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Abstract Photometric redshifts (photo-z) are crucial

to the scientific exploitation of modern panchromatic

digital surveys. In this paper we present PhotoRAp-

ToR (Photometric Research Application To Redshift):

a Java/C++ based desktop application capable to solve

non-linear regression and multi-variate classification prob-

lems, in particular specialized for photo-z estimation. It

embeds a machine learning algorithm, namely a multi-

layer neural network trained by the Quasi Newton learn-

ing rule, and special tools dedicated to pre- and post-

processing data. PhotoRApToR has been successfully

tested on several scientific cases. The application is avail-

able for free download from the DAME Program web

site.

Keywords techniques: photometric · galaxies:

distances and redshifts · galaxies: photometry ·
cosmology: observations · methods: data analysis

1 Introduction

The ever growing amount of astronomical data pro-

vided by the new large scale digital surveys in a wide

range of wavelengths of the electromagnetic spectrum

has been challenging the way astronomers carry out

their everyday analysis of astronomical sources and we
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can safely assert that the human ability to directly visu-

alize and correlate astronomical data has been pushed

to its limits in the past few years. As a consequence of

the fact that data have become too complex to be effec-

tively managed and analysed with traditional tools, a

new methodological shift is emerging and Data Mining

(DM) techniques are becoming more and more popu-

lar in tackling knowledge discovery problems. A typical

problem which is addressed with these new techniques

is that of the evaluation of photometric redshifts. The

request for accurate photometric redshifts (photo-z) has

increased over the years due both to the advent of a new

generation of multi-band surveys (see for example Con-

nolly et al. 1995, [17]) and to the availability of large

public datasets which allowed to pursue a wide vari-

ety of scientific cases. Ongoing and future large-field

public imaging projects, such as Pan-STARRS (Farrow

et al. 2014, [24]), KiDS1 (Kilo-Degree Survey), DES

(Dark Energy Survey, [19]), the planned surveys with

LSST (Large Synoptic Survey Telescope, Ivezic et al.

2009, [31]) and Euclid (Red Book, [23]), rely on accu-

rate photo-z to achieve their scientific goals.

Photo-z are in fact essential in constraining dark

matter and dark energy through weak gravitational lens-

ing (Serjeant 2014, [44]), for the identification of galaxy

clusters and groups (e.g. Capozzi et al. 2009, [13]), for

type Ia Supernovae, and for the study of the mass func-

tion of galaxy clusters (Albrecht et al. 2006, [1], Peacock

et al. 2006, [37], and Umetsu et al. 2012, [48]), just to

quote a few applications. Photometric filters integrate

fluxes over a quite large interval of wavelengths and,

therefore, the accuracy of photometric redshift recon-

struction is worse than that of spectroscopic redshifts.

On the other hand, in the absence of the minimal tele-

1 http://www.astro-wise.org/projects/KIDS/
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scope time necessary to determine spectroscopically the

redshifts for all sources in a sample, photometric red-

shifts methods provide a much more convenient way

to estimate the distance of such sources. The physical

mechanism responsible for the correlation existing be-

tween the photometric features and the redshift of an

astronomical source, is the change in the observed fluxes

caused by the fact that, due to the stretch introduced by

the redshift, prominent features of the spectrum move

across the different filters of a photometric system.

This mechanism implies a non-linear mapping be-

tween the photometric parameter space of the galaxies

and the redshift values. This non linear mapping func-

tion can be inferred using advanced statistical and data

mining methods in order to evaluate photometric esti-

mates of the redshift for a large number of sources.

All existing implementations can be broadly catego-

rized into two classes of methods: theoretical and empir-

ical. Theoretical methods use template based Spectral

Energy Distributions (SEDs), obtained either from ob-

served galaxy spectra or from synthetic models. These

methods require an extensive a-priori knowledge about

the physical properties of the objects, hence they may

be biased by such information. They, however, repre-

sent the only viable method when dealing with faint

objects outside the spectroscopic limit (Hildebrandt et

al. 2010, [27] and references therein).

When accurate and multi-band photometry for a

large number of objects is complemented by spectro-

scopic redshifts for a statistically significant sub-sample

of the same objects, empirical methods might offer greater

accuracy. This sample needs, however, to be statisti-

cally representative of the parent population. The spec-

troscopic redshifts of this sub-sample are then used to

constrain the fit of an interpolating function mapping

the photometric parameter space. Different methods

differ mainly in the way such interpolation is performed.

From the data mining point of view, the evaluation

of photo-z is a supervised learning problem (Tagliaferri

et al. 2002, [46]), (Hildebrandt et al. 2010, [27], where

a set of examples is used by the method to learn how

to reconstruct the relation between the parameters and

the target (Brescia 2012, [6]). In the specific case of

photometric redshifts, the parameters are fluxes, mag-

nitudes or colors of the sources while the targets are the

spectroscopic redshifts.

A con of this approach being that, as it happens for

all interpolative problems, such methods may suffer to

extrapolate and therefore they are effective only when

applied to galaxies with photometry that lie within the

range of fluxes/magnitudes and redshifts well sampled

by the training set. In this paper we present PhotoRAp-

ToR (Photometric Research Application To Redshift),

namely a Java based desktop application capable to

solve regression and classification problems which has

been finely tuned for photo-z estimation. It embeds a

Machine Learning (ML) algorithm, in the specific case

a particular instance of a multi-layer neural network,

and special tools dedicated to pre- and post-processing

data. The machine learning model is the MLPQNA

(Multi Layer Perceptron trained by the Quasi Newton

Algorithm), which has proven to be particularly pow-

erful photo-z estimator, also in presence of relatively

small spectroscopic Knowledge Base (KB) (Cavuoti et

al. 2012, [14]), (Brescia et al. 2013, [8]). The applica-

tion is available for download from the DAME program

web site2. This paper is organized as follows: in Sect. 2

we describe the Java application; in Sect. 3 we discuss

in some details how the evaluation of photometric red-

shifts is performed. Sect. 4 describe other functionalities

provided by the application, while Sect. 5 is dedicated

to a comparison between PhotoRApToR and an alter-

native public machine learning tool. Finally in Sect. 6

we outline some lessons which were learned during the

implementation of PhotoRaPToR and draw some fu-

ture developments.

2 PhotoRApToR

Everyone who has used neural methods to produce pho-

tometric redshift evaluation knows that, in order to

optimize the results in terms of features, neural net-

work architecture, evaluation of the internal and exter-

nal errors, many experiments are needed. When cou-

pled with the needs of modern surveys, which require

huge data sets to be processed, it clearly emerges the

need for a user friendly, fast and scalable application.

This application needs to run client-side, since a great

part of astronomical data is stored in private archives

that are not fully accessible on line, thus preventing the

use of remote applications, such as those provided by

the DAMEWARE tool (Brescia et al. 2014, [9]). The

code of the application was developed in Java language

and runs on top of a standard Java Virtual Machine,

while the machine learning model was implemented in

C++ language to increase the core execution speed.

Therefore different installation packages are provided

to support the most common platforms. Moreover, the

application includes a wizard, which can easily intro-

duce the user through the various functionalities offered

by the tool. The Fig. 1 shows the main window of the

program. The main features of PhotoRApToR can be

summarized as it follows:

2 http://dame.dsf.unina.it/dame photoz.html#photoraptor
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Fig. 1 The PhotoRApToR main window.

– Data table manipulation. It allows the user to navi-

gate throughout his/her data sets and related meta-

data, as well as to prepare data tables to be submit-

ted for experiments. It includes several options to

perform the editing, ordering, splitting and shuffling

of table rows and columns. A special set of options

is dedicated to the missing data retrieval and han-

dling, for instance Not-a-Number (NaN) or not cal-

culated/observed parameters in some data samples;

– Classification experiments. The user can perform

general classification problems, i.e. automatic sepa-

ration of an ensemble of data by assigning a common

label to an arbitrary number of their subsets, each of

them grouped on the base of a hidden similarity. The

classification here is intended as supervised, in the

sense that there must be given a subsample of data

for which the right output label has been previously

assigned, based on the a priori knowledge about the

treated problem. The application will learn on this

known sample to classify all new unknown instances

of the problem;

– Regression experiments. The user can perform gen-

eral regression problems, i.e. automatic learning to

find out an embedded and unknown analytical law

governing an ensemble of problem data instances

(patterns), by correlating the information carried

by each element (features or attributes) of the given

patterns. Also the regression is here intended in a

supervised way, i.e. there must be given a subsam-

ple of patterns for which the right output is a priori

known. After training on such KB, the program will

be able to apply the hidden law to any new pattern

of the same problem in the proper way;

– Photo-z estimation. Within the supervised regres-

sion functionality, the application offers a special-

ized toolset, specific for photometric redshift esti-

mation. After the training phase, the system will be

able to predict the right photo-z value for any new

sky object belonging to the same type (in terms of

photometric input features) of the Knowledge Base;

– Data visualization. The application includes some

2D and 3D graphics tools, for instance multiple

histograms and multiple 2D/3D scatter plots. Such

tools are often required to visually inspect and ex-

plore data distributions and trends;

– Data statistics. For both classification and regres-

sion experiments a statistical report is provided about

their output. In the first case, the typical confusion

matrix (Stehman 1997, [45]) is given, including re-

lated statistical indicators such as classification effi-

ciency, completeness, purity and contamination for

each of the classes defined by the specific problem.

For what the regression is concerned, the applica-

tion offers a dedicated tool, able to provide sev-

eral statistical relations between two arbitrary data

vectors (usually two columns of a table), such as

average (bias), standard deviation (σ), Root Mean

Square (RMS), Median Absolute Deviation (MAD)

and the Normalized MAD (NMAD, Hoaglin et al.

1983, [28]), the latter specific for the photo-z qual-

ity estimation, together with percentages of outliers

at the common threshold 0.15 and at different mul-

tiples of σ (Brescia et al. 2014, [10]), (Ilbert et al.

2009, [30]).

In Fig. 2 the layout of a general PhotoRApToR experi-

ment workflow is shown. It is valid for either regression

and classification cases.
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Fig. 2 The workflow of a generic experiment performed with PhotoRApToR.

2.1 The Machine Learning model

The core of the PhotoRApToR application is its ML

model, for instance the MLPQNA method. It is a Multi

Layer Perceptron (MLP; Rosenblatt 1961, [42]) neural

network (Fig. 3), which is among the most used feed-

forward neural networks in a large variety of scientific

and social contexts. The MLP is trained by a learning

rule based on the Quasi Newton Algorithm (QNA).

The QNA is a variable metric method for finding

local maxima and minima of functions (Davidon 1991,

[20]). The model based on this learning rule and on the

MLP network topology is then called MLPQNA. QNA

is based on Newton’s method to find the stationary

(i.e. the zero gradient) point of a function. In partic-

ular, the QNA is an optimization of Newton’s learning

rule, because the implementation is based on a statisti-

cal approximation of the Hessian of the error function,

obtained through a cyclic gradient calculation.

In PhotoRApToR the Quasi Newton method was

implemented by following the known L-BFGS algorithm

(Limited memory - Broyden Fletcher Goldfarb Shanno;

Byrd 1994, [12]), which was originally designed for prob-

lems with a very large number of features (hundreds to

thousands), because in this case it is worth having an

increased iteration number due to the lower approxi-

mation precision because the overheads become much

lower. This is particularly useful in astrophysical data

mining problems, where usually the parameter space

is dimensionally huge and is often afflicted by a low

signal-to-noise ratio.

The analytical description of the method has been

described in the contexts of both classification (Brescia

et al. 2012, [7]) and regression (Brescia et al. 2013, [8]

and Cavuoti et al. 2012, [14]). In the present work, we

focus the attention on its parameter setup and correct

use within the presented framework.

3 Photometric redshift estimation

In practice, the problem of photo-z evaluation consists

in finding the unknown function which maps the photo-
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Fig. 3 The typical topology of a generic feed-forward neural network, in this case representing the architecture of MLPQNA.
In the simple example there are two hidden layers (the two blocks of dark gray circles) between the input (X) and output
(Y) layers, corresponding to the architecture mostly used in the case of photo-z estimation. Arrows between layers indicate
the connections (weights w) among neurons. These weights are changed during the training iteration loop, according to the
learning rule QNA.

metric set of features (magnitudes and/or colors) into

the spectroscopic redshift space. If a consistent frac-

tion of the objects with spectroscopic redshifts is avail-

able, the problem can in fact be approached as a data

mining regression problem, where the a priori knowl-

edge (i.e. the spectroscopic redshifts forming the KB),

is used to uncover the mapping function. This function

can then be used to derive photo-z for objects with-

out the spectroscopic counterpart information. With-

out entering into much details, which can be found

in the literature quoted below and in the references

therein, we just outline that our method has been suc-

cessfully used in many experiments done on different

KBs, often composed through accurate cross-matching

among public surveys, such as SDSS for galaxies (Bres-

cia et al. 2014, [10]), UKIDSS, SDSS, GALEX and

WISE for quasars (many of the following figures are

referring to this experiment; Brescia et al. 2013, [8]),

GOODS-North for the PHAT1 contest (Cavuoti et al.

2012, [14]) and CLASH-VLT data for galaxies (Biviano

et al. 2013, [4]). Other photo-z prediction experiments

are in progress as preparatory work for the Euclid Mis-

sion (Laureijs et al. 2011, [33]) and the KiDS3 survey

projects.

3.1 User data handling

The fundamental premise to use PhotoRaPToR is that

the user must preliminarily know how to represent the

data and, as trivial as it might seem, it is worth to ex-

plicitly state that the user must: (i) be conscious of the

target of his experiment, such as for instance a regres-

sion or classification; and (ii) possess a deep knowledge

of the used data. In what follows we shall call features

the input parameters (i.e., for instance, fluxes, magni-

tudes or colors in the case of photo-z estimation).

Data Formats

3 http://www.astro-wise.org/projects/KIDS/

In order to reach an intelligible and homogeneous

representation of data sets, it is mandatory to pre-

liminarily take care of their internal format, to trans-

form the pattern features, and to force them to as-

sume a uniform representation before submitting them

to the training process. In this respect real working

cases might be quite different. PhotoRApToR can in-

gest and/or produce data in any of the following sup-

ported formats:

– FITS [49]: tabular/image;

– ASCII [2]: ordinary text, i.e. space separated values;

– VOTable4: VO (Virtual Observatory) compliant XML-

based documents;

– CSV [41]: Comma Separated Values;

– JPEG [39]: Joint Photographic Expert Group, as

image output type.

Missing Data

Very frequently, data tables have empty entries (sparse

matrix) or missing (lack of observed values for some fea-

tures in some patterns). Missing values (Marlin 2008,

[34]) are frequently (but not always) identified by spe-

cial entries in the patterns, like Not-A-Number, out-of-

range, negative values in a numeric field normally ac-

cepting only positive entries etc. Missing data is among

the most frequent source of perturbation in the learn-

ing process, causing confusion in classification experi-

ments or mismatching in regression problems. This is

especially true for astronomy where inaccurate or miss-

ing data are not only frequent, but very often cannot

be simply neglected since they carry useful informa-

tion. To be more specific, missing data in astronomical

databases can be of two types:

– Type I: true missing data which were not collected.

For instance a given region of the sky or a single ob-

ject was not observed in a given photometric band,

thus leading to a missing information. These missing

data may arise also from the simple fact that data,

4 http://www.ivoa.net/documents/VOTable/



6 Cavuoti et al.

coming from any source and related to a generic

experiment, are in most case not expressly collected

for data mining purposes and, when originally gath-

ered, some features were not considered relevant and

thus left unchecked;

– Type II: upper limits or non-detections (i.e. object

too faint to be detected in a given band). In this case

the missing datum conveys very useful information

which needs to be taken into account into the fur-

ther analysis. It needs to be noticed, however that,

often upper limits are not measured in absence of

a detection and therefore this makes these missing

data undistinguishable from Type I.

In other words, missing data in a data set might

arise from unknown reasons during data collecting pro-

cess (Type I), but sometimes there are very good rea-

sons for their presence in the data since they result from

a particular decision or as specific information about an

instance for a subset of patterns (Type II). This fact im-

plies that special care needs to be put in the analysis

of the possible presence (and related causes) of miss-

ing values, together with the decision on how to submit

these missing data to the ML method in order to take

into account such special cases and prevent wrong be-

haviors in the learning process.

Data entries affected by missing attributes, i.e. pat-

terns having fake values for some features, may be used

within the knowledge base used for a photo-z exper-

iment. In particular they can be used to differentiate

the data sets with an incremental quantity of affected

patterns, useful to evaluate their noise contribution to

the performance of the photo-z estimation after train-

ing. Theoretically it has to be expected that a greater

amount of missing data, evenly distributed in both train-

ing and test sets, induces a greater deterioration in the

quality of the results. This precious information may

be indeed used to assign different indices of quality to

the produced photo-z catalogues. The organization of

data sets with different rates of missing data can be

performed through PhotoRApToR by means of a series

of options.

The Fig. 4 shows the panel dedicated to define and

quantify the presence of missing or bad data within the

user tables. The panel allows: (i) to quantify the num-

ber of wrong values to be retained/removed in/from

the data patterns; (ii) to completely remove the data

patterns affected by the presence of NaN occurrences;

(iii) to assign arbitrary symbols to wrong or missing en-

tries in the dataset (i.e. symbols like “−999”, “NaN”

or whatever).

Data Editing

At the PhotoRApToR core is the MLPQNA neu-

ral model. In this respect, before launching any experi-

ment, it may be necessary to manipulate data in order

to fulfill the requirements in terms of training and test

patterns (data set rows) and features (data set columns)

representation as well as contents: (i) both the training

and test data files must contain the same number of

input and target columns, and the columns must be in

the same order; (ii) the target columns must always be

the last columns of the data file; (iii) the input columns

(features) must be limited to the physical parameters,

without any other type of additional columns (like col-

umn identifiers, object coordinates etc.); (iv) all input

data must be numerical values (no categorical entries

are allowed).

The application makes available a set of specific op-

tions to inspect and modify data file entries. Every time

a new data table is loaded, a new window shows the

complete table properties (Fig. 5), for instance: name,

metadata, path and the number of columns and rows.

For a currently loaded table it is possible to select

a subset of the needed columns. After the selection, a

table subset is created and, if the option Row Shuffle

is enabled, the subset rows are also randomly shuffled.

The random shuffling operation is useful to avoid sys-

tematic trends during the training phase and to ensure

the homogeneity in the distribution of training and test

patterns. This last property is, in fact, directly con-

nected to the necessity to split the initial data into dis-

joint data sets, to be used for the training and testing

phases, respectively. This is a simple action made pos-

sible by the Split option. When the table is selected in

the Table List, the user must give two different names

for the split files (in this case train and test) and two

different percentages of the original data set. It is im-

portant to observe that, generally speaking, in machine

learning supervised methods three different subsets for

every experiment are generally required from the avail-

able KB: (i) the training set, to train the method in

order to acquire the hidden correlation among the in-

put features; (ii) the validation set, used to check and

validate the training in particular against the loss of

generalization capabilities (a phenomenon also known

as overfitting); and (iii) the test set, used to evaluate

the overall performances of the model (Brescia et al.

2013, [8]). In the version of the MLPQNA model im-

plemented in the PhotoRApToR application, the vali-

dation is embedded into the training phase, by means of

the standard leave-one-out k-fold cross validation mech-

anism (Geisser 1975, [25]).
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Fig. 4 Use of the NaN handling tool. After the definition of the NaN symbols, the user can generate a new dataset only with
rows containing NaN elements or another one cleaned by the NaN presence.

Therefore, before any photo-z experiment, it is needed

to split the data set in only two subsets, for instance,

the training and test sets. There is no any analytical

rule to a priori decide the percentages of the splitting

operation. According to the direct experience, an em-

pirical rule of thumb suggests to use 80% and 20% for

training and test sets, respectively (Kearns 1996, [32]).

But certainly it depends on the initial amount of avail-

able KB. For example also 60% vs 40% and 70% vs 30%

could be in principle used in case of large datasets (over

ten thousand patterns). The percentage depends also on

the quality of the available KB. When both photome-

try and spectroscopy are particularly clean and precise,

with a high S/N, there could also be possible to obtain

high performances by training just on half of the KB.

On the other hand, the more patterns are available

for test, the more consistent will be the statistical eval-

uation of the experiment performances.

Data Plotting

Within the PhotoRApToR application there are also

instruments, based on STILTS toolset (Taylor 2006,

[47]), capable to generate different types of plots (some

examples are shown in Fig. 6, 7 and 8). These options

are particularly suited during the preparation phase of

the data for the experiments.

The graphical options selectable by user are:

– multi-column histograms;

– multiple 2D and 3D scatter plots.

Data Feature Selection

Learning by examples stands for a training scheme

operating under supervision of an oracle capable to pro-

vide the correct, already known, outcome for each of the

training sample. This outcome is properly a class or

value of the examples and its representation depends

on the available KB and on its intrinsic nature even

though in most cases it is based on a series of numer-

ical attributes, related to the extracted KB, organized

and submitted in an homogeneous way.

Therefore, a fundamental step for any machine learn-

ing experiment is to decide which features to use as

input attributes for the patterns to be learned. In the

specific case of photo-z estimation, for a given data sets,

it is necessary to inspect and check which types of fluxes

(bands) and combinations (magnitudes, colors) is more

effective.

In practice, the user must maximize the information

carried by hidden correlations among different bands,

magnitudes and zspec available. In spite of what can be

thought, not always the maximum number of available

parameters should be suitable to train a machine learn-

ing model. The experience demonstrates, in fact, that it

is more the quality of data, than the quantity of features

and patterns, the crucial key to obtain the best predic-

tion results (Brescia et al. 2013, [8]). This phase is very

time consuming and usually requires many tens or even

hundreds of experiments. Of course, the exact number

of experiments depends on a variety of factors, among

which, the number of photometric bands and magni-

tudes for which a high quality of zspec entries is avail-

able in the KB; the photometric and spectroscopic qual-

ity of the data, the type of magnitudes (i.e. aperture,

total or isophotal magnitudes, etc.), the completeness of
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Fig. 6 An example of zspec distribution diagram, showing the options available within the histogram plotting panel.

Fig. 7 An example of magnitude distributions, showing the options available within the 2D scatter plotting panel.

Fig. 8 An example of magnitude distributions, showing the options available within the 3D scatter plotting panel.
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Fig. 5 The main panel showing details about the loaded data
table and the editing options.

the spectroscopic coverage within the KB and the spec-

troscopic range. In the authors experience, quite often,

the optimal combination turned out to be the feature

set obtained from the colors plus one reference magni-

tude for each region of the electro-magnetic spectrum

(broadly divided in UV, optical, Near Infrared, Far In-

frared, etc.) [8]. This can be understood by remember-

ing that colors convey more information than the sin-

gle related magnitudes, since from the basic equation

defining magnitudes it is easy to see that a magnitude

difference corresponds to a flux ratio and hence in the

derived colors an ordering relationship among features

is always implicitly assumed.

3.2 Performing experiments

After having prepared the KB, the user should have two

subset tables ready to be submitted for a photo-z exper-

iment. By looking at the Fig. 2 the experiment consists

of a pre-determined sequence of steps, for instance: (i)

Training and validation of the model network; (ii) blind

Test of the trained model network; (iii) Run, i.e. the ex-

ecution on new data samples of a well trained, validated

and tested network.

We outline that for the first two steps, the basic

rule is to use disjointed but homogeneous data subsets,

because all empirical photo-z methods in general may

suffer to extrapolate outside the range of parameter dis-

tributions covered by the training. In other words, out-

side the limits of magnitudes and spectroscopic redshift

(zspec) imposed by the training set, these methods do

not ensure optimal performances. Therefore, in order

to remain in a safe condition, the user must perform a

selection of test data according to the training sample

limits.

None of the objects included in the training sample

should be included in the test sample and, moreover,

only the data set used for the test has to be used to

generate performance statistics. In other words the test

must be blind, i.e. containing only objects never sub-

mitted to the network before.

For what the training is concerned, this phase em-

beds two processing steps: the training of the MLPQNA

model network and its validation. It is in fact quite fre-

quent for machine learning models to suffer of an over-

fitting on training data, affecting and badly condition-

ing the training performances. The problem arises from

the paradigm of supervised machine learning itself. Any

ML model is trained on a set of training data in order

to become able to predict new data points. Therefore

its goal is not just to maximize its accuracy on training

data, but mainly its predictive accuracy on new data

instances. Indeed, the more computationally stiff is the

model during training, the higher would be the risk to

fit the noise and other peculiarities of the training sam-

ple in the new data [21]. The technique implemented

within PhotoRaPToR, i.e. the so called leave-one-out

cross validation, does not suffer of such drawback; it can

avoid overfitting on data and is able to improve the gen-

eralization performance of the ML model. In this way,

validation can be implicitly performed during training,

by enabling at setup the standard leave-one-out k-fold

cross validation mechanism [25]. The automatized pro-

cess of the cross-validation consists in performing k dif-

ferent training runs with the following procedure: (i)

splitting of the training set into k random subsets, each

one composed by the same percentage of the data set
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(depending on the k choice); (ii) at each run the re-

maining part of the data set is used for training and

the excluded percentage for validation. While avoiding

overfitting, the k-fold cross validation leads to an in-

crease of the execution time estimable around k − 1

times the total number of runs.

Concerning the photo-z experiment setup, special

care must be paid to the setup of the training parame-

ters, because all the other use cases, for instance the

Test and Run (i.e. the execution on new data), re-

quire only the specification of the proper input data

set, and to recall the internal model configuration as

it was frozen at the end of training (Fig. 9). We can

group the MLPQNA model training parameters into

three subsets: network topology, learning rule setup and

validation setup.

– Network topology. It includes all parameters re-

lated to the MLP network architecture;

– Number of input neurons. In terms of input data

set it corresponds to the number of columns of

the data table, (also named as input features of

the data sample, i.e. number of fluxes, magni-

tudes or colors composing the photometric in-

formation of each object in the data), except

for the target column (i.e. the spectroscopic red-

shift), which is related to the single output neu-

ron of the regression network. More in general,

in the case of classification problems, the num-

ber of output neurons depends on the number of

desired classes;

– Number of neurons in the first hidden layer. As a

rule of thumb, it is common practice to set this

number to 2N + 1, where N is the number of

input neurons. But it can be arbitrarily chosen

by the user;

– Number of neurons in the second hidden layer.

This is an optional parameter. Although not re-

quired in normal conditions, as stated by the

known universal approximation theorem [18], some

problems dealing with a parameter space of very

high complexity, i.e. with a large amount of dis-

tribution irregularities, are better treated by what

was defined as deep networks, i.e. networks with

more than one computational (hidden) layer [3].

As a rule of thumb, it is reasonable to set this

number to N − 1, where N is the number of in-

put neurons. But it is strongly suggested to use

a number strictly lower than the dimension of

the first hidden layer;

– Number of neurons in the output layer. This num-

ber is obviously forced to 1 for regression prob-

lems, while in case of classification this quan-

tity depends on the number of classes as present

within the treated problem;

– Trained network weights. This parameter is re-

lated to the matrix of weights (internal connec-

tions among neurons). A weight matrix exists

only after having performed one training session

at least. Therefore, this parameter is left empty

at the beginning of any experiment. But, for all

other use cases (Test or Run), it is required to

load a previously trained network. However this

parameter could also be used to perform further

training cycles for an already trained network

(i.e. in case of an incremental learning experi-

ment).

– Validation setup: all parameters related to the op-

tional training validation process;

– Cross validation k value. When the cross valida-

tion is enabled, this value is related to the auto-

matic procedure that splits in different subsets

the training data set, applying a k-step cycle in

which the training error is evaluated and its per-

formances are validated. Reasonable values are

between 5 and 10, depending on the amount of

training data used. The k-fold cross validation

intrinsically tries to avoid overfitting. Nonethe-

less, in rare cases (such as a wrong choice of the

k parameter with respect to the train set dimen-

sion), a residual overfitting may occur. There-

fore if the user wants to verify it, he/she should

simply inspect the results, usually by comparing

train with test performance. Whenever training

accuracy is much better than test one, this is

a typical clue of overfitting presence. Therefore,

when cross validation with a proper k choice

is enabled, by definition, it should avoid such

events. The k parameter choice is not determinis-

tic, but regulated by a rule of thumb, depending

on the amount of training patterns. We remind

also that this value strongly affects the overall

computing time of the experiment.

– Learning rule setup. It includes all parameters

related to the QNA learning rule;

– Maximum number of iterations at each Hessian

approximation cycle. The typical range for such

value is [1000, 10000], depending on the best com-

promise between the requested precision and the

complexity of the problem. It can affect the com-

puting time of the training;

– Number of Hessian approximation cycles. Namely

the number of approximation cycles searching

for the best value close to the Hessian of the er-

ror. If set to zero, the max number of iterations

will be used for a single cycle. At each cycle the
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algorithm performs a series of iterations along

the direction of the minimum error gradient, try-

ing to approximate the Hessian value. A reason-

able range is [20, 60], although also in this case

the exact value depends on the final precision re-

quired. If set to a high value, it is recommended

to enable the cross validation option (see below),

to prevent overfitting occurrence;

– Training error threshold. This is one of the stop-

ping criteria of the algorithm (alternative to the

couple of the parameters iterations and cycles).

It is the training error threshold (a value of 0.001

is typical for photo-z experiments).

– Learning decay. This value determines the ana-

lytical stiffness of the approximation process. It

affects the expression of the weight updating law,

by adding the term decay ∗ ||networkweights||2.

Its range may vary from a minimum value of

0.0001 (very low stiffness) up to 1000.0 (very

high stiffness). Also in this case if a very low

value is adopted, it is recommended to enable

the cross validation option (see below), to pre-

vent overfitting occurrence.

The error calculated by the MLPQNA model dur-

ing the training is evaluated for all the presented input

patterns in terms of the difference between the known

target values and the calculated outputs of the model.

The error function in the regression case is based on the

Least Mean Square (LSE) + Tychonov regularization

[26]. This function is defined as follows:

E =

∑N
i=1(yi − ti)2

2
+
decay ∗ ||W ||2

2

where N is the number of input patterns, y and t are

the network output and the pattern target respectively,

decay is the decay input parameter and ||W || the norm

of the network weight matrix.

Regularization of the weight decay is the most im-

portant issue within the model mechanisms. When the

regularization factor is accurately chosen, then the gen-

eralization error of the trained neural network can be

improved, and the training can be accelerated. If the

best regularization parameter decay is unknown, it could

be experimented by varying its value within the allowed

range, from a weak up to the strong regularization. In

order to achieve the weight decay rule, we internally

minimize a more complex merit function:

f = E +
decay ∗ S

2

Here E is the training error, S is the sum of the

squares of the network weights, and the decay coeffi-

cient decay controls the amount of smoothing applied

to the network. Optimization is performed from the ini-

tial point and until the successful stopping of the opti-

mizer has been reached.

Searching for the best decay value is a typical trial-and-

error procedure. It is usually performed by training the

network with different values of the parameter decay,

from the lower value (no regularization) to the infinite

value (strongest regularization). By inspecting statisti-

cal results at each stage of the procedure the overfitting

tendency can be monitored by continuously changing

the decay factor. A zero decay usually corresponds to

an overfitted network. Very large decay means instead

an underfitted network. Between these extreme values

there is a range of networks which reproduce the dataset

with different degrees of precision and smoothness.

After having successfully terminated a training ses-

sion, the model will produce (among several output

files) a final network weight matrix (file by default called

trainedWeights.txt) and the network configuration setup

(file by default called frozen train net.txt), which can be

used during next experiment steps (Test and Run use

cases), together with the respective input data sets.

3.3 Inspection of results

Interpolative methods, such as MLPQNA, have the ad-

vantage that the training set is made up of real objects.

In this sense, any empirical method intrinsically takes

into account effects such as the filter band-pass and flux

calibrations, even though the difficulty in extrapolating

to regions of the input parameter space not well sam-

pled in the training data is one of the main drawbacks

[16].

This is why a strong requirement of empirical meth-

ods is that the training set must be large enough to

cover properly the parameter space in terms of col-

ors, magnitudes, object types and redshift. If this is

true, then the calibrations and corresponding uncer-

tainties are well known and only limited extrapolations

beyond the observed locus in color-magnitude space are

required. Hence, under the conditions described above

about the consistency of the training set, a realistic

way to measure photometric uncertainties is to compare

the photometric redshifts estimation with spectroscopic

measures in the test samples.

All individual experiments should be evaluated in a

consistent and objective manner through an homoge-

neous set of statistical indicators. We remark that all

statistical results reported throughout this paper are

referred to the blind test data sets only. In fact, it is
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Fig. 9 An example of setup phase for a photo-z regression experiment.

good practice to evaluate the results on data (i.e. the

test set) which have never been presented to the net-

work during any of the training or validation phases. As

easy to understand, the combination of test and train-

ing data might introduce a straightforward systematic

bias which could mask reality.

Within PhotoRApToR we use a specific algorithm

to generate statistics. For each experiment, given a list

of N blind test samples for zspec and zphot, we define:

∆z = zspec − zphot

∆znorm =
zspec − zphot

1 + zspec

where ∆znorm is the normalized ∆z. By indicating

with x either ∆z or ∆znorm, we calculate the following

statistical indicators:

bias(x) =

∑N
i=1 xi
N

σ(x) =

√√√√√∑N
i=1

[
xi −

(∑N

i=1
xi

N

)]2
N

RMS(x) =

√∑N
i=1 x

2
i

N

MAD(x) = Median(| x |)
NMAD(x) = 1.4826×Median(| x |)

There is also a relation between the Root Mean

Square (RMS) and the Standard Deviation σ: RMS =√
mean2 + σ2, but σ2 is the variance, so we haveRMS =√
mean2 + variance. Therefore, for a direct comparison
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of results, in terms of distance of mσ (m = 1, 2, ...) from

the distribution of ∆z, it is much more precise to use

the Standard Deviation as main indicator, rather than

the simple RMS.

There is often a confusion about the relation be-

tween photometric and spectroscopic redshifts used to

apply the statistical indicators. For instance, the perfor-

mance could be very different if the simple ∆z is used

instead of the ∆znorm. The idea is that the ∆z cannot

represent the best statistical indicator in the specific

case of photometric redshift prediction.

The velocity dispersion error, intrinsically present

within the photometric estimation, is not uniform over

a wide range of spectroscopic redshift and therefore the

related statistics is not able to give a consistent esti-

mation. On the contrary, the normalized term ∆znorm
introduces a more uniform information, correlating in a

more correct way the variation of photometric estima-

tion, and thus permitting a more consistent statistical

evaluation at all ranges of spectroscopic redshift.

For what the analysis of the catastrophic outliers

is concerned, according to [35], the parameter D95 ≡
∆95/ (1 + zphot) enables the identification of outliers

in photometric redshifts derived through SED fitting

methods (usually evaluated through numerical simula-

tions based on mock catalogues). In fact, in the hy-

pothesis that the redshift error ∆znorm is Gaussian, the

catastrophic redshift error limit would be constrained

by the width of the redshift probability distribution,

corresponding to the 95% confidence interval, i.e. with

∆95 = 2σ (∆znorm). In our case, however, photo-z are

empirical, i.e. not based on any specific fitting model

and it is preferable to use the standard deviation value
σ (∆znorm) derived from the photometric cross matched

samples, although it could overestimate the theoretical

Gaussian σ, due to the residual spectroscopic uncer-

tainty as well as to the method training error. There-

fore, we consider as catastrophic outliers the objects

with |∆znorm| > 2σ (∆znorm). This although it is com-

mon practice to indicate as outliers all objects with

|∆znorm| > 0.15, (thus included in the provided statis-

tics).

It is also important to notice that for empirical meth-

ods it is useful to analyze the correlation between the

NMAD (∆znorm) = 1.48×median (|∆znorm|) and the

standard deviation σclean(∆znorm) calculated on the

data sample for which |∆znorm| ≤ 2σ (∆znorm). In fact,

the quantity NMAD is smaller than the value of the

σclean. In such condition we can assert that the pseudo-

gaussian distribution of (∆znorm) is mostly influenced

by the presence of catastrophic outliers.

All the described statistical indicators are provided

by PhotoRaPToR as the output of every photo-z esti-

mation test and are stored in specific files (by default

named as test statistics.txt). For completeness we also

provide a similar statistics file as the output of any

training session (Fig. 10). But its use is only to allow a

quick comparison between training and test, just in or-

der to verify the absence of any overfitting occurrence.

Besides the statistics files, PhotoRApToR makes also

available some graphical tools, useful to perform a vi-

sual inspection of photo-z experiments. In particular a

2D scatter plot to show the trend of photo-z vs zspec

(Fig. 11), as well as a set of histograms useful to graph-

ically evaluate the distributions of quantities ∆z and

∆znorm.

4 Other functionalities

To complete the description of the resources made avail-

able by PhotoRApToR, we wish to stress that besides

photometric redshift estimation (to be intended as a

specific type of regression experiment), the user has

the possibility to perform generic regression as well as

multi-class classification experiments.

For a generic regression problem, all the above func-

tionalities described in the case of the photo-z, remain

still valid, with the only straightforward exception for

the statistics produced, which is generated for generic

quantities formulated below.

∆out = target− output

∆outnorm =
target− output

1 + target

Also in the case of the multi-class classification, the

above considerations and options remain still valid with

only some differences, described in what follows.

During the training setup (Fig. 12), there are two

specific options, not foreseen for regression problems:

– Output neurons. The number of neurons of the out-

put layer (which is forced to be 1 in the regression

experiments), in this case corresponds to the num-

ber of different classes present in the training sam-

ple. It is required that the class identifiers should

have a binary format label. For instance, in a three-

class problem, the target classes are represented in

three columns labeled respectively, as (100), (010)

and (001);

– Cross entropy : this optional parameter, if enabled,

replaces the standard training error evaluation (for

instance the MSE between output and target val-

ues). Its meaning is discussed below.
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Fig. 10 The statistics produced at the end of a photo-z regression experiment. The training and test results are also auto-
matically stored in the files train statistics.txt and test statistics.txt, respectively.

The Cross Entropy (CE) error function was intro-

duced to address classification problem evaluation in a

consistent statistical fashion [43]. The CE method con-

sists of two phases: (i) it generates a random data sam-

ple (trajectories, vectors, etc.) according to a specified

mechanism; (ii) it updates the parameters of the ran-

dom mechanism based on the data to produce a better

sample in the next iteration.

In practice, a data model is created based on the

training set, and its CE is measured on a test set to

assess how accurately the model is predicting the test

data. The method compares indeed two probability dis-

tributions, p the true distribution of data in the data

set, and q which is the distribution of data as predicted

by the model. Since the true distribution is unknown,

the CE cannot be directly calculated, while an estimate

of CE is obtained using the following expression:

H (T, q) = −
N∑
i=1

1

N
log2q (xi)

where T is the chosen training set, corresponding to the

true distribution p, N is the number of objects in the

test set, and q (x) is the probability of the event x as

estimated from the training set.

Another difference with respect to regression exper-

iments is of course the statistics produced to evaluate

the results outcoming from a classification experiment.

In this case, at the base of the statistical indicators

adopted, there is the commonly known confusion ma-

trix, which can be used to easily visualize the classi-
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Fig. 11 The photo-z vs zspec plot as produced after a photo-z regression experiment. In this example the diagram shows
both training (black dots) and test (gray crosses) objects, although the blind test objects are the most relevant to evaluate
the prediction performances.

fication performance [40]: each column of the matrix

represents the instances in a predicted class, while each

row represents the instances in the real class (Fig. 13).

One benefit of a confusion matrix is the simple way

in which it allows to see whether the system is mixing

different classes or not.

More specifically, for a generic two-class confusion

matrix,

OUTPUT

− Class A Class B

TARGET Class A NAA NAB

Class B NBA NBB

we then use its entries to define the following statistical

quantities:

– total efficiency: te. Defined as the ratio between the

number of correctly classified objects and the total

number of objects in the data set. In our confusion

matrix example it would be:

te =
NAA +NBB

NAA +NAB +NBA +NBB

– purity of a class: pcN . Defined as the ratio between

the number of correctly classified objects of a class

and the number of objects classified in that class. In

our confusion matrix example it would be:

pcA =
NAA

NAA +NBA

pcB =
NBB

NAB +NBB

– completeness of a class: cmpN . Defined as the ratio

between the number of correctly classified objects

in that class and the total number of objects of that

class in the data set. In our confusion matrix exam-

ple it would be:

cmpA =
NAA

NAA +NAB

cmpB =
NBB

NBA +NBB

– contamination of a class: cntN . It is the dual of the

purity, namely it is the ratio between the misclas-

sified objects in a class and the number of objects

classified in that class, in our confusion matrix ex-

ample will be:

cntA = 1− pcA =
NBA

NAA +NBA

cntB = 1− pcB =
NAB

NAB +NBB

All these statistical indicators are packed in an out-

put file, produced at the end of the test phase of any

classification experiment.

The MLPQNA machine learning method, embed-

ded into PhotoRaptor, has been already tested in sev-

eral classification cases. In Brescia et al. 2012, [7], we

compared the performances of MLPQNA with other

machine learning based classifiers and traditional tech-

niques as well, in terms of accuracy of identifying can-

didate globular clusters in the NGC 1399 HST single-

band data. In Cavuoti et al. 2014, [15], we compared

MLPQNA with standard MLP and Support Vector Ma-

chine to photometrically classify AGNs in the SDSS

DR4 archive. Finally, we recently have exploited the

MLPQNA to perform classification experiments within
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Fig. 12 The setup panel of a multi-class classification experiment. It is also possible to assign arbitrary class labels to all
output instances in the training and test sets (see subpanel Assigning Classes).

SDSS DR10 archive, aimed at photometrically identify-

ing quasars from the whole sample including also galax-

ies and stars, as well as to verify the possibility to dis-

entangle normal galaxies from objects with a peculiar

spectrum, (Brescia et al. 2015, [11]).

5 Comparison with public machine learning

tools

We performed a simple comparison between PhotoRAp-

ToR and an alternative machine learning tool publicly

available: the scikit-learn toolset [38]. The comparison

is based on the photo-z estimation by means of a super-

vised non-linear regression experiment, by directly com-

paring the statistical performances between the MLPQNA

model provided through PhotoRApToR and the widely

known ensemble method based on Random Forest [5],

which uses a random subset of candidate data features

to build an ensemble of decision trees.

The data set used for the experiment was obtained

by merging the photometry from four different surveys

(UKIDSS, SDSS, GALEX and WISE), including de-

rived colors and reference magnitudes for each band as

internal features, thus covering a wide range of wave-

lengths from the UV to the mid-infrared. While the

spectroscopic redshifts, (i.e. the zspec target values)

were derived from selected quasars of the SDSS-DR7

database. The complete KB consisted of ∼ 1.4 × 104

objects, from which the 60% used as training set and

the residual 40% as blind test set (see Brescia et al.
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Fig. 13 The statistics produced at the end of a 2-class classification experiment.

2013, [8], for more details). We remark also that in

that case, our MLPQNA has been directly compared

with other several photo-z estimation methods (see ref-

erences therein), achieving best results.

After having trained the two ML models with the

same training set, their photo-z estimation results have

been compared in terms of statistics and residual analy-

sis (outlier percentages). The results are shown in Fig. 14

and reported in Tab. 1. From the comparison, it results

apparent that MLPQNA performs better than Ran-

dom Forest, especially in the high-redshift zone (i.e.

at zspec > 2.0), showing a more robust prediction ca-

pability also in the sparsely populated regions of the

parameter space.

In addition, unlike the PhotoRApToR resource, in

order to setup and run the Random Forest model pro-

vided by the scikit-learn package, as well as to prepare

and execute the experiments, some manipulations of

the source code have been necessary. The reason is that

the scikit-learn package is provided as a library to be

imported in a user-defined script code, which implies

a certain knowledge of the Python programming lan-

guage.

Although we reported a use case example where

PhotoRaptor has been tested on a dataset of about

104 samples, we want to emphasize that the reliability

of our resource has been already verified for data sets

up to ∼ 106 samples. However, in such cases the com-

putational cost of the experiment becomes very high,

although the regression accuracy does not seem to re-

quire such amount of data in the training set. Therefore,

as general rule of thumb, a good compromise between
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Fig. 14 The photo-z vs zspec scatter plots as produced after the photo-z estimation experiment. The upper plot refers to the
Random Forest model while the lower one is related to the MLPQNA model results. Both diagrams show the distributions of
the ∼ 5.7× 103 objects composing the blind test set.

Table 1 Comparison of the performances among the different tools. MLPQNA is the ML engine of our application, based on
a four-layers neural network, while Random Forest is the ML model provided by the scikit-learn public resource. Both methods
were trained on the multi-survey mixed (colors + reference magnitudes) dataset, obtained by cross-matching photometry of
UKIDSS, SDSS, GALEX and WISE surveys. The reported statistics is related to the photo-z estimation on the blind test set
of about ∼ 5.7× 103 QSO objects. For the definition of the parameters and for discussion see text.

Photo-z Estimation Statistics ∆znorm

Model BIAS σ MAD RMS NMAD
PhotoRApToR (MLPQNA) 0.004 0.069 0.020 0.069 0.029

Scikit (Random Forest) 0.009 0.083 0.021 0.084 0.031

Outlier percentages [%] |∆znorm|
Model > 0.15 > 1σ > 2σ > 3σ > 4σ

PhotoRApToR (MLPQNA) 2.43 9.39 2.89 1.40 0.91
Scikit (Random Forest) 5.27 11.03 4.48 2.31 1.34

computational time and performance could be to limit

the training sample to about 105 samples.

In addition, our model MLPQNA has been tested

in a public photo-z contest (PHAT1, Hildebrandt et

al. 2010, [27], and Cavuoti et al. 2012, [14]), resulting

as one of the best interpolative methods. In another

work (Brescia et al. 2014, [10]) we published a catalogue

of photometric redshifts for the SDSS DR9 release, by

comparing our prediction accuracy with other machine

learning methods. More recently PhotoRaptor has been

used by an independent group (Hoyle et al. 2014, [29]),

that performed a regression feature analysis with SDSS

DR10 galaxies by comparing our resource with random

forest (AdaBoost, [22]) and FANN artificial neural net-

works (Nissen 2003, [36]).

6 Perspective and conclusions

Driven by the advances in the digital detectors and

computing technology, astronomy has become an im-

mensely data-rich science. This exponential data avalanche

continues. It enables some exciting new science, but

poses many non-trivial challenges that are common to
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many other data-driven fields. Nowadays the technolog-

ical evolution of astronomical instruments has been so

fast to render physically impossible to move the data

from their original repositories. The real goal of sci-

ence, namely data analysis and knowledge discovery,

begins after all the data processing and data delivery

through the archives. This requires some powerful new

approaches to data exploration and analysis, leading to

knowledge discovery and understanding. This implies

that, as it has always been asked for but never imple-

mented, we must be able to move the programs and not

the data. Therefore, the future of any data-driven ser-

vice depends on the capability and possibility of moving

the data mining applications to the data centers hosting

the data themselves. In such scenario, PhotoRApToR

represents our test bench of a desktop application pro-

totype capable to fulfill this concept. As a final perspec-

tive, we want to address the still open problem to find

an efficient, reliable and standard way to provide single

photo-z errors in the case of interpolative methods. We

have recently started to investigate such problem and

intend to improve PhotoRaptor in the next future with

such kind of a tool.
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