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ABSTRACT

Context. The statistics of peaks in weak lensing convergence maps is a promising tool for investigating both the properties of dark
matter haloes and constraining the cosmological parameters.
Aims. We study how the number of detectable peaks and its scaling with redshift depend upon the cluster’s dark matter halo profiles
and use peak statistics to constrain the parameters of the mass-concentration (MC) relation. We investigate which constraints the
Euclid mission can set on the MC coefficients taking degeneracies with the cosmological parameters into account, too.
Methods. To this end, we first estimated the number of peaks and its redshift distribution for different MC relations and found that the
steeper the mass dependence and the greater the normalisation, the larger the number of detectable clusters, with the total number of
peaks changing up to 40% depending on the MC relation. We then performed a Fisher matrix forecast of the errors on the MC relation
parameters, as well as on cosmological parameters.
Results. We find that peak number counts detected by Euclid can determine the normalization Av, the mass Bv, redshift Cv slopes,
and intrinsic scatter σv of the MC relation to an unprecedented accuracy, which is σ(Av)/Av = 1%, σ(Bv)/Bv = 4%, σ(Cv)/Cv = 9%,
and σ(σv)/σv = 1% if all cosmological parameters are assumed to be known. If we relax this severe assumption, constraints are
degraded, but remarkably good results can be restored by setting only some of the parameters or combining peak counts with Planck
data. This precision can give insight into competing scenarios of structure formation and evolution and into the role of baryons in
cluster assembling. Alternatively, for a fixed MC relation, future peak counts can perform as well as current BAO and SNeIa when
combined with Planck.

Key words. gravitational lensing: weak – galaxies: clusters: general

1. Introduction

A clear picture of the formation and evolution of cosmic
structures requires a good understanding of the interplay be-
tween astrophysical processes and the cosmological framework.
As dark matter-dominated, nearly virialised objects, clusters
of galaxies should be relatively easy to sort out. The hier-
archical cold dark matter scenario with a cosmological con-
stant (ΛCDM) can explain many features of galaxy clusters.
Their density profile over most radii is accurately reproduced
by the Navarro-Frenk-White (NFW) density profile (Navarro
et al. 1996, 1997), and the relationship between mass and
concentration is accurately predicted.

The concentration measures the halo central density rela-
tive to outer regions and is related to the cluster properties at
the formation time, in particular to its virial mass and redshift
(Bullock et al. 2001). Lower mass and smaller redshift clus-
ters should show higher concentrations, with a moderate evo-
lution with mass and redshift (Bullock et al. 2001; Duffy et al.
2008). A flattening in concentration might appear towards the
very high mass tail and high redshifts (Klypin et al. 2011; Prada
et al. 2012), but the real presence of any turn-around is still being
debated (Meneghetti & Rasia 2013).

The mass-concentration (MC) relation also depends upon
cosmological parameters (Kwan et al. 2013; De Boni et al.
2013). Other than the normalisation of the matter power spec-
trum and the dark matter content, the dark energy equation of
state also affects the MC relation for low-mass haloes (Kwan
et al. 2013; De Boni et al. 2013), although the effect is secondary
in very massive clusters.

This clear theoretical picture is challenged by conflicting ob-
servational pieces of evidence (Comerford & Natarajan 2007;
Fedeli 2012). The normalisation factor of the MC relation is
higher than expected, whereas the slope is steeper (Comerford &
Natarajan 2007; Ettori et al. 2010). These results seem to be sta-
ble against redshift. A steep c(M) was found at 0.15 � z � 0.3 in
the weak lensing analysis of 19 X-ray luminous lensing galaxy
clusters (Okabe et al. 2010), at 0.3 � z � 0.7 in a combined
strong and weak lensing analysis of a sample of 25 lenses from
the Sloan Giant Arcs Survey (Oguri et al. 2012) and in a sam-
ple of 31 massive galaxy clusters at high redshift 0.8 � z � 1.5
(Sereno & Covone 2013). Concentrations measured in lensing-
selected clusters are systematically higher than in X-ray anal-
yses (Comerford & Natarajan 2007), and a significant num-
ber of over-concentrated clusters are detected at high masses
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(Broadhurst et al. 2008; Oguri & Blandford 2009; Umetsu et al.
2011). However, these conflicts can be partially reconciled by
considering orientation and shape biases (Sereno & Umetsu
2011; Rasia et al. 2012), which severely affect strong lenses. In
fact, the disagreement is reduced in strong lensing analyses of
X-ray selected samples (Sereno & Zitrin 2012). It is also worth
noting that the discrepancy can also be related to selection ef-
fects. Indeed, the recent analyses of the CLASH data (Merten
et al. 2014) have shown that the MC relation determined from
the data can be reconciled with the expectation from numeri-
cal simulations provided one carefully takes the details of the
sample selection into account.

One of the main sources of concern in the measurement of
the MC relation is the choice and size of the sample. Clusters se-
lected according to their gravitational lensing features or X-ray
flux may form biased samples that are primarily elongated along
the line of sight (Hennawi et al. 2007; Meneghetti et al. 2011),
and the strongest lenses are expected to be a highly biased pop-
ulation of haloes oriented mainly towards the observer (Oguri &
Blandford 2009). Neglecting halo triaxiality can then lead to sys-
tematically higher, biased concentrations. Correcting for shape
and orientation biases requires very deep multi-wavelength ob-
servations (Sereno et al. 2013; Limousin et al. 2013), which are
expensive to carry out on a large sample. Furthermore, the orien-
tation bias cannot fully account for the discrepancy between the-
ory and observations for some very strong lenses (Sereno et al.
2010).

Another reason for concern is that the discrepancies between
theory and observations are mitigated when stacking techniques
are employed. Weak lensing analyses of stacked clusters of agree
with theoretical predictions (Johnston et al. 2007; Mandelbaum
et al. 2008; Sereno & Covone 2013). Oguri et al. (2012) find
that the concentration measured with a stacked analysis was
lower than what is expected from the individual clusters in their
sample. Okabe et al. (2013) performed a weak-lensing stacked
analysis of a complete and volume-limited sample of X-ray-
selected galaxy clusters and found shallow density profiles that
are consistent with numerical simulations. The stacked profile
of 31 clusters at high redshift was in accordance with theoretical
predictions, too (Sereno & Covone 2013).

Pending the debate about which MC relation has to be
trusted – numerically motivated or observationally based – and
given the systematics connected to the measurements of concen-
tration, it is worth tackling the problem from a different perspec-
tive that relies on an alternative probe. Weak lensing peaks in
the convergence map have recently attracted attention as a pow-
erful tool for finding clusters up to very high redshift. While low
statistics and difficulties with galaxy shape measurement from
the ground have limited application of this technique to present
data (but see, e.g., Shan et al. 2012 and refs. therein for recent
results), the future availability of large galaxy surveys both from
the ground (e.g. LSST1) and space (e.g. Euclid2) has motivated a
renewed interest in this technique – not only as a tool for finding
clusters, but also as a way to probe the cosmological parameters
(Marian et al. 2009, 2011; Dietrich & Hartlap 2010; Kratochvil
et al. 2010), the theory of gravity (Cardone et al. 2013), primor-
dial non-Gaussianity (Maturi et al. 2011), and the dark matter
halo properties (Bartelmann et al. 2002). Investigating whether
such a methodology can allow us to distinguish among different
MC relations is the aim of the present work.

1 http://www.lsst.org
2 http://www.euclid-ec.org

As already hinted at above, peak number counts also de-
pend on cosmological parameters so that one should pay atten-
tion to possible degeneracies between the two sets of quantities.
Actually, the background cosmology can be held fixed when
considering the peak number-count dependence on the MC re-
lation, since most of the cosmological parameters play minor
roles in determining peak statistics. Alternatively, one can com-
bine peak counts with other probes, as we investigate here when
taking the recent Planck covariance matrix as a prior.

The plan of the paper is as follows. In Sect. 2, we review how
the number of detectable weak-lensing peaks can be estimated
and also discuss questions concerning the filter choice and the
role of the MC relation. The formulae obtained here are then
used in Sects. 3 and 4 to infer the number of detectable peaks
and its redshift distribution for five different MC relations, thus
highlighting how the results strongly depend on the MC parame-
ters. This encouraging outcome suggests that future surveys can
put interesting constraints on the mass and redshift depencence
and the normalization of the MC relation. We therefore devote
Sect. 5 to discussing the Fisher matrix forecast for the case of the
Euclid survey, also taking degeneracies with cosmological pa-
rameters into account and the impact of baryons. Lastly, Sect. 6
is devoted to conclusions.

2. Weak lensing peaks

As the largest and most massive mass concentrations, galaxy
clusters are ideal candidates for lensing background galaxies.
The spectacular arcs forming when the cluster and source are
aligned along the line of sight are indeed remarkable evidence.
In less favourable circumstances, clusters generate a shear field
that can be reconstructed from the statistical properties of the
shape distributions of background galaxies. In shear maps, clus-
ters can then be detected as peaks clearly emerging out of the
noise – thus offering an efficient technique for identifying them.

As a peak finder, we consider the aperture mass defined by
(Schneider 1996)

Map(θ) =
∫
κ(θ)U(ϑ − θ)d2θ =

∫
γt(θ)Q(ϑ − θ)d2θ (1)

where κ(θ) and γt(θ) = −R[γ(θ) exp (−2iφ)] are the conver-
gence and the tangential shear at position θ = (ϑ cosφ, ϑ sinφ),
and U(ϑ), Q(ϑ) are compensated filter functions related to each
other by the integral equation

Q(ϑ) = −U(ϑ) +
2
ϑ2

∫ ϑ

0
U(ϑ′)ϑ′dϑ′. (2)

To detect a cluster as a peak in the aperture mass map, we have
to estimate the Map variance and then set a cut on the signal-
to-noise ratio (S/N). To this end, we have to specify how we
compute both signals, as is outlined in the next two sections.

2.1. Halo model

For given lens and source redshifts (zl, zs), the aperture mass de-
pends on the lens’s mass density profile. Justified by both simu-
lations of structure formation and observations, we assume that
cluster haloes are described by the NFW (Navarro et al. 1996,
1997) model

ρ(r) =
ρs

x(1 + x)2
=

(Mvir/4πR3
vir) fNFW(cvir)

(cviry)(1 + cviry)2
(3)
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with x = r/Rs, y = r/Rvir and

fNFW(cvir) =
c3

vir

ln (1 + cvir) − cvir/(1 + cvir)
· (4)

Following a common practice, we use the virial mass Mvir
as a mass parameter, i.e. the mass lying within the virial ra-
dius Rvir, where the mean mass density, ρ̄ = Mvir/(4/3)πR3

vir,
equalsΔvir(zl)ρcrit(zl) (with ρcrit(zl) the critical density at the clus-
ter redshift). The critical overdensityΔvir(zl) should be computed
according to the spherical collapse formalism (being hence a
function of the adopted cosmological model) and turns out to de-
pend on the redshift (see, e.g. Bryan & Norman 1998). However,
it is normal to set Δvir = 200 at all redshift and replace (Mvir, cvir)
with (M200, c200), which is what we do in the following.

As a second parameter, we choose the halo concentra-
tion c200 = R200/Rs

3. According to N-body simulations, the
NFW model can be reduced to a one-parameter class since c200
correlates with the virial mass M200. Actually, the slope, the scat-
ter, and the redshift evolution of the c200 − M200 relation are
still matters of controversy, with different results available in the
literature. However, most works do agree on the shape of the
MC relation given by

c200(M200, zl) = Av

(
M200

Mpiv

)Bv

(1 + zl)Cv (5)

with Mpiv a pivot mass and different values for the (Av, Bv,Cv)
parameters. Equation (5) should actually be considered only as
an approximate rather than exact relation. Indeed, for a given
mass, halo concentrations scatter around the value predicted by
Eq. (5). This gives rise to a distribution which can be reasonably
well described as a lognormal with mean value and variance σv
depending on the MC relation adopted. Such a scatter is usually
neglected in peak count studies, but it must be taken into account
if one aims at studying the impact of the MC relation on peaks
statistics. We set Mpiv = 5 × 1014 M� and

(Av, Bv,Cv, σv) = (3.59,−0.084,−0.47, 0.15) (6)

as a fiducial case in agreement with Duffy et al. (2008,
hereafter D08).

With these ingredients, it is now only a matter of algebra to
compute the lensing properties of the NFW profile inserting the
mass and concentration values in the analytical expressions of
the convergence κ and shear γ given in Bartelmann (1996) and
Wright & Brainerd (2000).

2.2. Filter function and S/N

Gravitational lensing probes the total matter distribution along
the line of sight so that the observed aperture mass Map is eventu-
ally the sum of the cluster contribution, as well as of another that
is due to the uncorrelated large-scale structure projected along
the same line of sight, namely Map = Mclust

ap +MLSS
ap . Since it is a

density contrast, one typically assumes that MLSS
ap averages out to

zero – thus not biasing the Map distribution, but only contributing
to the variance (Hoekstra 2001). Then, the filter functional form
and its parameters are chosen as a compromise between the need
to find as many clusters as possible and the necessity of decreas-
ing the number of fake peaks. To this end, shear field simula-
tions, when taking both the underlying fiducial cosmology and

3 Hereafter, with an improper use of the terminology, we refer
to (M200, c200) as the virial mass and concentration, although formally
this definition applies to (Mvir, cvir) alone.

the survey characteristics into account, are used to tailor the filter
parameters (see e.g. Hetterscheidt et al. 2005). However, such a
method is far from being perfect, since it is intimately related
to the adopted cosmology and to the halo model assumed in the
reference simulation.

As a possible solution, Maturi et al. (2005, hereafter M05)
proposes an optimal filter, explicitly taking both the cosmologi-
cal model and the shape of the signal into account, i.e. the halo
shear profile. According to M05, the Fourier transform of the
filter reads as

Ψ̂(
) =
1

(2π)2

[∫
|γ̂t(
)|2

PN(
)
d2


]−1
γ̂t(
)
PN(
)

, (7)

where γ̂t is the Fourier transform of the tangential shear com-
ponent and PN(
) the noise power spectrum as a function of the
angular wavenumber 
. Two terms contribute to the noise so that
it is

PN(
) = Pε + Pγ(
), (8)

with

Pε =
1
2

σ2
ε

ng
(9)

the term caused by the finite number of galaxies (with num-
ber density ng) and their intrinsic ellipticities with variance σε;
and Pγ(
) = Pκ(
)/2 the noise due to the LSS, where the fac-
tor 1/2 comes from using only one shear component. Under the
Limber flat sky approximation, we have

Pκ(
) =

⎛⎜⎜⎜⎜⎝3ΩMH2
0

2c2

⎞⎟⎟⎟⎟⎠
2 ∫ χh

0
Pδ

(



χ
, χ

)
W2(χ)
a2(χ)

dχ (10)

with

Pδ(k, z) = Ask
nsT 2

M(k)D2(z) (11)

the matter power spectrum, with spectral index ns and present
day mass variance σ8 on scales R = 8 h−1 Mpc used to set the
normalization constant As. Here, TM(k) is the matter transfer
function, approximated according to Eisenstein & Hu (1998),
while D(z) is the growth factor (normalised to unity today) for
the assumed cosmological model. In Eq. (10), the redshift is
replaced by the comoving distance

χ(z) = c
∫ z

0

dz′

H(z′)
(12)

with H(z) the Hubble rate. Finally,W(χ) is the lensing weight
function (assuming a spatially flat universe),

W(χ) =
∫ χh

χ

(
1 −
χ

χ′

)
pχ(χ

′)χ′d χ′ (13)

and pχ(χ)dχ = pz(z)dz the source redshift distribution – which
we here parameterise as (Smail et al. 1994)

pz(z) ∝ β
z0

(
z
z0

)2

exp

⎡⎢⎢⎢⎢⎣−
(

z
z0

)β⎤⎥⎥⎥⎥⎦ (14)

and normalise to unity. We set (β, z0) = (1.5, 0.6) so that zm = 0.9
is the median redshift of the sources as expected for the Euclid
mission (Marian et al. 2011).
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Following Bartelmann (1996) and Wright & Brainerd (2000)
for the shear profile of the NFW model, one finally gets for the
Fourier transform of the filter4

Ψ̂(
) = −
1

(2π)3

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝M200/4πR2

200

Σcrit

⎞⎟⎟⎟⎟⎠ g(c200)
(
2πθ2s

)⎤⎥⎥⎥⎥⎦
−1

× τ̃(
θs)

PN(
)D̃(θs)
(15)

where Σcrit = c2Ds/(4πGDdDds) is the critical density for
lensing (depending on the lens and source redshift), g(cvir) =
fNFW(c200)/c200, θs is the angular scale corresponding to Rs, and
we have defined

τ̃(
θs) =
∫ ∞

0
γ̃(ξ)J2(
θsξ)ξdξ, (16)

D̃(θs) =
∫ ∞

0

|τ̃(
θs)|2

PN(
)

d
, (17)

with γ̃(ξ) the NFW shear profile scaled with respect to ρsRs/Σcrit
(Bartelmann 1996; Wright & Brainerd 2000).

We now stress an important caveat about the values
of (M200, c200) entering the filter function. The best choice would
be to fix them to those of the halo we are interested in to find.
Needless to say, such a strategy is unfeasible, and we have to set
them to some fiducial values (Mfid

200, c
fid
200), thus obtaining a filter

optimised for finding clusters with mass and concentration close
to the fiducial ones. As we will see in a moment, the S/N does not
critically depend on these values, but rather on the MC relation
taken as fiducial.

With this caveat in mind, we take the inverse Fourier trans-
form of Eq. (15) and set Q = Ψ in the aperture mass definition
to get eventually

Map(ϑ; θs) =
1

(2π)4

M200

Mfid
200

⎛⎜⎜⎜⎜⎝Rfid
200

R200

⎞⎟⎟⎟⎟⎠
2
g (c200)

g
(
cfid

200

) M̃ap

(
ϑ, θs/θ

fid
s

)
D̃
(
θfid

s

) , (18)

with ϑ the filter aperture and the label “fid” denoting quantities
referred to the fiducial case. In Eq. (18), we have also defined
(with ξ = ϑ/θfid

s and ξ′ = θ/θfid
s )

M̃ap =

∫ ξ

0
γ̃
[
ξ′
(
θs/θ

fid
s

)]
ξ′dξ′

×
∫ 2π

0
Ψ̃

[
θs
(
ξ2 + ξ′2 − 2ξξ′ cos θ

)1/2
]

cos (2θ)dθ (19)

and Ψ̃ = τ̃
(

θfid

s

)
/PN(
).

A conceptual remark is in order here. Equation (18) was ob-
tained by assuming that the measured shear and cluster profiles
are the same. Actually, what one measures is the shear field
reconstructed from the observed galaxies ellipticities, which is
only an approximation of the input cluster profile. However,
the only way to get analytic prediction is to identify the recon-
structed and theoretical shear profiles – what we have implicitly
done here. Moreover, as a further approximation, we set γ � gsh
with gsh = γ/(1 − κ) the measurable reduced shear. In the weak-
lensing limit (κ � 1), the difference is safely negligible.

4 The minus sign comes out from our convention on the sign of the
tangential shear component.

To predict the number of peaks, we need the S/N. Then, we
first compute the noise given by5 (Maturi et al. 2005)

σ2
ap =

1
2π

∫ ∞

0
Pε

∣∣∣Ψ̃(
)
∣∣∣2 
d


=
1

(2π)7

⎛⎜⎜⎜⎜⎝Mfid
200/4πR

fid 2
200

Σcrit

⎞⎟⎟⎟⎟⎠
−2 g−2

(
cfid

200

)
(
2πθfid 2

s

)2 Pε
D̃(θfid

s )

×
∫ ∞

0

τ̃2(
θfid
s )

[Pε + (1/2)Pκ(
)]2

d
. (20)

Thus, the S/N reads

S(ϑ; p) =
1
√

2π

M200/4πR2
200

Σcrit

2πθ2sg(c200)
√

Pε

M̃ap(ϑ)

σ̃ap
, (21)

where σ̃ap is the integral in the third row of Eq. (20). In the above
relation, p summarizes the parameters which the S/N depends
upon. Apart from the virial mass M200 explicitly appearing as a
multiplicative term through the factor M200/R2

200 ∝ M1/3
200, there

are the MC relation parameters (Av, Bv,Cv) used to estimate the
halo concentration c200 and hence θs through Eq. (5). The lens
and source redshift (zl, zs) enter through the critical density Σcrit
and the conversion from the linear Rs to the angular scale θs.
Finally, we remember that Eq. (5) is affected by a lognormal
scatter σv, which is another parameter to be added to the list.
To take both the source redshift distribution and the scatter in
the MC relation fully into account, we therefore compute the
final S/N as

S(ϑ; zl,M200) =
∫ ∞

zl

S̃(ϑ; zl, zs,M200)pz(zs)dzs, (22)

with

S̃(ϑ; zl, zs,M200) =
∫
S(ϑ; p)pc(c200,M200)dc200 (23)

and

pc(c200; M200) ∝ exp

⎧⎪⎪⎨⎪⎪⎩−
1
2

[
log c200 − log 〈c200〉(M200)

σv

]2
⎫⎪⎪⎬⎪⎪⎭· (24)

Here, 〈c200〉(M200) is defined as in Eq. (5) for given values of the
MC relation parameters (Av, Bv,Cv) and scatter σv.

Two sets of MC relation parameters actually enter
Eqs. (22)–(24), the former fixed by the MC relation used to set
the filter (hence determining θfid

s ) and the latter related to the
MC relation used in the estimate of the expected number of
clusters (giving θs). We use the D08 MC relation as a fiducial
(with σv = 0.15) to set the filter function, while we consider
different choices for (Av, Bv,Cv, σv) to investigate whether peak
statistics can distinguish among MC relations.

3. Cluster detectability

Equations (21)–(24) allow us to estimate the S/N for a cluster
of virial mass M200 and redshift zl provided the MC relation pa-
rameters (Av, Bv,Cv) and the scatter σv. To this end, we have to
preliminarily set the survey characteristics and the background

5 In contrast to the usual procedure, we include only Pε as a noise term
rather than the full one PN (
). This is motivated by our definition of the
signal as the sum of the cluster and LSS peaks so that only Pε has to be
considered as noise.
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cosmology to estimate the noise σap. Moreover, we have to fix
the filter scale ϑ.

We consider the survey specification for the photometric
Euclid survey (Laureijs et al. 2011; Amendola et al. 2013) with
an area of 15 000 deg2 and an ellipticity dispersionσε = 0.3. The
total number of source galaxies is set to ng = 30 gal/arcmin2 and
is assumed to be uniform over the full survey area. The results
can be easily scaled to other choices, but noting that S ∝ √ng,
while the total number of peaks linearly depends on the survey
area.

To be consistent with the recent Planck results (Planck
Collaboration XVI 2014), we assume a flat ΛCDM model as
fiducial cosmological scenario with

(ΩM,Ωb, h, ns, σ8) = (0.306, 0.048, 0.678, 0.961, 0.826), (25)

where ΩM (Ωb) is the current matter (baryon) density, h =
H0/100 km s−1 Mpc−1 the present-day dimensionless Hubble
constant, ns the scalar spectral index, and σ8 the variance of per-
turbations on the scale 8 h−1 Mpc. The dark energy equation
of state is described by the CPL (Chevallier & Polarski 2001;
Linder 2003) ansatz

w = w0 + wa(1 − a) = w0 + waz/(1 + z), (26)

with (w0, wa) held fixed to the ΛCDM values, (−1, 0). We also
assume that dark energy does not cluster on the scales of interest.
Thus, the growth factor is the solution of

δ̈ + 2Hδ̇ − 4πGρMδ = 0 (27)

with δ the density perturbation. The S/N has a negligible depen-
dence on the cosmological parameters, so that the following re-
sults hold true independently of the fiducial cosmology adopted.

The choice of the filter scale ϑ requires some caution. The
optimal filter is designed to account for the NFW profile to max-
imise the signal. Therefore, a natural scale would be ϑ = θs,
since most of the mass contributing to the lensing signal is con-
tained within this aperture. For a cluster with M200 = 5 ×
1014 M� at a typical cluster redshift zl = 0.3, the concentra-
tion predicted by the D08 relation reads as c200 = 2.65, thus
giving θs � 1 arcmin, while the virial radius subtends an angle
θ200 � 2.8 arcmin. However, not all the clusters have the same
mass and redshift. Setting ϑ = 1 arcmin would be an optimal
choice for these median values, but would strongly underesti-
mate the signal for clusters that are more massive or are at a
lower redshift. In contrast, a varying ϑ would allow maximisin
the S/N at every redshift, but would make it difficult to compare
peak counts in different bins. As a compromise, we therefore set
ϑ = 2 arcmin noting that with this choice we cut the contribution
on scales larger than θ200. Indeed, it can be smaller than 2 arcmin
for low-mass and/or high-redshift clusters.

Having set all the preliminary quantities, we can now in-
vestigate how the S/N depends on the virial mass and redshift
for different MC relations. Table 1 lists the parameter choices
for different models we take as representative cases, also giving
the name we use for it in the following. The first two cases are
theoretical relations motivated by the comparison with numer-
ical simulations. In contrast, the Ok10 and Og12 MC relations
have been inferred from observations6. The authors did not try
to fit for a redshift dependence so that the parameter Cv is set

6 Actually, Oguri et al. (2012) estimated the cvir–Mvir rather than the
c200–M200 relation so that the parameters in Table 1 should be changed
to take this difference into account. We have, however, neglected this
correction.

Table 1. MC relations parameters for a pivotal mass Mpiv = 5 ×
1014 h−1 M� for the different cases investigated, whose acronyms (ID)
are shown in the first column.

ID Av Bv Cv Reference
B01 5.70 −0.13 −1.00 Bullock et al. (2001)
D08 3.59 −0.085 −0.47 Duffy et al. (2008)
Ok10 4.60 −0.40 0.00 Okabe et al. (2010)
Ok10z 4.60 −0.40 −0.47 This paper
Og12 7.70 −0.59 0.00 Oguri et al. (2012)
Og12z 7.70 −0.59 −0.47 This paper

Notes. The scatter is set to σv = 0.15 for the D08 relation and to σv =
0.12 for other models in agreement with what reported in the literature.
Note that the D08 relation is the one used to compute the filter.

to zero. To explore a possible redshift dependence, we there-
fore introduced the two other relations (Ok10z and Og12z) by
arbitrarily setting the Cv parameter to the D08 value. Although
the Ok10z and Og12z relations are not motivated by either nu-
merical simulations or observations, they are useful for scru-
tinising the dependence of peak statistics on the MC relation.
Numerically inspired B01 and D08 relations are shallower than
the observationally motivated Ok10 and Og12, and also have a
larger normalisation. In other words, for the pivot mass, a clus-
ter at a given redshift zl is more concentrated according to Ok10
and Og12 than for B01 and D08. More concentrated haloes have
higher masses within the scale radius, so one should expect
that, for given (zl,M200), the S/N will be greater for Ok10 and
Og12 MC. However, this is only partly true. Indeed, because of
the different scaling with z of the considered MC relations and
the use of a filter based on D08, the S/N will not simply scale
with the concentration so that a full computation is needed to
check the above qualitative prediction.

Figure 1 shows how the S/N, S, depends on (zl,M200) for
the different MC relations we consider. Although the filter is
built using D08 as a fiducial case, the MC relation the gives the
highest S value depends on (zl,M200). As a general rule, for a
given zl, the S vs. M200 curve shows non-monotonic behaviour.
It first increases with M200 up to a maximum value and then de-
creases again. The peak value is higher for steeper MC relations,
while the opposite is observed for what concerns the width of
the curve. As a consequence, the D08 relation provides the high-
est S values for groups and intermediate-mass clusters, while the
empirically motivated MC relations Ok10 and Og12 (and their
redshift dependent counterparts) overcome D08 in the high-mass
regime.

For fixed cluster mass, the dependence on the redshift is
more complicated, and which MC relation provides the high-
est S/N depends on the mass regime. This can also be under-
stood from Fig. 2, where we plot the maximum S/N as a func-
tion of the cluster redshift. As a further remark, we note that
the Ok10z and Og12z curves always stay quite close to their
redshift-independent counterparts, thus demonstrating that it is
the concentration-mass dependence that drives the S values.

The above results can be qualitatively explained consider-
ing how S depends on the halo concentration. On the one hand,
Eq. (22) shows that the S/N is the product of θ2sg(c200), an in-
creasing function of the concentration, an integral depending
on the ratio θs/θfid

s , and the filter aperture. One can naively
expect that the higher the concentration, the greater the S/N.
Should this be the dominant factor, the MC relation providing
the higher concentration would also be the one preferred by a
S/N viewpoint. However, a larger c200 also implies a smaller θs.
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Fig. 1. Top panels: S/N vs. cluster virial mass for fixed redshift (zl = 0.4, 0.9, 1.3 from left to right) for different MC relations (black, red, blue,
dashed blue, orange, dashed orange for B01, D08, Ok10, Ok10z, Og12, Og12z, respectively). Bottom panels: S/N vs. cluster redshift for fixed
mass (log M200 = 14.5, 15.5, 16.5 from left to right).
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normalised to the value for the D08 relation (wiggles are merely interpolation features). Black, red, blue, dashed blue, orange, and dashed orange
lines refer to B01, D08, Ok10, Ok10z, Og12, and Og12z, respectively.

Consequently, if θs < ϑ, the filter cuts away a large part of the
cluster, thus leading to a lower aperture mass (hence a smaller in-
tegral term). The best compromise between these two somewhat
opposite behaviours depend on the cluster mass and redshift.

It is worth noting that the largest S/N does not guarantee the
final detected number of peaks to also be the largest one. This
can be understood by looking at Fig. 2, where we plot the max-
imum S/N as a function of zl for the different MC relations con-
sidered. For sources at the survey median redshift zs = 0.9, all
the MC relations achieve a maximum S/N that is higher than for
the D08 case. However, such a maximum corresponds to haloes
as massive as log M200 ∼ 16, which are few. If we limit our at-
tention to the mass range corresponding to 0.1 ≤ zl ≤ 0.3, i.e.
13.5 ≤ log M200 ≤ 15.5, we see that the D08 maximum S/N is
comparable to – if not even greater than – those of other MC rela-
tions. Although such a discussion only considers the maximum
S/N, it nevertheless warns against inferring any conclusion on
which MC relation provides the largest number of peaks based
on S/N alone.

4. Peak number counts

The weak lensing peaks we are interested in are due to mas-
sive clusters. To compute their expected number, we first need to

know how many massive haloes there are. This is given by the
mass function7

N(ln M) =
ρM(z = 0)

M
dln ν
dln M

νϕ(ν). (28)

Here, ν = δc/σ(M), δc is the critical overdensity for spherical
collapse, andσ is the variance of the perturbations on the scale R
corresponding to the mass M,

σ2[R(M)] =
1

(2π)3

∫
Pδ(k)|W(kR)|2d3k, (29)

where W(kR) is the Fourier transform of the spherical top hat
function and the density power spectrum Pδ(k, z).

To compute the mass function through Eq. (28), one has to
choose an expression for νϕ(ν). We adopt the Sheth et al. (2001)
function

νϕ(ν) = A

√
2aν2

π

[
1 +

(
aν2

)−p
]

exp
(
−aν2/2

)
, (30)

with (A, a, p) = (0.322, 0.75, 0.3). Although many other
choices are possible (see for instance the extensive list in

7 Hereafter, we drop the labels 200 from the mass and l from the lens
redshift to shorten the notation.
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Murray et al. 2013, and refs. therein), we note that the choice of
the mass function is not critical for our aims, since we are mainly
interested in comparing the impact of different MC relations on
peak count rather than forecasting exact numbers.

Not all the clusters will give rise to detectable peaks, but only
those with S/N greater than a fixed threshold. We have first to
take into account that the shot noise from discrete background
galaxy positions and the intrinsic ellipticity distribution intro-
duce a scatter of the observed aperture mass Map around its the-
oretically expected value M̂ap(M). As a consequence, a halo of
mass M has a certain probability p(Map|M) of producing an aper-
ture mass Map which we can model as a Gaussian, namely,

p(Map|M) ∝ exp

⎧⎪⎪⎨⎪⎪⎩−
1
2

⎡⎢⎢⎢⎢⎣Map − M̂ap(M)

σap

⎤⎥⎥⎥⎥⎦
2⎫⎪⎪⎬⎪⎪⎭· (31)

The probability that the S/N will be higher than a given threshold
will read as (Bartelmann et al. 2002)

p(S > Sth|Mvir, z) =
1
2

erfc

[
S(Mvir, z) − Sth√

2

]
· (32)

Therefore, the number density of haloes giving a detectable
weak lensing peak will be the product of the halo mass function
and this probability, i.e.,

Nlens(M, z) = p(S > Sth|M, z)N(M, z). (33)

Integrating over the redshift and the mass and multiplying by
the survey area gives the total number of peaks generated by
cluster haloes and a higher S/N than a threshold value Sth, which
reads as

Nhalo(S > Sth) =

(
c

H0

)3 (
π

180

)2
(
Ω

1 deg2

)
(34)

×
∫ zU

zL

r2(z)
E(z)

dz
∫ ∞

0
Nlens(M, z)dM,

with r(z) = (c/H0)−1χ(z). As redshift limits, we set (zL, zU) =
(0.1, 1.4) since the number of peaks outside this range is negli-
gible – although the survey will very likely detect galaxies over
a much wider range.

The number of observed peaks is the sum ofNhalo and a term
due to the contamination from the LSS,

Npk(S > Sth) = Nhalo(S > Sth) +NLSS(Sth), (35)

where the LSS term reads as (Maturi et al. 2010, 2011)

NLSS =
1

(2π)3/2

(
σLSS

σap

)2
κth

σap
exp

⎡⎢⎢⎢⎢⎢⎣−1
2

(
κth

σap

)2⎤⎥⎥⎥⎥⎥⎦, (36)

with κth = Sthσap and

(
σLSS

σap

)2

=

∫ ∞
0

PN(
)
∣∣∣Ψ̂(
)

∣∣∣2 
3d
∫ ∞
0

Pε(
)
∣∣∣Ψ̂(
)

∣∣∣2 
d
 · (37)

Here,NLSS only depends on the noise properties and the thresh-
old S/N, but not on the lens mass and redshift. This is an obvious
consequence of this term being due to the LSS rather than a par-
ticular cluster. For this same reason, NLSS is determined by the
matter power spectrum (hence the underlying cosmological sce-
nario) entering PN(
).

4.1. Cumulative peak number and S/N threshold

As a preliminary step, it is worth investigating how the total
number of peaks (actual ones due to clusters and fake ones due
to LSS) change as a function of the threshold S/N. This will also
tell us how to choose the threshold S/N value to discriminate true
from fake peaks.

Figure 3 helps us to highlight some important issues. First,
in the left-hand panel, we plot theNpk(S > Sth) as a function of
the threshold S/N for the six different MC relations in Table 1.
Somewhat surprisingly, although the filter has been set using the
D08 relation as fiducial, there are more peaks than for the other
relations. This is better shown in the central panel where the
number of peaks is scaled with respect to the D08 one. The quick
increase in the ratio for large Sth is not due to the number of
peaks diverging, but rather toNpk(S > Sth) quickly approaching
the null value for the reference D08 case.

The larger number of peaks for MC relations other than the
fiducial D08 one can be traced back to the higher S/N for clus-
ters of mass log M200 > 15, where, hereafter, M200 is the mass in
solar units. The higher the cluster redshift, the higher the mass to
pass the selection threshold. As z increases, the minimum mass
a cluster should have in order to generate a detectable peak in-
creases, too, but its value also depends on the adopted MC re-
lation. Since the D08 model predicts the lower S/N values, the
limiting mass is greater for this case so that the contribution to
the total number of peaks in the highest redshift bins decreases as
the threshold S/N increases. As a consequence, the MC relations
predicting larger S(z,M) have a greater chance or producing
haloes that are massive enough to pass the selection threshold,
thus leading to the greaterNpk values.

Up to now, we have considered the total number of detectable
peaks, but what is actually of interest to investigate in the MC
relation is the number of peaks due to clusters alone. The right-
hand panel in Fig. 3, showing the ratio between the number of
peaks due to clusters and the total ones, helps us to disentangle
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Fig. 4. Left: number of peaks with S ≥ 5 in redshift bins of width Δz = 0.1 as a function of the bin redshift. Right: percentage deviation of the
number of peaks per bin with respect to D08 (only reporting the range where Npk(z,S ≥ 5) for D08 is significantly non-vanishing). Black, red,
blue, dashed blue, orange, and dashed orange lines refer to B01, D08, Ok10, Ok10z, Og12, and Og12z, respectively.

the clusters from fake peaks. As expected, Npk is dominated by
the LSS term for low S/N; that is to say, the lower the S/N, the
higher the probability that the detected peak is a fake one due to
the LSS rather than the evidence for a cluster. This agrees with
common-sense expectations and previous analyses in the liter-
ature using different cosmological models and survey parame-
ters (Hetterscheidt et al. 2005; Maturi et al. 2010). The ratio
Nlens/Npk is, however, a strong increasing function of Sth for
Sth > 2.5. Imposing the requirement Nlens/Npk > 0.9, one gets
Sth � 5 with a very weak dependence on the adopted MC rela-
tion. We can therefore safely argue that all the peaks with S ≥ 5
are due to clusters. We find a value for Sth comparable to but
higher than what is suggested in Maturi et al. (2010) because
of differences in both the cosmological model and the survey
characteristics.

4.2. Number of peaks in redshift bins

The total number of peaks is obtained by integrating over the
full redshift range as in Eq. (35). This obviously degrades the
information on the dependence of the MC relation on z. It is
worth investigating what can be learned by binning the peaks
according to their redshift. The number of peaks in a bin centred
on z and with width Δz can be computed using again Eq. (35)
and replacing (zL, zU) with (z − Δz/2, z + Δz/2). Since we need
a redshift measurement to assign a given peak to a bin, we im-
plicitly assume that all the detected peaks are due to clusters, i.e.
Npk(z) = Nhalo(z); in other words, we disregard the LSS term.
Actually, for a given threshold S/N, such a term makes a constant
contribute to the number of peaks in each redshift bin. However,
since we only consider peaks with Sth > 5, one can be confident
that the predicted numbers indeed refer to peaks with measurable
redshift. For Δz = 0.1, we get the Npk(z,S > Sth) curves shown
in the left-hand panel of Fig. 4 for the different MC relations
listed in Table 1.

Binning the data indeed helps to distinguish better among the
different MC relations. The number of peaks in each given bin
happens to be quite different from one MC relation to another –
with D08 dominating the signal for z < 0.5, but quickly decreas-
ing for larger z. Indeed, a way to distinguish between D08 and
other relations is by looking at bins with z > 1, where almost
no peaks are expected for the D08 case, while a still significant
number can be found for other relations. In particular, Ok10z
and Og12z give the highestNpk(z) values.

That redshift binning improves the efficiency when distin-
guishing among different MC relations can also be quantitatively

Table 2. Total number of peaks Npk(S ≥ 5) and percentage devia-
tion Δ =

[
N id

pk(S ≥ 5) − ND08
pk (S ≥ 5)

]
/ND08

pk (S ≥ 5) for the different
MC relations considered.

ID Npk(S ≥ 5) Δ(%)

B01 17 506 –25
D08 23 262 –
Ok10 19 922 –14
Ok10z 26 234 +13
Og12 13 957 –40
Og12z 17 981 –23

shown by first considering the total number of clusters given in
Table 2. The comparison of numbers for the relative difference
with respect to the D08 case (reported in the third column8) with
the ones referred to binned data (which can be read from the right
panel of Fig. 4) convincingly shows that binning in z is utterly
effective.

5. Fisher matrix forecasts

To quantify the conclusions discussed above, we carry on a
Fisher matrix analysis and consider observed data to be the to-
tal number of peaks with S > Sth in equally spaced redshift bins
centred on z and with widthΔz = 0.1 over the range (0.1, 1.4). As
usual when dealing with number counts, we can assume Poisson
errors and then quantify the agreement between data and model
through the following likelihood function (Cash 1979):

− 2 lnL(p) = −2
Nbin∑
i= 1

νi ln λi − λi − ln νi! (38)

where, to simplify the notation, we have respectively defined
λi = N th

pk(zi, p) and νi = Nobs
pk (zi) for the theoretical and ob-

served number of peaks in the ith redshift bin, and p denotes the
set of parameters we want to constrain and the sum runs over the

8 It is worth noting that the difference in the total number of peaks and
the difference in the binned peaks can have a different sign depending
on which redshift bin is considered. Indeed, in the first case, we are
referring to the total area under the curve in the left panel of Fig. 4,
while in the second case, we consider the area under only a portion of
the curve. For instance, since the B01 line stays almost always under
the D08 one, it is clear that the Δ in Table 2 takes a negative value.
Nonetheless, if we refer only to the peaks in a bin with z > 1, the D08
line is lower than the B01 one so that the difference is now positive.

A141, page 8 of 13

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201424699&pdf_id=4


V. F. Cardone et al.: Mass–concentration relation and weak lensing peak counts

Nbin bins. The Fisher matrix elements are given by the second
derivatives of the logarithm of the likelihood with respect to the
parameters of interest evaluated at the fiducial values. Starting
from Eq. (38), one gets (Holder et al. 2001)

Fi j = −
∂2 lnL
∂pi∂p j

=

Nbin∑
k= 1

∂λk

∂pi

∂λk

∂p j

1

λfid
k

(39)

where λfid
k is the expected number of peaks in the kth bin for

the fiducial model. The covariance matrix is then simply the
inverse of the Fisher matrix, and its diagonal elements repre-
sent the lowest variance one can achieve on the model parameter
measurement.

Although our main interest focusses on the MC relation,
peak number counts do not depend on this relation alone. On
the contrary,Npk(z) strongly depends on the background cosmo-
logical model, too, so that the Fisher matrix must be computed
with respect to both sets of parameters. As a first approximation,
one can hold the cosmology fixed and only derive the constraints
on the MC parameters9. Otherwise, one can assume the MC rela-
tion known from a different probe and investigate to which extent
peak number counts can constrain cosmology. Both possibilities
will be considered below.

5.1. Constraints on the MC parameters

We first consider the case with the background cosmological
model held fixed. An implicit assumption which the Fisher ma-
trix forecast relies on is that the confidence regions may be
approximated as a Gaussian ellipsoids, while it is not uncom-
mon that the true ones have broad tails or significant curvature.
Holder et al. (2001) investigated whether this is the case for num-
ber counts by comparing with Monte Carlo analysis of simulated
datasets. They found that Fisher matrix forecasts can indeed
be trusted. Therefore, we are confident that our estimated iso-
likelihood contours, shown in Fig. 5, provide reliable accounts of
the degeneracies in the MC relation parameters space. It is worth
emphasising that these results have been obtained assuming that
the cosmological parameters are known with infinite precision
so that they can be hold fixed in the Fisher matrix derivation. We
return to this point later.

The marginalised 1σ errors on the MC parameters for the
fiducial are

σ(Av) = 0.04, σ(Bv) = 0.003, σ(Cv) = 0.04, σ(σv) = 0.001, (40)

which can also be rewritten conveniently as

Δ(Av) = 1%,Δ(Bv) = 4%,Δ(Cv) = 9%,Δ(σv) = 1%, (41)

with Δ(p) = σ(p)/p. Such numbers nicely show that peak num-
ber counts in redshift bins provide competitive constraints on the
MC parameters, thus enabling us to discriminate convincingly
among different MC relations. Indeed, comparing the differences
of the (Av, Bv,Cv) values in Table 1 with the 1σ uncertainties
given above, we can safely conclude that the B01, Ok10, and
Og12 relations could be rejected with high confidence, should
the actual MC relation coincide with fiducial D08.

It is worth wondering whether the results depend on the
adopted fiducial MC relation. We do not expect this to be the

9 To this end, one simply has to remove the corresponding rows and
columns from the Fisher matrix, while marginalisation can be obtained
by deleting them from the covariance matrix and then inverting back to
get the marginalised Fisher matrix.

Fig. 5. Fisher matrix forecasts for the 68, 95, 99% CL assuming a fidu-
cial D08 MC relation and a filter aperture ϑ = 2 arcmin.

case since the Fisher matrix approach should provide a reli-
able description of the likelihood in the neighbourhood of the
fiducial values regardless of these values. However, the Ok10
and Og12 mass slope parameters are so far away from those of
D08 that some failure of the Fisher matrix cannot be excluded
a priori. To check this, we therefore repeated the Fisher matrix
evaluation, taking the Og12z as fiducial model for the MC rela-
tion while holding the cosmological parameters set to the Planck
ones. We get

σ(Av) = 1.1, σ(Bv) = 0.04, σ(Cv) = 0.4, σ(σv) = 0.02, (42)

for the marginalised 1σ errors; i.e.,

Δ(Av) = 14%,Δ(Bv) = 6%,Δ(Cv) = 80%,Δ(σv) = 13%. (43)

Although there is a significant degradation of the constraints ow-
ing to the degeneracy between Bv and Cv, it is nevertheless still
possible to distinguish the different MC relations10. Using the
value of the mass slope parameter Bv as discriminator, we now
get |Bv(Og12z)−Bv(mc)|/σ(Bv) = (11.5, 12.6, 4.8) for mc = B01,
D08, Ok10, so that it is still possible to distinguish D08 and em-
pirically motivated MC relations, in agreement with the previous
result.

The above constraints have been obtained after assuming
that the cosmological parameters are perfectly known. Relaxing
this assumption introduces degeneracies which significantly en-
large the confidence ranges. For the cosmological model with
DE EoS described by the CPL ansatz and fitting both the MC
and seven cosmological parameters (ΩM,Ωb, w0, wa, h, nPS, σ8),
the marginalised 1σ errors on the MC parameters now read as

σ(Av) = 0.80, σ(Bv) = 0.05, σ(Cv) = 1.2, σ(σv) = 0.04. (44)

It is possible to distinguish empirically (e.g. Ok10, Og12)
and numerically inspired MC relations thanks to the radically
different Bv value.

10 Such a degeneracy is partly due to a numerical coincidence related
to the choice of the pivot mass and the similarity of the (Bv,Cv) values.
Indeed, over the mass range probed, the quantity (M200/Mpiv)Bv takes
values close to (1+z)Cv so that the two terms can hardly be distinguished.
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The situation can be improved by adopting an intermediate
strategy. Forcing the model to have aΛ term (i.e. setting w0 = −1
and wa = 0) and fixing (Ωb, h, nPS) to their fiducial values, we get
the following 1σ errors:

σ(Av) = 0.06, σ(Bv) = 0.007, σ(Cv) = 0.05, σ(σv) = 0.02. (45)

Although the constraints are wider by roughly a factor of two
than in the case obtained fixing background cosmology (not
the case for Cv), they are still remarkably strong allowing for
distinguishing among different MC relations.

Although our focus here is on the use of peak number counts,
this is not the only probe one can use. Degeneracies among cos-
mological and MC parameter can indeed be lifted by using dif-
ferent tracers. To this end, we combine our Fisher matrix with
the one obtained by inverting the Planck covariance matrix11.
By leaving all the seven cosmological and four MC relation pa-
rameters free to change, we get

σ(Av) = 0.13, σ(Bv) = 0.007, σ(Cv) = 0.07, σ(σv) = 0.003, (46)

which are dramatically tighter than the case with no Planck data
and comparable (although looser) with those for the case with
the cosmology set to the fiducial case. Setting (Ωb, w0, wa, h, nPS)
to their fiducial values now only improves the constraint on Av
(from 0.13 to 0.06), while those on (Bv,Cv, σv) are almost left
unchanged. This is expected since the Planck data already set
strong limits on the background cosmological model so that
forcing it to be equal to the fiducial one now has a minor impact
on the MC parameters confidence ranges.

5.2. Constraints on cosmological parameters

We now explore the use of peak number counts as a tool
for probing the background cosmological model. The most
favourable case is the one with the fewest parameters so that we
only vary (ΩM, σ8) and set all the remaining cosmological and
MC quantities to their fiducial values. Only using peaks, we get

σ(ΩM) = 0.004, σ(σ8) = 0.01, (47)

which are already comparable to what one can obtain using the
Planck data alone. A joint fit to peak number counts and Planck
pushes the errors down further leading to

σ(ΩM) = 0.001, σ(σ8) = 0.004. (48)

This can be easily understood by looking at Fig. 6, where 1σ
marginal error contours in the (ΩM, σ8) plane are shown as ob-
tained from peak count alone, Planck alone, and the combina-
tion of the two probes. As a matter of fact, weak lensing and
CMB temperature anisotropies suffer from different degeneracy
for what concerns those two parameters, and this happens in a
way that makes their combination more effective.

Moving towards a more realistic case, we can allow the
MC parameters to change, thereby introducing degeneracies
among (ΩM, σ8) and (Av, Bv,Cv, σv). As a result, we now find

σ(ΩM) = 0.006, σ(σ8) = 0.02 (49)

11 We use the covariance matrix corresponding to the joint fit of Planck
and WMAP polarisation data. We note that (after marginalising over
nuisance parameters) this constrains (ΩMh2,Ωbh2,Θ, nPS, lnAs) with
Θ the angular scale of the sound horizon and As the power spec-
trum normalisation. We therefore first invert the covariance matrix and
then project the corresponding Fisher matrix on our seven-dimensional
parameter space (ΩM,Ωb, w0, wa, h, nPS , σ8).

Fig. 6. Marginal error 1σ contours in the (ΩM, σ8) plane as obtained
from peak counts alone (blue ellipse), Planck alone (green ellipse), and
the combination of the two probes (yellow ellipse).

from only the peak number counts. Instead, if we add Planck we
have

σ(ΩM) = 0.001, σ(σ8) = 0.008. (50)

Although the constraints have been weakened, the uncertainties
on the MC parameters have not dramatically broadened the con-
fidence ranges of (ΩM, σ8), which are still well constrained even
when only peak number counts are used. Figure 7 illustrates this
by plotting the marginal error ellipses for all the combinations
of MC parameters with Ωm and σ8, for the case with or without
Planck priors.

As a further step, we investigate the precision of peaks num-
ber counts to constrain all cosmological parameters under the
assumption that the MC relation has been already constrained
through a different method. Here, we only consider the case
where Planck data are added to peaks, since the degeneracies
among cosmological parameters cannot be lifted by a probe that
is only sensitive to integrated quantities. Adding Planck and
peak Fisher matrices and marginalising over the MC parameters
gives

σ(ΩM)=0.006, σ(Ωb)=0.001, σ(w0)=0.09, σ(wa) = 0.51 (51)

and

σ(h) = 0.009, σ(nPS) = 0.006, σ(σ8) = 0.02, (52)

which compares nicely to what can be obtained by combining
Planck with other data, such as BAOs and SNeIa. In particular,
there is significant improvement in the constraints on the dark
energy equation of state. Specifically, we get

Δ(w0) = 9%, Δ(1 + wa) = 51%, (53)

to be compared with 18% and 51% from the combination of
Planck, BAOs, and SNeIa data. However, it is worth stressing
that the comparison is actually unfair given that we have con-
trasted future peak statistics with current SNeIa and BAO data. A
fair comparison would ask for a preliminary Fisher matrix fore-
cast based on, for instance, Euclid BAO data, which is, however,
outside our aims here.
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Fig. 7. Marginal error 1σ contours for all the combinations of MC parameters with Ωm (top panels) and σ8 (bottom panels), for the case with
(yellow curves) or without (blue curves) Planck priors.

Moroever, we emphasise that this result is strongly bound
to the assumption that the MC relation is perfectly known.
If we relax it, the constraints in the eleven-dimensional pa-
rameter space weaken strongly. While (ΩM,Ωb, h, nPS, σ8) are
still reasonably well constrained, the accuracy on dark energy
parameters (w0, wa) read as

Δ(w0) = 41%,Δ(1 + wa) = 131%, (54)

thus asking for additional data to narrow down the confidence
ranges.

5.3. The impact of baryons

Both the B01 and D08 relations and the Sheth-Tormen mass
function have been inferred from the results on N-body simu-
lations that only include collisionless dark matter particles. As
a matter of fact, galaxy clusters also contain baryons (both in
galaxies and in hot gas), so that a realistic description should
take their presence into account. As a consequence, we should
also investigate the impact of baryons on peak number counts
and hence on the constraints discussed above. While address-
ing how the MC and mass function are changed by the collapse
of baryons is outside our aims, we can nevertheless draw some
lessons by considering recent results for this question.

First, we note that baryons can alter the halo concentration,
thus changing the normalisation of the MC relation. However,
we expect that this effect is less and less important as the halo
mass increases. Indeed, Fig. 8 in Duffy et al. (2010) shows that
the ratio cbar

vir /c
DM
vir (with cbar

vir and cDM
vir the halo concentration with

and without baryons) deviates less than 10% from unity for
log Mvir > 13.5, as inferred from comparing CDM only with
hydrodynamical simulations that include baryons. Although this
is not a direct proof that the MC relation is unaffected, we can
reasonably infer that the mass and redshift power-law depen-
dence we have adopted so far is a good approximation even
when baryons are included. It is worth stressing that, while it is

possible that the (Av, Bv,Cv, σv) parameters differ from the fidu-
cial D08 case, this has no impact on our conclusion that peak
number counts can differentiate different MC relations.

As discussed in Velliscig et al. (2014, and refs. therein),
baryons also change the mass function by altering both the
masses of single haloes and their abundances. Based on hydro-
dynamical simulations with different recipes for the details of
baryons physics, Velliscig et al. (2014) provide approximated
formulæ to convert the CDM-only mass function in its baryons-
included counterpart. Using their formalism, we have thus re-
computed Npk(z) by adopting the D08 MC relation and chang-
ing the baryon model12. Figure 8 shows ΔNpk(z)/Npk(z), taking
the CDM-only fiducial case as a reference for two choices of the
threshold S/N value. While deviations from the CDM-only case
can be significant, they are nevertheless less than 12% when only
considering peaks with S/N ≥ 5, the ones used in our Fisher ma-
trix forecasts. We therefore expect that including baryons does
not significantly change our results.

5.4. The choice of the filter aperture and profile

As a final remark, we want to qualitatively discuss how the
choice of the filter affects our results. Once the profile has been
set (in our case resorting to the M05 optimal filter), one only
has to choose the aperture ϑ. Our choice of ϑ = 2 arcmin was
motivated by the need to match the filter aperture to the typical
scale radius Rs of the NFW profile. Needless to say, Rs is not
the same for all clusters, and moreover, its value in angular units
also depends on the cluster redshift and the background cosmol-
ogy. Our choice is therefore based on a median cluster with mass
M200 ∼ 5 × 1014 M� at z ∼ 0.3, where we expect the peak
number counts to be the largest. Nevertheless, it is worth noting
that this choice has not been done to maximise the S/N since
this depends on the mass, the redshift, and MC relation. What is

12 We refer the reader to Velliscig et al. (2014) for the details of baryon
implementation for these three cases.
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Fig. 8. Percentage deviations ΔNpk(z)/Npk(z) =
[
NCDM

pk (z) − Nbar
pk (z)

]
/NCDM

pk (z) of the baryons including peak number counts from the CDM-only
case for the reference (blue), AGN80 (orange), and AGN85 (purple) models for peaks with S/N ≥ 3 (left) or S/N ≥ 5 (right).

important is that, regardless of the ϑ value, the analysis presented
here is still correct. Indeed, the Fisher matrix forecasts only rely
on the assumption that the peaks detected are due to clusters and
are not fake ones. This is guaranteed by the choice of a large
enough S/N threshold. If we had chosen a different ϑ, we could
have repeated the same analysis, provided the threshold S/N still
selects only clusters peaks.

Although we do not aim here at optimising the filter aperture
to minimise the constraints on the MC parameters, we neverthe-
less note that, holding fixed the threshold S/N (which is a good
assumption for 1 ≤ ϑ/arcmin ≤ 3), the larger the aperture, the
higher the total peak number. However, this does not automati-
cally translate into stronger constraints. Indeed, changing the fil-
ter aperture also changes the orientation of the confidence con-
tours in the projected two-dimensional parameter spaces. This
result can be qualitatively explained by noting that, for a given
redshift, the larger aperture, the lower the minimum cluster mass
to get a higher S/N value than the threshold. A similar consider-
ation also holds for the critical detection redshift at a given mass.
As a consequence, the effective redshift of the peak sample and
the mass regime investigated change with the aperture size, thus
making the orientation of the contours different depending on the
ϑ values. Since the magnitude of the constraints also depends on
the mass and redshift regime explored, one cannot use a rule of
thumb to conclude that larger apertures lead to a smaller peak
sample and weaker constraints.

The choice of the filter is even subtler. Ideally, the optimal
filter should guarantee both completeness and purity; that is to
say, it should make it possible to build up a catalogue containing
all the peaks present in the survey with each one of them associ-
ated with a cluster and not caused by large scale structure noise.
Although the M05 optimal filter we use here was designed to ful-
fil both these criteria (purity guaranteed by the S/N selection), it
is nevertheless far from perfect since it is based on the assump-
tion that noise and signal combine in a linear way. Nonetheless,
from our viewpoint, a less than ideal filter can still work to in-
fer constraints efficiently on the parameters of interest. Indeed,
what we need is a peak catalogue whose redshift distribution
can be theoretically predicted without any unaccounted-for sys-
tematics. This is the case for the optimal filter in the high S/N
regime we have used here. Under these circumstances, the sig-
nal is dominated by the cluster itself so that it does not matter
whether the noise combines linearly with it or not. As a result,
the peak number counts are correctly predicted with the analyt-
ical formalism we use, so that we can confidently rely on the
Fisher matrix forecasts we derive.

While the present paper was already completed, we became
aware of a quite similar work by Mainini & Romano (2014, here-
after MR14). They forecast the constraints on MC relation pa-
rameters from peak number counts in Euclid, but they used a
different filter and different redshift scaling of the MC relation.
Also, the background cosmological model and the S/N thresh-
old are different. As a result, a straightforward comparison is not
possible. We nevertheless note that our constraints (for the case
with MC and (ΩM, σ8) parameters left free to vary) are stronger
than theirs. This very likely depends on how the filter has been
dealt with. In our approach, we assume that the filter is fixed to
the one computed assuming a fiducial D08 MC relation so that
Ψ̂(
) in Eq. (37) is the same regardless of the MC relation used
to predict the peak number counts. Such a choice (mimicking
what is actually done in building a catalogue from shear maps)
allows maximising the differences among MC relations. Since
this was not done in MR14, their predicted peak redshift distri-
bution is less dependent on the MC parameters – thus weakening
the forecast constraints.

6. Conclusions

Weak-lensing peak statistics in an Euclid-like survey will offer
an effective tool for studying the properties of galaxy clusters.
In particular, the MC relation can be tightly constrained. Unlike
ongoing studies that focus on detailed study of a small sample
of objects – usually of a few dozen clusters – number counts can
measure the MC relation in a statistical way by studying how
it affects the number of thousands of detectable haloes and its
evolution with redshift. The properties of the clusters are then
measured from the whole population of haloes that pass the de-
tectability threshold rather than from a limited sample of objects
that might suffer from selection biases.

The massive end of the mass-concentration relation is of par-
ticular interest in the context of structure formation and evolu-
tion. The dynamical state of dark matter haloes might cause a
non-monotonic relation between mass and concentration at high
redshift (Prada et al. 2012; Ludlow et al. 2012). Massive systems
at high redshift are most likely still accreting material in a tran-
sient stage of high concentration before virialisation (Ludlow
et al. 2012). Peak statistics will determine the MC slope to �0.03
at M200 > 1015 M� with clusters all over the redshift range, from
z � 0.1 to �0.8, contributing significantly to the total number of
detectable peaks. This will then probe the assembly history of
massive haloes.
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Peak number counts not only probe the MC relation, but also
test the growth of structure through the dependence on the halo
mass function. As we have shown, the peaks redshift distribu-
tion can nicely complement CMB data to further improve the
constraints on the cosmological parameters. In particular, if the
MC relation is known, peak number counts work better than
the combination of current BAOs and SNeIa to constrain the
present-day value of the dark energy equation of state. Even in
the least favourable case of fully unknown MC parameters to be
marginalised over, peak number counts still combine nicely with
Planck to reduce the error on dark energy parameters and further
decrease those on the other cosmological parameters.

The constraints we have discussed were obtained by relying
on the peak redshift distribution. However, this is only a zeroeth-
order statistics, while developing higher order ones (such as
the correlation function between peaks) has only now begun
(Marian et al. 2013). Although still in its infancy, such an ap-
proach is worth being investigated in order to see how it depends
on the halo properties and whether it can help to strengthen con-
straints on MC relation parameters. Furthermore, a combined
analysis of cluster number counts from different tracers (weak
lensing peaks, X-ray, and Sunyaev-Zel’dovich) could represent
a promising way to better constrain the scaling with mass and
redshift of the MC relation, because each probe tests a different
regime. In this case, one could finally find out which MC rela-
tion is the most reliable, hence opening the hunt for the physics
needed to fill the gap between numerical results and the inferred
MC relation.
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