planets of more than 5 MJ, this results in a in-spiral
time τa of the order of Myrs. There is thus a very low probabil-
ity to observe massive planets in this phase of evolution. On the
other hand, low-mass planets must have n & 10nc0 to enter the
tidally dominated phase of evolution, which can compensate for
the effect of the mass term. However, this corresponds to values
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Fig. 7. Same as Fig. 3, but the colour of the sym-
bols indicates the mass of the planet. The dashed
black lines indicate the loci where n = Ω and
n = 2Ω as labelled. The solid black line is, for a
given orbit, the contribution of the orbital angu-
lar momentum to the total momentum. The solid
coloured lines are the best fits for the stationary
locus for planets with Mp ≤ 1 MJ orbiting ei-
ther stars with Teff ≥ 6250 or Teff < 6000 K.
Their colours correspond to the average plane-
tary mass of the respective subsamples. The 90%
confidence interval is given by the dotted lines of
the respective colours.

of Ω
n ≥ 0.9, consequently their in-spiral time can be longer than

the main-sequence lifetime of their host star.
If tidal dissipation is stronger than what is considered here,

since A scales with Q′, this will decrease the value of A that
will in turn decrease the ratio n/Ωsta. In other words, for a given
orbital distance, a stronger tidal dissipation would produce a
stronger tidal torque, and the balance with the wind torque would
be reached for a higher rotation rate. However, τa is directly pro-
portional to Q′, whereas the factor

(
1 − Ω

n

)
does not increase as

fast. Therefore, for given stellar and planetary masses, a stronger
tidal dissipation leads to a smaller τa.

6. Discussion

The evolution of the semi-major axis of exoplanetary orbits re-
sults from the interplay between tides and magnetic braking of
the host stars. As shown in Sect. 4, the observed position of a
given system in the Darwin diagram can help us determine its
future evolution, but the duration of this evolution depends on
the position of the system relative to the stationary state. As re-
called in Sects. 2.1 and 2.2, the relationship between the stellar
and/or planetary parameters and the efficiency of tidal dissipa-
tion and magnetic braking is not well known, and the determi-
nation of the stationary locus for a given system cannot be accu-
rate. However, we expect remarkable differences between F- and
G-type stars, which can be exhibited by the observation of gen-
eral trends at the level of populations. Here, we discuss how the
distribution of the known exoplanetary systems in a Darwin dia-
gram can first, give us information about magnetic braking in F-
and G-type stars and second, information about the initial orbital
and rotational periods at the beginning of the tidal evolution.

6.1. Trends in the Darwin diagram

We again plot the same Darwin diagram as in Fig. 3, but indi-
cate the mass of the planet (Fig. 7) and the effective temperature
of the host star (Fig. 8) by the colour of the points. By com-
paring both diagrams, it is clear that the position in the Darwin

diagram depends not only on the mass of the planet, but also on
the effective temperature of the star. We notice two important
trends: firstly, in Fig. 7 we see that systems with more massive
planets tend to have lower values of n/nc0 ; secondly, in Fig. 8
we see that, for a given orbital n/nc0 , systems with higher total
angular momentum correspond to higher temperature hosts, and
systems with excess rotational angular momentum do not ap-
pear to be uniformly distributed. This is especially visible in the
range 2 ≤ n/nc0 ≤ 5, where systems with high host star temper-
ature (Teff & 6250 K) have a rotational angular momentum that
contributes up to half of the total angular momentum. But for
n/nc0 & 5, the rotational angular momentum excess is moderate,
contributing to about a third of the total angular momentum. We
consider those two main trends in detail.

6.1.1. Planetary mass as a function of n/nc0

Since nc0 is increasing with the planetary mass (Eq. (50)), the
general trend of decreasing mass with increasing n/nc0 mainly
reflects that the planets in our sample have similar orbital peri-
ods (median value at 3.25 days and 95% percentile at 5 days,
the so-called “pile-up” at periods of ∼3 days; see e.g. Gaudi
et al. 2005). For most systems, the orbital angular momentum ac-
counts for at least three quarters of the total angular momentum
L/Lc0 . This results in the general trend of higher total angular
momentum with higher planetary mass. The pile-up of Jupiter
mass planets at three days period has been widely discussed
(Cumming et al. 2008), and its origin is still an open question.
Here, we only notice that the stationary state cannot be main-
tained at greater n/nc0 for higher planetary masses. According
to Fig. 6, for n/nc0 & 1.5, planets with Mp & 3 MJ cannot be
in the stationary state regardless of the efficiency of magnetic
braking of their host stars. They would be in the final stages of
evolution where both the tides and the wind act to precipitate the
planet into the star. For this mass range, this phase is so short
that there is a very low probability of observing planets at those
orbital distances. As nc0 increases with increasing mass, this also
means that the actual value of n corresponding to the end of the
stationary state depends weakly on the mass of the planet. As can
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Fig. 8. Same as Fig. 7, but the colour of the sym-
bols indicates the effective temperature of the
star. The colours of the solid lines give the mean
effective temperature of the stars of both subsam-
ples. The 90% confidence interval is given by the
dotted lines of the respective colours.

be seen in Fig. 6, for a Skumanich-type braking law and a tidal
dissipation efficiency Q′ = 107, the end of the stationary state
corresponds to n/nc0 ≈ 10, 3, and 1 for a 0.1, 1, and 10 Jupiter
mass planet, respectively. This roughly corresponds to orbital
periods of about 3−6, 1.5−4, and 1−2 days, respectively.

Finally, we must stress that the mean critical orbital pe-
riod P̄c0 of our sample is ∼5.85 days. For single-site ground-
based surveys, the probability of detecting a transit is close to
one only for P ≤ 2 days. Multi-site surveys, such as HATNet and
HAT-South, can approach five or six day completeness periods
for very deep transits. This means that planets with n < nc0 are
not well detected and characterized with the current instruments
(Rauer et al. 2014; Walker 2013). The Kepler mission might help
to probe the orbital distribution to greater values, but the confir-
mation of the nature of the candidates from the ground remains
a bottleneck. Examining the distribution of the orbital periods
of Kepler planetary candidates nonetheless reveals that Jupiter-
size candidates are indeed common at periods over ten days but
only in multiple systems. On the contrary, the distribution of sin-
gle Jupiter-size companion show a clear cut-off at around ten
days. Unfortunately, it is not yet possible to quantify the distri-
bution of semi-major axis as a function of the planetary mass for
the single-planet Kepler candidates, because only the detected
period can be considered with some confidence.

6.1.2. Systems with excess rotational angular momentum

Hotter stars generally rotate faster than cooler stars, given that
they lose their angular momentum less efficiently. A system with
a hotter star will thus have proportionally more rotational an-
gular momentum and reach a higher value of L/Lc0 . This ex-
plains easily why systems with higher total angular momentum
generally have higher temperature hosts for any given n/nc0 .
While most systems have about one-fourth of their total angular
momentum in the form of rotational angular momentum, sys-
tems with high temperature hosts (Teff & 6250 K), in the range
2 ≤ n/nc0 ≤ 5, have a rotational angular momentum that con-
tributes up to half of the total angular momentum. They show
an excess of rotational angular momentum. But for n/nc0 & 5,

Fig. 9. Planetary mass, in Jupiter mass, against the mass of the host, in
Sun mass for the systems considered in this analysis.

the rotational angular momentum excess is moderate, contribut-
ing to about one third of the total angular momentum. In Fig. 7,
we also see that the systems that have a large excess of rota-
tional angular momentum (in the range 2 ≤ n/nc0 ≤ 5) are ho-
mogeneous in planetary mass, which ranges between ∼0.6 and
0.8 MJ, while the lower L/Lc0 cluster of systems in this range
of n/nc0 spans a broader mass range between ∼0.2 and 1.5 MJ.
This is a property that is partly shared with the whole sample.
On one hand, the distribution of planet mass as a function of the
host mass is homogeneous for planets that are more massive than
1 MJ. On the other hand, the minimum mass detected around
F-type stars seems to be higher than for G-type stars (Fig. 9).

A selection effect plays a role here, since planets are more
difficult to detect and characterize around fast-rotating stars. For
n/nc0 & 5 and for planets more massive than about 1.0 MJ,
the rotation period PL/2 required to have at least half of the
total angular momentum in the form of rotational angular mo-
mentum is less than about four to six days. This corresponds
to v sin i > 8−10 km s−1 for late-type stars, a value that could
hinder the mass determination of planets in this mass range
(see e.g. Santerne et al. 2012) and affect the completeness of
the surveys. For a lower mass planet, PL/2 increases and sets
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weaker constraints on radial velocities. Moreover, for a given
mass, since the orbital angular momentum decreases for increas-
ing n/nc0 & 5, PL/2 increases with n. Thus, for a given mass, if
we are able to detect a planet around a fast-rotating star having
as much rotational angular momentum than the orbital angular
momentum of the planet, we could also detect a planet of the
same mass on a smaller orbit, with the same orbital-to-rotational
angular momentum ratio, corresponding to a star not rotating as
fast. Thus, for n/nc0 > 5 there seems to be a lack of systems with
planetary mass lower than ∼1 MJ and excess rotational angu-
lar momentum that cannot be explained by observational biases
alone.

This cannot be explained by tides alone either. Indeed, in
this part of the diagram (n/nc0 & 2 and L/Lc0 . 1), if we
neglect magnetic braking, Ω̇ > 0 necessarily and the planets
would follow horizontal paths, leading to their tidal disruption
within one or two characteristic timescales τa. And yet, every-
thing else being the same, the tidal in-spiral time τa is only about
1.5 times greater for an F- than for a G-type star (see Eq. (70)).
Considering that F-type stars rotate faster, τa becomes about
three times greater at the same n/nc0 for an F- than for a G-type
star, because of the effect of the synchronization ratio Ω/n on
τa. The in-spiral time is thus dominated by the planetary mass.
Focusing on systems with Mp ≤ 0.8 MJ that should be free of
observational biases, and provided that the same population of
planets is initially formed around F- and G-type stars, we should
observe as many systems with rotational angular momentum ex-
cess before and after n/nc0 > 5. Actually, since F-type stars have
a shorter main-sequence lifetime than G-type stars, tidal destruc-
tion would be more efficient for the latter, and we should not
observe as many G stars at the same n/nc0 when comparing F-
and G-type hosts. This trend would be reinforced if we consider
that tidal dissipation efficiency could be an order of magnitude
greater for G-type stars.

In contrast, if we consider that the planet can enter the sta-
tionary state and delay its tidal evolution, the distribution of sys-
tems with excess angular momentum can be explained. For a
Skumanich-type braking law and a tidal dissipation efficiency
Q′ = 107, the stationary state can be entered for orbital periods
of more than 1.5 days for a one Jupiter-mass planet orbiting a
G-type star (respectively, P & 3.5 days when orbiting an F-type
star). The same reasoning for planets with Mp = 10 MJ shows
that they can enter the stationary state if their initial period is
more than 0.8 days for G-type stars (respectively P & 1.6 days
when orbiting an F-type star). Finally, less massive planets with
Mp = 0.1 MJ have critical periods of 30−50 days, thus they can
enter the stationary state for periods P & 2.5 days (respectively,
P & 5.8 days when orbiting an F-type star).

Most of the known planets have orbital periods longer than
one day and could be in or near the stationary state. We com-
puted the value of αmb and Q′ that would be required to observe
those planets close to their stationary locus, i.e. with Ω ≈ Ωsta.
Since those two parameters are expected to depend on the spec-
tral type of the host, we divided the sample in two subsamples,
depending on the Teff of the star (systems with Teff ≥ 6250 K
and systems with Teff < 6000 K). The location of the station-
ary state also depends on the planetary mass, and we selected
planets with 0.7 ≤ Mp ≤ 1.1 MJ to ensure statistically rele-
vant sample sizes. Using Eqs. (65) and (56), we computed the
value A that best fits the stationary locus for the two subsam-
ples. From A and using Eq. (63), we get the value of the product
αmbQ′ for each system. We computed the mean to account for
a possible dispersion of the systems around the stationary state
owing to their spread in age. Using a t-test, we find that the two

Fig. 10. Ratio of the orbital mean motion to the stellar angular velocity
vs. the effective temperature of the star in aligned and circular systems.

means of the subsamples are different at the five percent level.
Let αmb = γ1.5 × 10−14 yr and Q′ = ξ107. We cannot indepen-
dently find the value of γ and ξ, but only their product. We find
a mean value of 〈γξ〉 = 2.5 ± 1.5 for the subsample of cool host
stars and 〈γξ〉 = 0.01±0.005 for the hotter host stars. These val-
ues as well as their confidence intervals, are used to plot the lo-
cus of the stationary state represented in colours in Figs. 8 and 7.
The colours indicate the average planetary mass value in Fig. 7,
or the mean effective temperature of the star in Fig. 8. If we as-
sume that the tidal dissipation efficiency is the same for F- and
G-type stars (Q′ = 107), we find the expected order of magnitude
for the magnetic braking coefficient for G-type stars, but about
a factor of ten smaller than expected for F-type stars. However
this approach is very crude, and it is possible that some of the
systems have already gone past the stationary state which would
increase the estimated value of the product γξ. Nevertheless, this
analysis suggests that the combined effect of magnetic braking
and tidal evolution could be significantly different depending on
the effective temperature of the host star. Lastly, let us note that
supposing that many systems could be near the stationary state
only places a lower bound on the value of γξ. Indeed, if tidal dis-
sipation is much weaker than considered here, in particular for
the F-type stars, the position in the Darwin diagram could result
from the formation process and AML of the stars only.

Moreover, we notice that systems with excess rotational an-
gular momentum have Teff & 6200 K and seem to cluster around
the locus where n = 2Ω, while the others span a wider range of
synchronization ratio n/Ω. This can be clearly seen in Fig. 10,
where the ratio n/Ω is displayed as a function of the effective
temperature of the host star for the whole sample. There is a clear
difference between systems with host stars with Teff & 6000 K,
that all have n/Ω < 8, and those with cooler hosts that span a
wide range of the ratio values, generally greater than 2, with a
possible trend indicating higher value of n/Ω for lower effective
temperature. Moreover, almost all systems with Teff & 6250 K
have 1 < n/Ω ≤ 2. With a smaller sample, Lanza (2010) had al-
ready put forward this remarkable dependence. Now, with three
times as much systems, we can definitely confirm this trend. If
magnetic braking is indeed efficient in G-type stars, Ω decreases
with time. The overall value of n/Ω becomes large, and for
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Fig. 11. Orbital mean motion (left) and stellar angular velocity (right)
in units of the Sun’s angular velocity vs. the effective temperature of the
star in aligned and circular systems.

cooler stars, the spread in n/Ω reflects the spread in age among
those systems. On the other hand, F-type stars loose very little
angular momentum through their wind and are not efficiently
braked. We plot in Fig. 11 (right) the observed values of Ω vs.
the effective temperature for the stars of our sample. We observe
that Ω is indeed homogeneous for F-type and larger than for
G-type stars, in agreement with a behaviour that is dominated by
magnetic braking. At the same time, a plot of n vs. the stellar ef-
fective temperature (Fig. 11, left) does not show any remarkable
trend. Thus, for F-type stars, the stellar rotation is fast enough for
the wind torque to dominate the tidal torque, while at the same
time magnetic breaking is weak enough as to not significantly
change the stellar rotation rate. This means that for F-type stars,
the value of n/Ω that we observe today could be similar to the
one attained by the system when it began its tidal evolution.

6.2. Inferring past evolution

In this way, the current position of a system in the Darwin di-
agram not only gives information about its future evolution,
but also constrains its initial orbital and rotational periods.
Depending on the main migration mechanism, the beginning of
the tidal evolution, what we call the initial state, occurs at dif-
ferent ages after the formation of the system. In any case, the
Darwin diagram assumes constant stellar and planetary mass and
radius, so our approach is relevant only once the star has settled
on the zero-age main sequence (ZAMS).

Let us first assume that the main migration ended by the time
the star reached the main sequence, as would be the case for a
disk-driven migration. In this case, planets should halt their mi-
gration where the differential Lindblad torque reduces to zero
(Kuchner & Lecar 2002), which corresponds to the location of
the 2:1 mean motion resonance with the edge of the inner cav-
ity of the disk. Smaller planets might also be trapped slightly
outside of the disk inner cavity (Benítez-Llambay et al. 2011).
Supposing that the strong magnetic field of the star can disrupt
the inner disk region, we expect that the inner disk edge is co-
rotating with, and lies at a few stellar radii from, the central star
(Bouvier et al. 2007). This means that we should have n ≈ Ω for
low mass planets, and n = 2 Ω for a more massive planet when
the disk disappears, typically within the first 5−10 Myr of pre-
main-sequence evolution (Hernández et al. 2010). At this stage,
most late-type stars have rotational periods between two and ten
days (Gallet & Bouvier 2013), so the planets should have or-
bital periods between one and ten days. However, those stars are
in the pre-main sequence phase of their evolution and are still
contracting.

Supposing that the contraction is much faster than tidal in-
teractions, most planets would have n/Ω < 2 when the star
reaches the main sequence. If n/Ω < 1, the planet then has
Prot < Porb < Psta, thus it is driven into the stationary state with
very little change in its mean orbital motion. This phase can last
for about 500 Myr for G-type stars, or 5 Gyr for F-type stars.
When Prot becomes comparable to Psta, and assuming that Porb
has not changed significantly, we have Porb < Prot < Psta, and
most planets around G-type stars will enter the stationary state.
It can be maintained at most for over 1 Gyr for Jupiter-mass
planets, and up to a few tens of Gyr for more massive planets,
while low-mass planets remain in the stationary state at most for
a few 100 Myrs. On the other hand, F-type stars can only re-
tain the more massive planets in the stationary state, since only
small-mass planets with orbital periods longer than about 6 days
can equal the wind torque with their tidal torque. For the same
orbital period, the stationary state can then be maintained longer
for greater mass: at most a few Gyr for Jupiter-mass planets, and
up to a few tens of Gyr for more massive planets. The positions
of known exoplanetary systems in the Darwin diagram agree at
least qualitatively with this kind of temporal evolution.

In migration scenarios involving the secular interaction with
a distant third body so far that it does not take part directly in
the tidal interaction (e.g. Kozai-Lidov induced migration), the
close binary tidal evolution starts some time after the arrival of
the star on the ZAMS. The third body cyclically excites the ec-
centricity of the orbit of the inner planet that can reach values
e ∼ 1. During one of those high-eccentricity excursions, the
planet can experience a close tidal encounter with the star, and
its orbit can be circularized at almost constant orbital angular
momentum. The closest approach before circularization corre-
sponds to a periastron distance ≈aR, thus the final semi-major
axis after circularization will be a ∼ 2aR (Rasio & Ford 1996).
This corresponds to n/nc0 of about 1.7, 2.9, and 16.5 for planets
of mass 10, 1, and 0.1 MJ around G-type stars, and of 2.9, 5.2,
and 29.2 for planets of mass 10, 1, and 0.1 MJ around F-type
stars. This is in reasonably good agreement with the observed
orbital mean motion of some systems, but it cannot explain all
the features of the Darwin diagram, in particular the absence of
low-mass planets around F-type stars (which holds also for ec-
centric systems). Moreover, in this case, for a Skumanich-type
braking law and a tidal dissipation efficiency Q′ = 107, those
planets could not maintain the stationary state, regardless of the
spectral type of the star.

If at the end of the migration Porb < Prot < Psta, the evolu-
tion in the Darwin diagram would first be dominated by the wind
torque. Its duration depends on the stellar rotation frequency
and on the time scale required for the excitation of the eccen-
tricity of the inner planet and its subsequent tidal damping. For
circular and aligned systems, we can assume that this phase is
shorter than the main-sequence lifetime of the star. Then, when
Porb < Psta < Prot, the stationary state is surpassed and the planet
can only dive into the star. For a Jupiter-sized planet, this cor-
responds to stellar rotation periods longer than about 16 days,
for G-type star with a Skumanich-type braking law and a tidal
dissipation efficiency Q′ = 107, and to about 9 days for F-type
stars. The planet would then take no more than a few hundreds
Myrs to reach its Roche limit. For much more massive plan-
ets, this corresponds to stellar rotation periods longer than about
1.0 day for G and F-type stars, and the planet would then take
less than 1 Myr to reach its Roche limit. For lower mass plan-
ets, this corresponds to orbital periods below about two days,
but at those orbital periods they have stationary stellar rotation
periods greater than 40−70 days depending on the stellar mass,
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so they can remain in the wind-dominated part of the momen-
tum evolution for most of the main-sequence lifetime of the star.
In conclusion, except for the less massive planets, those systems
would have a very short lifetime in orbit around their host star
once they have been circularized. However, different values of
tidal dissipation efficiency or, more importantly, magnetic brak-
ing could significantly increase their lifetime by putting them in
the stationary state.

A more accurate knowledge of the age of the systems, to-
gether with more detailed simulations, are required to put some
constraints on tidal dissipation efficiency, magnetic braking, and
migration scenarios.

7. Conclusion

We have rigorously demonstrated for the first time the possible
outcomes of tidal interaction between a planet and a star when
the magnetic braking of the star is considered. We showed that
a pseudo-stable equilibrium state can exist that is characterized
by circularity of the orbit, alignment between the spin of the
planet, the star, and the normal to the orbital plane, but not by
co-rotation. The orbital mean motion of the planet at equilib-
rium is equal to the stellar angular velocity reduced by a fac-
tor that depends on the angular momentum loss rate through the
stellar wind. We proposed a set of dimensionless variables that
allow representing the planets relative to their stationary equi-
librium state in a single diagram, thereby extending a graphical
method first introduced by Darwin (1879). In the stationary state,
the tidal torque can compensate for the wind torque, resulting in
a remarkably different evolution of the angular momentum in
exoplanetary systems around F- or G-type stars.

We provided estimates for the characteristic timescales asso-
ciated with the main phases of this evolution. For a Skumanich-
type braking law and tidal dissipation efficiency Q′ = 107, we
showed that the evolution of the angular momentum when the
star is on the main sequence is mainly driven by magnetic brak-
ing, especially in the first Gyr of the evolution of the system.
In F-type stars, the wind torque is strong enough to dominate
the tidal torque for close-in planets, but at the same time weak
enough not to induce remarkable changes in their semi-major
axis, over periods of a few Gyr. We found a statistically signifi-
cant difference between the distributions of angular momentum
in systems with F and G-type stars and discussed the possibil-
ity that most of the transiting planets in circular and aligned or-
bits are close to their stationary state. The current position in
the Darwin diagram gives information not only about the future
evolution of a given system, but also on its possible initial an-
gular momentum distribution at the beginning of binary tidal
interaction. More detailed studies could help to put constraints
on tidal dissipation efficiency, magnetic braking, and migration
scenarios.

Our approach assumes a constant tidal dissipation efficiency
and a Skumanich-type braking law. As put forward by sev-
eral authors, these approximations may not always be accurate.
Moreover, we overlooked the pre-main-sequence (PMS) phase
of stellar evolution, which can be crucial for testing migration
theories. As explained in Sect. 2.1, the efficiency of tidal dissipa-
tion could be very sensitive to stellar spin, so that from the PMS
to the end of the main sequence, exoplanetary systems with late-
type stars could experience very different amounts of tidal dis-
sipation. Dedicated simulations are required to include the PMS
phase. While our model is too simplistic to accurately describe
the evolution of a particular system, it is helpful to point out
general trends in the populations of close-in companions. For

example, recent results for the rotation periods of Kepler candi-
date host stars showing a dearth of close-in companions around
fast-rotating stars (McQuillan et al. 2013) may be explained
by the effect of magnetic braking on tidal evolution (Teitler &
Königl 2014). Indeed, for a wide range of planetary and stel-
lar masses, the stationary state on such close-in orbits cannot be
maintained. Moreover, the stationary state for planets on close-
in orbits is generally reached at high stellar angular velocity.
This means that the vertical path phase in the Darwin diagram
for close-in planets around fast rotators is generally fast. When
the tidal torque overcomes the wind torque, they quickly spiral
towards their star and are tidally disrupted.

Our results agree with previous studies showing that the final
fate of most known transiting exoplanets is to merge with their
stars (Rasio et al. 1996; Levrard et al. 2009; Matsumura et al.
2010; Jackson et al. 2009; Guillochon et al. 2011). However,
most of those studies estimated Q′? from the orbital decay
timescales obtained by considering tidal interaction alone, i.e.,
by neglecting the effects of magnetic braking. In particular, the
study by Jackson et al. (2009) uses the lower envelope of the
distribution of the semi-major axis and stellar age estimates to
infer the best fitting Q′?. This can lead to underestimating the
tidal dissipation efficiency of the star, if the planets have entered
the stationary state in the past. However, this might be a good es-
timate for Jupiter-sized planets, as far as they started their tidal
evolution so close to their host star to be unable to enter the sta-
tionary state and are probably already in the tidally dominated
part of the evolution. Nevertheless, inferences on the initial semi-
major axis distribution of close-in planets can be significantly af-
fected by the existence of the stationary state. Moreveor, the ex-
istence of the stationary state implies that stars hosting close-in
companions may not be as strongly braked by their wind as their
counterparts without companions. Therefore, the gyrochronol-
ogy law for exoplanets host must be calibrated on a suitable sam-
ple and take this effect into account (see Pont 2009; Lanza 2010;
Poppenhaeger & Wolk 2014).

In conclusion, stellar magnetic braking has to be considered
to properly describe the tidal evolution of close-in exoplanets,
especially on long timescales. Reliable ages and rotation rates of
the host stars are required to put relevant constraints on tidal dis-
sipation efficiency and migration theories. Since the mass of the
planet is crucial for tidal effects, the faint planetary candidates
of the Kepler mission offer limited possibilities for this kind of
study. However, the PLATO mission, recently accepted as a class
M mission for the ESA Cosmic Vision plan (Rauer et al. 2014),
will provide accurate stellar and planetary parameters, including
ages, by the asteroseismic study of the host stars of transiting
planets over a wide range of orbital periods and planetary radius.
Focussing on bright targets, PLATO will allow their radial veloc-
ity follow-up and planetary mass determination. It will thus be
possible to assess the initial distribution of the semi-major axis
of close-in planets and constrain migration theories.
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Table 4. Main stellar and planetary parameters of the systems considered in Sect. 4.

Name Porb a e Mp Rp M? R? Teff v sin i λ
(days) (au) (MJ) (RJ) (M�) (R�) (K) (km s−1) (◦)

CoRoT-11 2.9943 0.044 0 2.350.34
−0.34 1.430.03

−0.03 1.270.05
−0.05 1.370.03

−0.03 6440 ± 120 40.05.0
−5.0 0.12.6

−2.6
CoRoT-12 2.8280 0.040 0.0700.063

−0.04 0.920.07
−0.07 1.440.13

−0.13 1.080.08
−0.07 1.120.10

−0.09 5675 ± 80 1.01.0
−1.0 −

CoRoT-13 4.0352 0.051 0 1.310.08
−0.08 0.890.01

−0.01 1.090.02
−0.02 1.010.03

−0.03 5945 ± 90 4.01.0
−1.0 –

CoRoT-14 1.5121 0.027 0 7.690.45
−0.45 1.090.07

−0.07 1.130.09
−0.09 1.210.08

−0.08 6035 ± 100 9.00.5
−0.5 –

CoRoT-17 3.7681 0.048 0 2.460.28
−0.28 1.020.07

−0.07 1.040.10
−0.10 1.510.05

−0.05 5740 ± 80 4.50.5
−0.5 –

CoRoT-18 1.9001 0.030 0.0400.040
−0.04 3.490.38

−0.38 1.310.18
−0.18 0.950.15

−0.15 1.000.13
−0.13 5440 ± 100 8.01.0

−1.0 10.020.0
−20.0

CoRoT-2 1.7430 0.028 0.0140.008
−0.01 3.280.17

−0.17 1.470.04
−0.04 0.970.06

−0.06 0.900.02
−0.02 5625 ± 120 11.80.5

−0.5 7.24.5
−4.5

CoRoT-25 4.8607 0.058 0 0.270.04
−0.04 1.080.30

−0.10 1.090.11
−0.05 1.190.14

−0.03 6040 ± 90 4.30.5
−0.5 −

CoRoT-26 4.2047 0.052 0 0.480.07
−0.07 1.260.13

−0.07 1.090.06
−0.06 1.790.18

−0.09 5590 ± 100 2.01.0
−1.0 −

CoRoT-27 3.5753 0.047 0.0000.065
−0.00 10.390.77

−0.77 1.010.04
−0.04 1.050.11

−0.11 1.080.18
−0.06 5900 ± 120 4.01.0

−1.0 −

CoRoT-4 9.2020 0.090 0.0000.100
−0.00 0.720.07

−0.07 1.190.06
−0.06 1.160.03

−0.02 1.170.01
−0.03 6190 ± 60 6.41.0

−1.0 −

CoRoT-5 4.0379 0.050 0.0900.090
−0.04 0.460.04

−0.04 1.390.05
−0.05 1.000.02

−0.02 1.190.04
−0.04 6100 ± 65 1.01.0

−1.0 −

CoRoT-6 8.8866 0.085 0.0000.100
−0.00 2.950.33

−0.33 1.170.04
−0.04 1.050.05

−0.05 1.020.03
−0.03 6090 ± 50 7.51.0

−1.0 −

CoRoT-8 6.2123 0.063 0 0.220.03
−0.03 0.570.02

−0.02 0.880.04
−0.04 0.770.02

−0.02 5080 ± 80 2.01.0
−1.0 −

HAT-P-12 3.2131 0.038 0 0.210.01
−0.01 0.960.03

−0.02 0.730.02
−0.02 0.700.02

−0.01 4650 ± 60 0.50.4
−0.4 −

HAT-P-16 2.7760 0.041 0.0360.004
−0.00 4.200.14

−0.14 1.290.07
−0.07 1.220.04

−0.04 1.240.05
−0.05 6158 ± 80 3.50.5

−0.5 10.016.0
−16.0

HAT-P-18 5.5080 0.056 0.0840.048
−0.05 0.200.01

−0.01 0.990.05
−0.05 0.770.03

−0.03 0.750.04
−0.04 4803 ± 80 0.50.5

−0.5 −

HAT-P-19 4.0088 0.047 0.0670.042
−0.04 0.290.02

−0.02 1.130.07
−0.07 0.840.04

−0.04 0.820.05
−0.05 4990 ± 130 0.70.5

−0.5 −

HAT-P-20 2.8753 0.036 0.0150.005
−0.01 7.290.25

−0.25 0.870.03
−0.03 0.760.03

−0.03 0.690.02
−0.02 4595 ± 80 2.10.5

−0.5 −

HAT-P-22 3.2122 0.041 0.0160.009
−0.01 2.150.08

−0.08 1.080.06
−0.06 0.920.04

−0.04 1.040.04
−0.04 5302 ± 80 0.50.5

−0.5 −

HAT-P-24 3.3552 0.047 0.0670.024
−0.02 0.690.04

−0.04 1.240.07
−0.07 1.190.04

−0.04 1.320.07
−0.07 6373 ± 80 10.00.5

−0.5 20.016.0
−16.0

HAT-P-25 3.6528 0.047 0.0320.022
−0.02 0.570.03

−0.03 1.190.08
−0.06 1.010.03

−0.03 0.960.05
−0.04 5500 ± 80 0.50.5

−0.5 −

HAT-P-27 3.0396 0.040 0 0.620.03
−0.03 1.020.07

−0.06 0.920.06
−0.06 0.870.04

−0.04 5190 ± 165 0.60.7
−0.4 24.276.0

−44.5
HAT-P-28 3.2572 0.043 0.0510.033

−0.03 0.630.04
−0.04 1.210.10

−0.10 1.020.05
−0.05 1.100.09

−0.07 5680 ± 90 0.20.5
−0.5 −

HAT-P-29 5.7232 0.067 0.0950.047
−0.05 0.780.06

−0.06 1.110.11
−0.11 1.210.05

−0.05 1.220.13
−0.07 6087 ± 88 3.90.5

−0.5 −

HAT-P-3 2.8997 0.039 0 0.600.02
−0.02 0.900.04

−0.05 0.930.04
−0.05 0.830.03

−0.04 5185 ± 80 0.50.5
−0.5 –

HAT-P-35 3.6467 0.050 0.0250.018
−0.02 1.050.04

−0.04 1.330.10
−0.10 1.240.05

−0.05 1.440.08
−0.08 6096 ± 88 0.50.5

−0.5 −

HAT-P-36 1.3273 0.024 0.0630.032
−0.03 1.840.10

−0.10 1.260.07
−0.07 1.020.05

−0.05 1.100.06
−0.06 5560 ± 100 3.60.5

−0.5 −

HAT-P-37 2.7974 0.038 0.0580.038
−0.04 1.170.11

−0.11 1.180.08
−0.08 0.930.04

−0.04 0.880.06
−0.04 5500 ± 100 3.10.5

−0.5 –
HAT-P-39 3.5439 0.051 0 0.600.10

−0.10 1.570.11
−0.81 1.400.05

−0.05 1.620.08
−0.06 6430 ± 100 12.70.5

−0.5 –
HAT-P-40 4.4572 0.061 0 0.620.08

−0.08 1.730.06
−0.06 1.510.04

−0.51 2.210.06
−0.06 6080 ± 100 6.90.5

−0.5 –
HAT-P-41 2.6940 0.043 0 0.800.10

−0.10 1.690.08
−0.05 1.420.05

−0.05 1.680.06
−0.04 6390 ± 100 19.60.5

−0.5 –
HAT-P-49 2.6915 0.044 0 1.730.21

−0.21 1.410.13
−0.08 1.540.05

−0.05 1.830.14
−0.08 6820 ± 52 16.00.5

−0.5 –
HAT-P-8 3.0763 0.045 0 1.290.05

−0.05 1.500.07
−0.07 1.280.04

−0.04 1.580.08
−0.06 6200 ± 80 11.50.5

−0.5 −9.79.0
−7.7

HAT-P-9 3.9229 0.053 0 0.780.09
−0.09 1.400.06

−0.06 1.280.13
−0.13 1.320.07

−0.07 6350 ± 150 11.91.0
−1.0 16.08.0

−8.0
HATS-2 1.3541 0.023 0 1.350.15

−0.15 1.170.03
−0.03 0.880.04

−0.04 0.900.02
−0.02 5227 ± 95 1.50.5

−0.5 −

HD 149026 2.8759 0.043 0 0.360.02
−0.02 0.650.06

−0.05 1.290.06
−0.05 1.370.12

−0.08 6160 ± 50 6.00.5
−0.5 12.07.0

−7.0
HD 209458 3.5247 0.047 0 0.690.02

−0.02 1.360.01
−0.01 1.130.03

−0.02 1.160.01
−0.02 6065 ± 50 4.50.5

−0.5 −4.41.4
−1.4

HD 97658 9.4909 0.080 0.0640.061
−0.04 0.020.00

−0.00 0.210.02
−0.01 0.750.03

−0.03 0.700.04
−0.03 5119 ± 80 0.50.5

−0.5 –
Kepler-12 4.4380 0.056 0.0000.010

−0.00 0.430.04
−0.04 1.700.03

−0.03 1.170.05
−0.05 1.480.03

−0.03 5947 ± 100 0.80.5
−0.5 –

Kepler-14 6.7901 0.081 0.0350.018
−0.02 8.410.29

−0.29 1.140.07
−0.05 1.510.04

−0.04 2.050.11
−0.08 6395 ± 60 7.91.0

−1.0 –
Kepler-17 1.4857 0.027 0.0000.011

−0.00 2.480.10
−0.10 1.330.04

−0.04 1.160.06
−0.06 1.050.03

−0.03 5781 ± 85 6.02.0
−2.0 –

Kepler-4 3.2135 0.046 0 0.080.01
−0.01 0.360.02

−0.02 1.220.05
−0.09 1.490.07

−0.08 5857 ± 120 2.11.0
−1.0 –

Kepler-40 6.8735 0.081 0 2.180.34
−0.34 1.170.04

−0.04 1.480.06
−0.06 2.130.06

−0.06 6510 ± 100 9.02.0
−2.0 –

Kepler-41 1.8556 0.029 0 0.490.07
−0.07 0.840.03

−0.03 0.940.09
−0.09 0.970.03

−0.03 5660 ± 100 4.51.5
−1.5 –

Kepler-412 1.7209 0.030 0.0040.009
−0.00 0.940.87

−0.87 1.320.04
−0.04 1.170.09

−0.09 1.290.04
−0.04 5750 ± 90 5.01.0

−1.0 –
Kepler-43 3.0241 0.045 0.0000.025

−0.00 3.230.18
−0.18 1.200.06

−0.06 1.320.09
−0.09 1.420.07

−0.07 6041 ± 143 5.51.5
−1.5 –

Kepler-44 3.2467 0.045 0.0000.021
−0.00 1.020.07

−0.07 1.240.07
−0.07 1.190.10

−0.10 1.520.09
−0.09 5757 ± 134 4.02.0

−2.0 –
Kepler-5 3.5485 0.051 0 2.120.08

−0.08 1.430.05
−0.05 1.370.04

−0.06 1.790.04
−0.06 6297 ± 60 4.81.0

−1.0 –
Kepler-6 3.2347 0.046 0 0.670.03

−0.03 1.320.03
−0.03 1.210.04

−0.04 1.390.02
−0.03 5647 ± 44 3.01.0

−1.0 –
Kepler-7 4.8855 0.062 0 0.440.04

−0.04 1.480.05
−0.05 1.350.00

−0.13 1.840.05
−0.07 5933 ± 44 4.20.5

−0.5 –
Kepler-77 3.5788 0.045 0 0.430.03

−0.03 0.960.02
−0.02 0.950.04

−0.04 0.990.02
−0.02 5520 ± 60 1.51.0

−1.0 –
Kepler-8 3.5225 0.048 0 0.590.10

−0.10 1.420.06
−0.06 1.210.07

−0.06 1.490.05
−0.06 6213 ± 150 10.50.7

−0.7 5.07.0
−7.0

OGLE2-TR-L9 2.4855 0.041 0 4.571.51
−1.51 1.610.04

−0.04 1.520.08
−0.08 1.530.04

−0.04 6933 ± 58 39.30.4
−0.4 –

Qatar-1 1.4200 0.023 0 1.090.09
−0.09 1.160.04

−0.04 0.850.03
−0.03 0.820.03

−0.03 4861 ± 125 2.10.8
−0.8 −8.47.1

−7.1
TrES-2 2.4706 0.036 0 1.200.05

−0.05 1.220.04
−0.04 0.980.06

−0.06 1.000.03
−0.03 5850 ± 50 2.01.5

−1.5 −9.012.0
−12.0

TrES-4 3.5539 0.051 0 0.930.08
−0.08 1.780.09

−0.09 1.390.06
−0.06 1.820.07

−0.06 6200 ± 75 9.51.0
−1.0 7.34.6

−4.6
TrES-5 1.4822 0.025 0 1.780.08

−0.08 1.210.02
−0.02 0.890.02

−0.02 0.870.01
−0.01 5171 ± 36 3.80.4

−0.4 –
WASP-10 3.0928 0.038 0.0510.008

−0.01 3.190.12
−0.12 1.080.02

−0.02 0.790.02
−0.03 0.700.01

−0.01 4675 ± 100 3.03.0
−3.0 –

WASP-103 0.9255 0.020 0 1.490.10
−0.10 1.530.07

−0.05 1.220.04
−0.04 1.440.05

−0.03 6110 ± 160 10.60.9
−0.9 –

Notes. The errors on the orbital period and semi-major axis are not reproduced to save space but are typically smaller than the 10−5 days
and 10−3−10−4 AU, respectively.
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Table 4. continued.

Name Porb a e Mp Rp M? R? Teff v sin i λ
(days) (au) (MJ) (RJ) (M�) (R�) (K) (km s−1) (◦)

WASP-11 3.7225 0.044 0 0.540.05
−0.05 0.910.06

−0.03 0.800.03
−0.02 0.740.04

−0.03 4800 ± 100 0.50.2
−0.2 –

WASP-13 4.3530 0.054 0 0.480.06
−0.06 1.390.04

−0.06 1.090.05
−0.05 1.510.03

−0.04 5826 ± 100 5.05.0
−5.0 –

WASP-16 3.1186 0.042 0 0.840.03
−0.03 1.010.08

−0.06 1.000.03
−0.03 0.950.06

−0.05 5700 ± 150 3.01.0
−1.0 −4.211.0

−13.9
WASP-18 0.9415 0.020 0.0080.001

−0.00 10.200.34
−0.34 1.270.06

−0.04 1.220.03
−0.03 1.220.07

−0.05 6400 ± 100 11.01.5
−1.5 4.05.0

−5.0
WASP-19 0.7888 0.016 0.0050.004

−0.00 1.130.04
−0.04 1.390.03

−0.03 0.930.02
−0.02 0.990.02

−0.02 5500 ± 100 4.02.0
−2.0 4.65.2

−5.2
WASP-21 4.3225 0.052 0 0.300.01

−0.01 1.070.06
−0.06 1.010.03

−0.03 1.060.04
−0.04 5800 ± 100 1.50.6

−0.6 –
WASP-22 3.5327 0.047 0.0230.012

−0.01 0.560.10
−0.10 1.120.04

−0.04 1.100.30
−0.30 1.130.03

−0.03 6000 ± 100 3.50.6
−0.6 22.016.0

−16.0
WASP-23 2.9444 0.037 0.0000.062

−0.00 0.870.09
−0.09 0.960.05

−0.05 0.780.13
−0.12 0.770.03

−0.05 5150 ± 100 2.20.3
−0.3 –

WASP-24 2.3412 0.037 0 1.090.04
−0.04 1.300.04

−0.04 1.180.03
−0.03 1.330.03

−0.03 6075 ± 100 7.00.9
−0.9 −4.74.0

−4.0
WASP-25 3.7648 0.047 0 0.580.04

−0.04 1.220.06
−0.05 1.000.03

−0.03 0.920.04
−0.04 5750 ± 100 3.01.0

−1.0 14.66.7
−6.7

WASP-29 3.9227 0.046 0.0300.050
−0.03 0.240.02

−0.02 0.790.06
−0.04 0.820.03

−0.03 0.810.04
−0.04 4800 ± 150 1.50.6

−0.6 –
WASP-32 2.7187 0.039 0 3.450.14

−0.14 1.100.04
−0.04 1.070.05

−0.05 1.090.03
−0.03 6140 ± 95 3.90.4

−0.5 10.56.4
−5.9

WASP-34 4.3177 0.052 0.0380.012
−0.01 0.580.03

−0.03 1.220.11
−0.08 1.010.07

−0.07 0.930.12
−0.12 5700 ± 100 1.40.6

−0.6 –
WASP-35 3.1616 0.043 0 0.720.06

−0.06 1.320.03
−0.03 1.070.02

−0.02 1.090.02
−0.02 5990 ± 80 2.40.6

−0.6 –
WASP-36 1.5374 0.026 0 2.270.09

−0.09 1.270.03
−0.03 1.020.03

−0.03 0.940.02
−0.02 5881 ± 136 3.21.3

−1.3 –
WASP-37 3.5775 0.045 0 1.790.17

−0.17 1.160.07
−0.06 0.930.12

−0.12 1.000.05
−0.05 5800 ± 150 2.41.6

−1.6 –
WASP-38 6.8719 0.076 0.0280.003

−0.00 2.710.10
−0.10 1.090.02

−0.02 1.230.04
−0.04 1.350.02

−0.02 6180 ± 50 7.50.0
−0.3 7.54.7

−6.1
WASP-39 4.0553 0.049 0 0.280.03

−0.03 1.270.04
−0.04 0.930.03

−0.03 0.900.02
−0.02 5400 ± 150 1.40.6

−0.6 –
WASP-4 1.3382 0.023 0 1.220.05

−0.05 1.340.02
−0.03 0.910.05

−0.05 0.910.02
−0.02 5500 ± 150 2.20.8

−0.8 4.034.0
−43.0

WASP-41 3.0524 0.040 0 0.930.06
−0.06 1.200.06

−0.06 0.950.09
−0.09 0.900.05

−0.05 5450 ± 150 1.61.1
−1.1 –

WASP-42 4.9817 0.055 0 0.500.03
−0.03 1.060.05

−0.05 0.880.09
−0.08 0.850.04

−0.04 5200 ± 150 2.70.4
−0.4 –

WASP-43 0.8135 0.014 0 1.780.10
−0.10 0.930.07

−0.09 0.580.05
−0.05 0.600.03

−0.04 4400 ± 200 4.00.4
−0.4 –

WASP-44 2.4238 0.035 0 0.890.06
−0.06 1.140.11

−0.11 0.950.03
−0.03 0.930.07

−0.06 5410 ± 510 3.20.9
−0.9 –

WASP-45 3.1261 0.041 0 1.010.05
−0.05 1.160.28

−0.14 0.910.06
−0.06 0.940.09

−0.07 5140 ± 200 2.30.7
−0.7 –

WASP-46 1.4304 0.024 0 2.100.09
−0.09 1.310.05

−0.05 0.960.03
−0.03 0.920.03

−0.03 5620 ± 160 1.91.2
−1.2 –

WASP-47 4.1591 0.052 0 1.140.06
−0.06 1.150.04

−0.02 1.080.04
−0.04 1.150.03

−0.02 5400 ± 100 3.00.6
−0.6 –

WASP-48 2.1436 0.034 0 0.980.09
−0.09 1.670.08

−0.08 1.190.04
−0.04 1.750.07

−0.07 5920 ± 150 2.40.6
−0.6 –

WASP-49 2.7817 0.038 0 0.380.03
−0.03 1.110.05

−0.05 0.940.08
−0.08 0.980.03

−0.03 5600 ± 150 0.90.3
−0.3 –

WASP-5 1.6284 0.027 0 1.620.06
−0.06 1.140.10

−0.04 1.010.04
−0.04 1.030.07

−0.04 5880 ± 150 3.40.7
−0.7 12.18.0

−10.0
WASP-50 1.9551 0.029 0.0090.011

−0.01 1.470.09
−0.09 1.150.05

−0.05 0.890.08
−0.07 0.840.03

−0.03 5400 ± 100 2.60.5
−0.5 –

WASP-52 1.7498 0.027 0 0.460.02
−0.02 1.270.03

−0.03 0.870.03
−0.03 0.790.02

−0.02 5000 ± 100 2.51.0
−1.0 24.017.0

−9.0
WASP-54 3.6936 0.050 0.0670.033

−0.03 0.630.03
−0.03 1.650.09

−0.08 1.210.03
−0.03 1.830.09

−0.08 6100 ± 100 4.00.8
−0.8 –

WASP-55 4.4656 0.053 0 0.570.04
−0.04 1.300.05

−0.03 1.010.04
−0.04 1.060.03

−0.02 5900 ± 100 3.11.0
−1.0 –

WASP-56 4.6171 0.056 0 0.610.04
−0.04 1.090.04

−0.03 1.110.02
−0.02 1.110.03

−0.02 5600 ± 100 1.50.9
−0.9 –

WASP-57 2.8390 0.039 0 0.680.05
−0.05 0.920.02

−0.01 0.950.03
−0.03 0.840.07

−0.16 5600 ± 100 3.71.3
−1.3 –

WASP-58 5.0172 0.056 0 0.890.07
−0.07 1.370.20

−0.20 0.940.10
−0.10 1.170.13

−0.13 5800 ± 150 2.80.9
−0.9 –

WASP-59 7.9196 0.070 0.1000.042
−0.04 0.860.04

−0.04 0.780.07
−0.07 0.720.04

−0.04 0.610.04
−0.04 4650 ± 150 2.31.5

−1.5 –
WASP-6 3.3610 0.043 0.0540.018

−0.02 0.520.02
−0.02 1.220.05

−0.05 0.930.02
−0.02 0.870.03

−0.04 5450 ± 100 1.41.0
−1.0 –11.018.0

−14.0
WASP-61 3.8559 0.051 0 2.050.08

−0.08 1.240.03
−0.03 1.220.07

−0.07 1.360.03
−0.03 6250 ± 150 10.30.5

−0.5 –
WASP-62 4.4120 0.057 0 0.560.04

−0.04 1.390.06
−0.06 1.250.05

−0.05 1.280.05
−0.05 6230 ± 80 8.70.4

−0.4 –
WASP-63 4.3781 0.057 0 0.380.03

−0.03 1.430.10
−0.06 1.320.05

−0.05 1.880.10
−0.06 5550 ± 100 2.80.5

−0.5 –
WASP-64 1.5733 0.027 0 1.270.08

−0.08 1.270.04
−0.04 1.000.03

−0.03 1.060.03
−0.03 5550 ± 150 3.40.8

−0.8 –
WASP-66 4.0861 0.055 0 2.310.13

−0.13 1.390.09
−0.09 1.300.07

−0.07 1.750.09
−0.09 6600 ± 150 13.40.9

−0.9 –
WASP-67 4.6144 0.052 0 0.420.03

−0.03 1.400.30
−0.20 0.870.04

−0.04 0.870.04
−0.04 5200 ± 100 2.10.4

−0.4 –
WASP-72 2.2167 0.037 0 1.410.06

−0.06 1.010.12
−0.18 1.330.04

−0.04 1.710.16
−0.09 6250 ± 100 6.00.7

−0.7 –
WASP-78 2.1752 0.036 0 0.880.08

−0.08 1.700.11
−0.11 1.330.09

−0.09 2.200.12
−0.12 6100 ± 150 7.20.8

−0.8 –
WASP-80 3.0679 0.034 0.0000.070

−0.00 0.550.04
−0.04 0.950.03

−0.03 0.580.05
−0.05 0.570.02

−0.02 4145 ± 100 3.50.3
−0.3 –

XO-1 3.9415 0.049 0 0.920.08
−0.08 1.210.05

−0.04 1.030.06
−0.06 0.930.04

−0.03 5750 ± 75 1.10.1
−0.1 –

XO-5 4.1878 0.051 0 1.150.09
−0.09 1.030.06

−0.05 1.000.03
−0.03 1.050.05

−0.04 5510 ± 44 1.80.5
−0.5 –
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