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1. Introduction
Although it is not specifically designed for cosmic microwave background (CMB) observa-

tions, because of its high resolution and limited high-frequency coverage, the extremely high sen-
sitivity of the SKA (Dewdney et al. 2013, Braun 2014) may be used to address a wide set of themes
relevant for cosmology, in synergy with current and future CMB projects. Many of these also have
a strong link with the future Euclid1 mission and Athena2 observations (Takahashi et al. 2015).

In this chapter we will discuss several important themes: (i) the contribution to future high-
precision CMB absolute temperature experiments aimed at detecting spectral distortion, includ-
ing long wavelength free-free emission linked to cosmological reionization (Sect. 2); (ii) cross-
correlation between CMB and SKA surveys for the analysis of Integrated Sachs-Wolfe (ISW) effect
and constraining on dark energy (Sect. 3); (iii) constraining non-Gaussianity with joint analyses of
CMB and radiosources (Sect. 3); (iv) primordial magnetic fields (Sect. 4); (v) Galactic foreground
studies, linked to component separation in future CMB experiments (Sect. 5).

From the observational point of view, these topics can be divided into two broad categories
(Burigana et al. 2004): those relying on precise point source observations and those that require sen-
sitivity to extended structures. The former take advantage of the high resolution and point-source
sensitivity naturally offered by interferometry, while the latter require a suitable array design and
observational approach, such as a compact configuration implementing short baselines and a high
uv-space filling factor, mosaicing techniques, and for the largest areas, methods such as the on-the-
fly-mapping. These approaches, required by a wide set of SKA scientific projects, are still under
definition and optimization.3 We will identify the corresponding instrumental and observational
requirements and data analysis approaches needed to carry out the proposed studies.

2. SKA contribution to future CMB spectrum experiments
The current limits on CMB spectral distortions and the constraints on energy dissipation pro-

cesses in the plasma (Salvaterra & Burigana 2002) (|∆ε/εi| <∼ 10−4 ) are mainly set by the COsmic

Background Explorer4 (COBE) / Far InfraRed Absolute Spectrophotometer (FIRAS) experiment
(Mather et al. 1990, Fixsen et al. 1996). High accuracy CMB spectrum experiments from space,
such as the Diffuse Microwave Emission Survey (DIMES) (Kogut 1996, Kogut 2003) at λ >∼ 1 cm
and FIRAS II (Fixsen & Mather 2002) at λ <∼ 1 cm, have been proposed to constrain (or probably
detect) energy exchanges 10–100 times smaller than the FIRAS upper limits. Experiments such
as DIMES may probe dissipation processes at early times (z >∼ 105) resulting in Bose-Einstein-like
distortions (Sunyaev & Zeldovich 1970, Danese & de Zotti 1980, Burigana et al. 1991) and free-
free distortions (Bartlett & Stebbins 1991) possibly generated by heating mechanisms at late epochs
(z <∼ 104), before or after the recombination era (Burigana & Salvaterra 2003) (or possibly cool-
ing processes, see Stebbins & Silk 1986, although these are disfavoured by Wilkinson Microwave
Anisotropy Probe5 (WMAP) data). These possibilities have been recently reconsidered in the con-
text of new CMB space missions such as the Primordial Inflation Explorer (PIXIE) (Kogut et al.

1www.rssd.esa.int/euclid
2http://www.the-athena-x-ray-observatory.eu/
3See http://www-astro.physics.ox.ac.uk/ hrk/SKA_EXPOSURE.html for a numerical tool.
4http://lambda.gsfc.nasa.gov/product/cobe/
5http://lambda.gsfc.nasa.gov/product/map/current/
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2011) proposed to NASA, which combines high-accuracy polarization and spectrum measurements
at ∼ degree resolution, and in the possible inclusion of spectral measurements in highly sensitivite
polarization CMB space missions with arcmin resolution, such as the Cosmic Origins Explorer6

(COrE) (COrE Collaboration 2011) proposed to the ESA and its possible successors, such as the
Polarized Radiation Imaging and Spectroscopy Mission7 (PRISM) (PRISM Collaboration 2014).

Calculations of various types of typical distorted spectra (see left panel of Fig. 1) have been
presented in various works (e.g. Danese & Burigana 1994, Procopio & Burigana 2009, Kha-
tri & Sunyaev 2012). Improving CMB absolute temperature measures will give a corresponding
strengthening of the constraints on physical parameters of various classes of processes (see e.g.
PRISM Collaboration 2014 and references therein). Decaying and annihilating particles during the
pre-recombination epoch may affect the CMB spectrum, with the exact distorted shape depending
on the process timescale and, in some cases, being different from that produced by energy release.
This is especially interesting for decaying particles with lifetimes tX ≈ few×108−1011 sec (Danese
& Burigana 1994, Chluba & Sunyaev 2012). Superconducting cosmic strings would also produce
copious electromagnetic radiation, creating CMB spectral distortion shapes (Ostriker & Thompson
1987) that would be distinguishable with high accuracy measurements. Evaporating primordial
black-holes provide another possible source of energy injection, with the shape of the resulting
distortion depending on the black-hole mass function (Carr et al. 2010). CMB spectral distortion
measurements could also be used to constrain the spin of non-evaporating black-holes (Pani &
Loeb 2013). The CMB spectrum could also set constraints on the power spectrum of small-scale
magnetic fields (Jedamzik et al. 2000), the decay of vacuum energy density (Bartlett & Silk 1990),
axions (Ejlli & Dolgov 2014), and other new physics processes. Deciphering these signals is a chal-
lenge, but holds the potential for important new discoveries and constraining unexplored processes
that cannot be probed by other means.

In addition to the processes discussed above, a certain level of departure of the CMB spec-
trum from a perfect blackbody is theoretically predicted due to some unavoidable fundamental
processes. Cosmological reionization produces electron heating which causes a Comptonization
distortion proportional to the fractional amount of energy exchanged during the interaction, charac-
terized by the Comptonization parameter y(t) =

∫ t
ti [(φ −φi)/φ ](kBTe/mec2)neσT cdt ' (1/4)∆ε/εi

(where the last equality holds in the limit of small energy injections and integrating over the relevant
epochs). Here φ(z) = Te(z)/TCMB(z), and φi = φ(zi) = (1+∆ε/εi)

−1/4 ' 1− y is the equilibrium
matter temperature and radiation temperature ratio at the beginning of the heating process (i.e. at
zi). Typical values of y expected from reionization are ≈ 10−7. For example, for two astrophysical
reionization scenarios based on different radiative feedback assumptions (filtering and suppression
models) Burigana et al. (2008) found y' (0.965−1.69)×10−7. Other kinds of unavoidable spec-
tral distortions are Bose-Einstein (BE)-like distorted spectra, produced by the dissipation of pri-
mordial perturbations at small scales, damped by photon diffusion and thus invisible in the CMB
anisotropies, which produce a positive chemical potential, µ0 ' 1.4∆ε/εi, and Bose-Einstein con-
densation of the CMB by colder electrons associated with the faster decrease of matter temperature
in the expanding Universe relative to than that of radiation, which gives a negative chemical poten-

6http://www.core-mission.org/
7http://www.prism-mission.org/
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tial (for a recent review see Sunyaev & Khatri 2013, and references therein). These two kinds of
distortions are characterized by an amplitude, respectively, in the range 10−9−10−7 (and in partic-
ular ' 2.52×10−8 for a primordial scalar perturbation spectral index nS = 0.96, without running),
and ' 3×10−9. Since very small scales not explored by current CMB anisotropy data are relevant
in this context, a wide range of primordial spectral indexes needs to be explored. A wider range of
chemical potentials is found by Chluba et al. (2012), allowing also for variations of the amplitude
of primordial perturbations at very small scales, as motivated by different inflation models.

The free-free signal associated with cosmological reionization represents the most relevant
type of low-frequency spectral distortion. The CMB brightness temperature, Tbr, under the com-
bined effect of Comptonization and free-free processes is approximated by (Tbr−TCMBφi)/TCMB '
yB/x2− 2yφi , where x = hν/kTCMB, and yB is the free-free distortion parameter. For a homo-
geneous ionized medium yB(x, t) =

∫ t
ti (φ − φi)φ

−3/2gB(x,φ)K0Bdt, where gB is the Gaunt factor
weighted over ionized atoms and the bremsstrahlung rate in a hydrogen-helium plasma is given by
K0B(z) ' (8π/3)e6h2n f ree

e (n+H + n+He + 4n++
He )φ

7/2/[m(6πmkTe)
1/2(kTe)

3] (Burigana et al. 1991).
The density of free electrons and ionized atoms is determined by the reionization history. Since
structure formation is far from homogeneous, the dependence of free-free emission on the square
of the baryon density implies a distortion amplification with respect to the case of homogeneous
medium by a large factor, ' 1+σ2, where σ2 is the matter distribution variance (� 1 at moderate
and low redshifts), as found in Trombetti & Burigana (2014) who combine Boltzmann codes for
the matter variance evaluation with a dedicated free-free distortion code. The results are shown in
right panel of Fig. 1, where both free-free signal and Comptonization decrement are included.

The radio background, mainly contributed by the very bright Galactic synchrotron emission,
is approximated (in terms of brightness temperature) by (T/K)∼ 2.8× (ν/GHz)−2.55. The extra-
galactic background determined by the ARCADE 2 experiment (Seiffert et al. 2011) (expressed in
terms of equivalent thermodynamic temperature) is also consistent with a power law with a very
similar index,−2.57, but with an amplitude about two times smaller, plus a frequency-independent
CMB contribution at' 2.725 K. In order to accurately observe with dedicated experiments the tiny
CMB spectral distortions discussed above, the problem of the modelling and subtraction of the
contribution from Galactic emissions and extragalactic foreground needs to be solved. The high
sensitivity and resolution of the SKA can be used to address this issue, as discussed below.

Current measurement of radio source counts at GHz frequencies (see e.g. Prandoni et al.
2001, Condon et al. 2012) have sensitivity levels of tens of µJy (a recent estimation of radio source
background can be found in Gervasi et al. 2008). However, the very faint tail of radio source counts
and their contribution to the radio background at very low brightness temperature is not accurately
known. Exploiting the recent differential number counts at 0.153 GHz (Williams et al. 2014), 0.325
GHz (Mauch et al. 2013), 1.4 GHz (Condon et al. 2012), and 1.75 GHz (Vernstrom et al. 2014a) it
is possible to evaluate the contribution, Tb, to the radio background from extragalactic sources in
various ranges of flux densities. While these signals are clearly negligible compared to the accuracy
of current CMB spectrum experiments, mostly at λ >∼ 1 cm, they can be significant at the accuracy
level potentially achievable with future experiments. Assuming to have subtracted the sources
brighter than several tens of nJy, Tb is found to be less than ∼ 1 mK at frequencies above ∼ 1 GHz,
but larger than∼ 10 mK below∼ 0.3 GHz. The estimate of the minimum source detection threshold
is given by the source confusion noise which, around 1.4 GHz, has been quoted by Condon et al.
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Figure 1: Left panel: CMB distorted spectra in terms of equivalent thermodynamic temperature as a function
of the wavelength λ (in cm) in the presence of a late energy injection with ∆ε/εi ' 4y = 5× 10−6 plus
an early/intermediate energy injection with ∆ε/εi = 5× 10−6 (about 20 times smaller than current upper
limits) occurring at the “time” Comptonization parameter yh = 5,1,0.01 (from the bottom to the top; in the
figure the cases at yh = 5 – when the relaxation to a Bose-Einstein modified spectrum with a dimensionless
chemical potential given, in the limit of small distortions, by µ ' 1.4∆ε/εi is achieved – and at yh = 1 are
extremely similar at short wavelengths; solid lines) and plus a free-free distortion with yB = 10−6 (dashes).
yh is defined by y but with Te = TCMB when the integral is computed from the time of the energy injection
to the current time. From Burigana et al. (2004). Right panel: free-free distortion in the SKA2 frequency
range produced by two astrophysical reionization histories (a reionization phenomenological model, late
model, see Naselsky & Chiang 2004, with parameters given by Eq. (4) of Trombetti & Burigana 2012 is
also displayed for comparison). The inset shows the absolute differences between the models. Vertical lines
display the frequency ranges of the three SKA1 configurations.

(2012): 5σcon f ' 5× 1.2(ν/3GHz)−0.7(θ/8′′)10/3µJy, where θ defines the relevant resolution.
According to the authors, the finite angular extension of faint galaxies, θ ∼ 1′′, implies a “natural
confusion limit“ of about 10 nJy at frequencies around ∼ 1.4 GHz, thus indicating that, for deep
surveys such as those discussed below, source confusion will not represent a relevant limitation.

At 1GHz <∼ ν <∼ some GHz (λ ≈ 1 dm) the signal amplitudes found for CMB distorted spec-
tra well below FIRAS constraints (see Fig. 1) are significantly larger than the estimates of the
background from extragalactic sources fainter than some tens of nJy. Free-free distortion ampli-
tude increases at decreasing frequencies, but source confusion noise may represent there a serious
problem, possibly preventing the achievement of the faint detection threshold necessary to have a
source contribution to the background significantly less than the CMB distortion amplitude.

Extragalactic source contribution is small compared to the Galactic radio emission, which
currently represents the major astrophysical problem in CMB spectrum experiments, but, unlike
the Galactic emission, it cannot be subtracted from the CMB monopole temperature by exploiting
its angular correlation properties. Accurate absolute measurements with a wide frequency coverage
can allow a joint fit of both CMB distorted spectra and astrophysical signals (see e.g. Salvaterra
& Burigana 2002 for an application to FIRAS data) but a direct radio background estimate from
precise number counts will certainly improve the robustness of this kind of analyses.

The relevance of this problem emerged in the detection by the Absolute Radiometer for Cos-
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mology, Astrophysics, and Diffuse Emission 28 (ARCADE 2) of an excess in the CMB absolute
temperature at 3.3 GHz (Singal et al. 2011, Seiffert et al. 2011), which is likely explained by a
background of very faint sources or by residual emission from subtraction of the Galactic compo-
nent. Singal et al. (2010) concluded that, for a radio background at the level reported, the majority
of the total surface brightness would have to have been produced by ordinary star-forming galaxies
at redshift z >∼ 1, characterized by an evolving radio–far-IR correlation, which changes towards the
radio loud with increasing redshift. Using the JVLA at 3 GHz Vernstrom et al. (2014b) ruled out
a new discrete population peaking brighter than 50 nJy while Vernstrom et al. (2014a) constrained
the contribution to the ARCADE 2 excess from an extended population peaking above 1 µJy. An-
alyzing dedicated radio observations with the JVLA,9 Condon et al. (2012) argued that the discrete
sources possibly dominating the reported extragalactic background excess cannot be located in (or
near) galaxies and must be typically fainter than 0.03 µJy at 1.4 GHz. The problem raised by this
controversial 3.3 GHz excess underlines how crucial the precise estimation of very faint source
counts is for the accurate exploitation of CMB spectrum measurements.

SKA continuum surveys, driven by a set of SKA top priority science cases and defined to
provide significant advances over pre-SKA surveys, are described in Prandoni & Seymour (2015).
Deep and ultra-deep surveys are clearly the most relevant ones to determine the very faint source
counts, while P(D) methods can be exploited to extract information on number counts below the
survey sensitivity (Condon et al. 2012), particularly in low frequency continuum surveys, dedicated
to non-thermal emission in clusters and filaments. The Ultra Deep survey dedicated to the Star For-
mation History of the Universe (SFHU), with their planned rms sensitivity of some tens of nJy per
beam and arcsec or better resolution, will represent a great opportunity for an accurate determina-
tion of source number counts down to very faint fluxes, significantly helping the solution of one
fundamental problem of the future generation of CMB spectrum experiments at long wavelengths.

2.1 Free-free localized emissions
The SKA will be able, for the first time, to trace the detailed distribution of neutral hydrogen

before reionization, and the neutral-to-ionized transition state at the reionization epoch, through the
21-cm line (see e.g. Schneider et al. 2008). It is also possible to trace the development of ionized
material directly by looking for the free-free emission from ionized halos. The expected signal
can be calculated exploiting reionization phenomenological and astrophysical models through both
semi-analytical methods (Naselsky & Chiang 2004, Trombetti & Burigana 2014), and numerical
simulations (Ponente et al. 2011).

The direct observation of diffuse gas and Pop III objects in thermal bremsstrahlung has been
investigated by Oh (1999). Observations at high resolution of dedicated sky areas are a natural way
to distinguish free-free distortion by ionized halos rather than by diffuse ionized IGM. The SKA
should be able to detect up to ∼ 104 individual free-free emission sources with z > 5 in 1 square
degree (see left panel of Fig. 2).

Simulations by Ponente et al. (2011) show that the expected individual halo signal should be
Sff ∼ 3.67×10−9 Jy, while the analytic β -model for halo density profiles predicts a signal a factor
∼ 7.5 larger. In terms of ∆T , the maximum temperature distortion is about a few µK (at 1 GHz)

8http://asd.gsfc.nasa.gov/archive/arcade/
9http://www.nrao.edu/pr/2012/jansky/
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Figure 2: Left panel: number of sources which may be detected in 1 deg2 by SKA, as a function of the
threshold flux Sc (theoretical predictions from Oh 1999). Realistic limiting fluxes (5σ sensitivity levels
achievable in one hour of integration on one field of view (FoV)) for point source detection are shown
(vertical lines). We report also the (5σ ) sensitivity achievable by SKA2 with a deep exposure (in ∼ one day
of integration) at low and mid/high frequencies. Extrapolated source counts from Partridge et al. (1997).
Right panel: free-free signal for a halo with M = 6.6× 1014h−1M� at z = 0.15. The greyscale shows the
signal in K and at 1 GHz. The field of view is ≈ 40′. The total flux in this region is Sff = 2.83× 10−5 Jy.
From Ponente et al. (2011).

at the center of the cluster. More massive and denser clusters would produce stronger signals,
representing a useful way to study the intracluster medium. For a simulated massive cluster at
redshift z = 0.15 the free-free distortion at 1 GHz is of the order of 1 mK in the cluster regions (see
right panel of Fig. 2). Thus, the precise mapping of individual halos represents an interesting goal
for the excellent imaging capabilities of the SKA.

3. Cross-correlation with CMB
High accuracy CMB surveys such as those carried out and expected by the Planck satellite10

are designed to cover high sky fractions, fsky, or the whole sky. The SKA is mainly designed
to achieve very faint fluxes on limited sky fields, but its sensitivity is so high on typical FoVs
of ∼ degree side at frequencies ∼ 1 GHz, that it is reasonable to expect to be able to cover a
significant fsky (thousands of square degrees) with unprecedented sensitivity in some months of
integration. This will improve the cross-correlation analyses with CMB surveys and with surveys
in other frequency bands (see also Takahashi et al. 2015).

3.1 Integrated Sachs-Wolfe effect and constraints on dark energy
The ISW effect comes from the line-of-sight integral in the Sachs Wolfe equation (Sachs &

Wolfe 1967). It arises when CMB photons streaming across the Universe interact with the time-
evolving gravitational potential wells associated with foreground large-scale structure (LSS). The
evolution of the potential leads to a net change of the photon energies as they pass through the LSS.
The ISW is a linear effect which depends the cosmological model, since it requires a change in the

10www.rssd.esa.int/planck
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cosmic fluid equation of state. The evolution of the gravitational potential is related to the matter
linear density perturbations; in the matter dominated regime, the growth of matter perturbation is
proportional to the scale factor. This balances the dilution of matter due to the cosmic expansion
and makes the gravitational potential variations negligible. They are relevant however at early
times, when the Universe goes from being radiation dominated to matter dominated (early ISW),
and at late times, as the dark energy (DE) (or curvature) takes over from the matter (late ISW).
The ISW contribution to the CMB anisotropy in a direction n̂ on the sky is approximately given
by ∆ISW (n̂) ≈ −2

∫ Today
Last Scattering dη Φ̇[rn̂,η ] , where Φ is the Newtonian potential, the dot denoting

a derivative with respect to the conformal time η , and r(η) is the proper distance.

Unlike the early ISW, the late ISW is virtually uncorrelated with the CMB anisotropies gen-
erated at last scattering. Direct detection of late ISW is difficult because of its small amplitude
and its dominance only on super-horizon (i.e. large) scales, where cosmic variance is large. How-
ever, it is possible to isolate the late ISW generated at low redshifts through the cross-correlation
of the CMB maps with LSS surveys. Indeed, when CMB photons cross a time-varying potential,
they become slightly hotter or colder: statistically, we expect a tiny correlation of hot spots in the
CMB with LSS, an effect expected to be less than 1 µK, orders of magnitude smaller than the
CMB correlations (Crittenden & Turok 1996, Peiris & Spergel 2000). Several measurements have
been performed to detect the ISW signal: positive cross-correlations were measured using Sloan
Digital Sky Survey11 (SDSS) galaxy data and WMAP (Fosalba et al. 2003, Padmanabhan et al.
2005, Granett et al. 2008, Granett et al. 2009, Papai et al. 2011), on APM galaxies (Fosalba &
Gaztanaga 2004), the 2MASS survey (Afshordi et al. 2004), and on radio data (see Nolta et al.
2004, Raccanelli et al. 2008 and Boughn & Crittenden 2004a,b where correlations with hard X-ray
background were found). Also, Afshordi et al. (2004), Rassat et al. (2007), and Francis & Peacock
(2010) used IR galaxy samples to characterize the ISW signal. The typical significance of ISW
detections is currently quite low, around 2-3 σ . The cross-correlation detection of CMB with LSS
requires a good CMB map on large scales and a deep enough galaxy distribution map with large
fsky to reduce the uncorrelated CMB map noise, with S/N ∝ f 1/2

sky .

Given a CMB map in temperature and a galaxy survey x = (T,G) (vector in pixel space),
the quadratic maximum likelihood (QML) estimator (Tegmark 1997) provides an estimate of the
angular power spectrum (APS) ĈX

` , where X = T T,T G,GG. QML is well suited for such analysis,
being optimal, i.e. unbiased and with minimum variance, an essential feature when the S/N ratio
is low, as for the ISW effect. It is computationally demanding, but can be applied at relatively low
resolution, i.e. for large scales, where the (late) ISW effect appears, and even for fsky < 1, being
a pixel based method. A set of estimators (Xia et al. 2009) exploiting the features of the redshift
surveys considered has been developed: the correlation of WMAP7 CMB data with radio sources
in the NRAO Very Large Array Sky Survey12 (NVSS) and its implications on the cosmological
perturbation statistics (Xia et al. 2010b); the foreground removal from CMB maps (Xia et al. 2010a)
to improve auto and cross-correlation spectra (Xia et al. 2011); and WMAP7 maps and NVSS
cross-correlations with dedicated methods to constrain the DE content (Schiavon et al. 2012).

From the 2013 data release, the Planck Collaboration detected the ISW effect with a 2σ –

11www.sdss.org
12http://www.cv.nrao.edu/nvss/
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4σ significance, depending on the adopted method (Planck Collaboration 2014a). The SKA will
play a crucial role in improving the current large-scale galaxy dataset. The requirement to have a
negligible shot noise in the galaxy power spectrum is β FoV T0 > 10deg2yr (Abdalla & Rawling
2005); here β is the receiver bandwidth, T0 is the survey duration and FoV is 1 deg2 and 200 deg2

for SKA1-MID and SKA2-LOW, respectively. It is foreseen that a 1-yr SKA survey will contain
> 109( fsky/0.5) HI galaxies in a redshift range 0 < z < 1.5. This makes the combination of SKA
and Planck data a powerful tool for investigating the ISW correlation, offering the opportunity
to achieve an independent measurement of the effect and increasing the confidence level in the
detection from the present, marginal evidence. It will also be possible to improve constraints on
the statistics of primordial perturbations and DE dynamics.

3.2 Non-Gaussianity from joint analyses of CMB and radiosources
Statistical analyses of the extragalactic source distribution can probe the Gaussianity of pri-

mordial perturbations through their imprints at the origin of LSS. Different kinds of non-Gaussianity,
such as the local type (loc), equilateral (eq), enfolded (enf), orthogonal, have been predicted (Bar-
tolo et al. 2004, Komatsu et al. 2010). For example, the local type is parameterized by a constant
dimensionless parameter fNL (see e.g. Verde et al. 2000, Komatsu & Spergel 2001, Babich et al.
2004), Φ= φ + fNL(φ

2−< φ 2 >), where Φ denotes Bardeen’s gauge-invariant potential (evaluated
deep in the matter era in the CMB convention) and φ is a Gaussian random field. Extragalactic radio
sources are powerful tracers of the LSS, since they span a large volume extending out to substantial
redshift. A global analysis of the constraints on the amplitude of primordial non-Gaussianity (PNG)
from the APS obtained from extragalactic radio sources (the SDSS Release Six quasar catalogue),
the final SDSS II Luminous Red Galaxy (LRG) photometric redshift survey, and cross-correlation
with the WMAP CMB temperature map, has set limits of f loc

NL = 48± 20, f eq
NL = 50± 265 and

f en f
NL = 183±95 at 68% confidence level, almost stable with respect to potential systematic errors

and analysis details (Xia et al. 2011). A recent, interesting analysis of PNG of local type using
the clustering of 8× 105 photometric quasars from the SDSS in the redshift range 0.5 < z < 3.5
has been presented by Leisted et al. (2014). The authors separate the sample of quasars into four
redshift bins by selecting objects with photometric redshift estimates and mitigate the impact of
systematics in the estimate of power spectra with a novel technique, the extended mode projection,
based on the measurement and mapping onto the sky of the most potential systematics (e.g. observ-
ing conditions, calibration) during SDSS observations. They obtain−49< f loc

NL < 31 and predict an
error σ( f loc

NL )' 5 from the angular power spectra of galaxies in 20 tomographic bins in the redshift
range 0.5 < z < 3.5 that will be obtained with the Large Synoptic Survey Telescope-like photomet-
ric survey (LSST DE Science Collaboration 2012). Furthermore, a robust constraint, f loc

NL = 5±21,
on PNG of local type has been derived by Giannantonio et al. (2014) cross-correlating a wide
set of currently available catalogs of galaxy surveys and them with WMAP maps and perform-
ing an extended analysis of the possible systematics aimed at reducing their impact on the results.
Tests of non–Gaussianity would have profound implications for inflationary mechanisms – such
as single-field slow roll, multifields, curvaton (local type) – and for models whose effects on the
halo clustering can be described by the equilateral template (related to higher-order derivative type
non-Gaussianity) and by the enfolded template (related to modified initial state or higher-derivative
interactions). Planck data already set strong limits on the non-Gaussianity parameter fNL, namely
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Figure 3: B-mode APS of the CMB at 10 GHz and 20 GHz induced by the Faraday rotation field with PMF
normalization comoving scale λ = 1 Mpc and nB = 0 (solid black line – adapted from Fig. 2 in Kosowsky et
al. 2005) compared with SKA2 sensitivity (red dashes) achieved in ∼ 103 hours of integration on a suitable
number of FoVs, each of area ' 0.49× (1.67GHz/ν)2 deg2. Cosmic+sampling variance from this signal
(green three-dots) and instrumental noise limitation (green dots) are also separately displayed. A 10% bin-
ning in ` is assumed. With relatively short baselines exploited here, the sharing of the same integration time
on a number of FoVs may be more advantageous in terms of trade-off between the minimization of sampling
and noise variances. The use of a focal-plane array with a number of receivers, Nr, allowing to observe a
correspondingly larger sky area in the same time, will imply a better signal-to-noise ratio. See also the text.

f loc
NL = 2.7±5.8, f eq

NL =−42±75 and f en f
NL =−25±39 at 68% confidence level (Planck Collabo-

ration 2014b), significantly constraining or ruling out many classes of inflationary models.

Recent forecast works exploit the SKA radio continuum surveys (Prandoni & Seymour 2015)
covering ' 3.1× 104 deg2 out to high redshift. To mitigate the problem of lack of redshift data,
Raccanelli et al. (2014) propose a combination of two methods: cross-correlation of the radio
counts with CMB temperature anisotropies, i.e. the ISW effect, to reduce systematics on large
scales which are particularly sensitive to PNG; and cross-identification of radio sources with op-
tical data in order to split the radio sources into redshift bins. The authors show that even with
only two redshift bins, a tomographic analysis could improve the constraints on f loc

NL by an order of
magnitude with respect to the case of a single redshift bin, achieving σ( f loc

NL )' 2, while including
full redshift information will allow highly precise measurements of the non-Gaussianity parameter,
with σ( f loc

NL ) < 1. General relativistic effects on the galaxy number counts, such as a non-linear
primordial correction and linear projection effects from observing in redshift space on the past
light-cone, have been included in the analysis of Camera et al. (2014). Their relevance emerges
for a precise analysis of small values of f loc

NL , necessary in the light of Planck results. Neglecting
difficulties due to cosmological parameter degeneracies, since the inclusion of PNGs does not sig-
nificantly broaden the constraints on other parameters, the standard approach is adopted of varying
freely only the parameters one is interested in and fixing all the others to their fiducial values, as
fitted for instance by Planck. The authors find that with SKA2 (in its full configuration) it will
possible to constrain f loc

NL down to σ( f loc
NL ) ' 1.54, thanks to the large number of HI galaxies that

will be detected up to high redshift. These works indicate the possibility to improve with SKA the
constraints on f loc

NL of a factor ∼ 3 with respect to Planck results.

The combination of high accuracy and deep extragalactic source surveys achievable with the
SKA and the forthcoming and future CMB maps will provide a significant progress in this topic, at
least for the local configuration.
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4. Primordial magnetic fields versus seed magnetic field

The large-scale magnetic fields of the order of few µG observed in galaxies and galaxy clus-
ters may be the product of the amplification, during structure formation, of primordial magnetic
seeds (Ryu et al. 2012). Several early-universe models predict the generation of primordial mag-
netic fields (PMF), either during inflation or during cosmological phase transitions (see Widrow et
al. 2012 for a review). The impact of PMF on Big Bang nucleosynthesis constrains their ampli-
tude at the µG level (Kawasaki & Kusakabe 2012). Tighter constraints at the nG level come from
CMB temperature APS (Paoletti & Finelli 2011, Shaw & Lewis 2012, Paoletti & Finelli 2013) and
bispectrum (Caprini et al. 2009, Seshadri & Subramanian 2009, Trivedi et al. 2010, Trivedi et al.
2012, Shiraishi et al. 2012). PMF also impact structure formation. The presence of an extra com-
ponent of anisotropic stress carried by the PMF and the Lorentz force induced on baryons modifies
the evolution of matter perturbations, and impacts the small-scale matter power spectrum, and the
formation and early evolution of structure. This effect, studied through magnetohydrodynamic
N-body numerical simulations (Dolag 2006), is still at an early stage of development, especially
concerning the analytical non-linear treatments. Data from the γ-ray observatory Fermi have re-
cently added new intriguing observations in the context of cosmological magnetic fields which
might be interpreted as a lower bound on the PMF amplitude. The data on γ-ray cascades from
blazars show a lack of photons, which is compatible with diffuse extra-galactic magnetic fields in
the intracluster medium (voids) with a lower bounds of the order of 10−15−10−16 G (Neronov &
Vovk 2010, Taylor et al. 2011, Vovk et al. 2012). If this lower bound on the PMF is be confirmed,
the SKA could perform crucial measurements towards probing the PMF generation mechanism.
Current CMB constraints on the PMF are dominated by temperature anisotropy accuracy measure-
ments, since PMF impact the high multipoles (` ∼ 1500) without suppression by Silk damping.
Recent measurements from WMAP combined with SPT and Planck were crucial in disentangling
PMF contributions from high-` foreground and secondary anisotropies (Paoletti & Finelli 2013).
SKA measurements in temperature and polarization of very high-` multipoles could improve these
bounds on the PMF as well as the characterization of foreground and secondary anisotropies be-
yond the Silk damping tail. The PMF contribution to CMB anisotropies is generated either at the
last-scattering surface or by Faraday rotation of the intervening magnetic fields of the stochastic
background with the characteristic frequency dependence ∝ ν−4 (Kosowsky & Loeb 1996). The
smoking gun of the Faraday rotation from a stochastic background of PMF is a B-polarization sig-
nal at very high-` multipoles, with a peak around `∼ 1.4×104 (Kosowsky et al. 2005). SKA2 (in
particular with the bands at ∼ 10−20 GHz, because of their minor foreground contamination) can
target such signal (see Fig. 3) in the multipole range `∼ 104−1.5×104 for a magnetic field ampli-
tude ≈ nG allowed by the temperature measurement. We exploit the flexibility of SKA to identify
suitable conditions for detecting this signal, searching for configurations able to jointly minimize
sampling and noise variances. We find that, even assuming a collecting area (and, correspondingly,
receiver numbers) decreased to about 50%, relatively short baselines (around 5 km) are better suited
to this aim. While the FoV at ∼ 10 GHz is in principle large enough for a detection (or to improve
current constraints on PMF models), the implementation of SKA2 with focal-plane arrays, allow-
ing an increase the observed sky area in the same integration time, will be extremely useful for this
research, particularly at 20 GHz. Obviously, the best configuration will be selected according to the
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allocated time and actual implementation of SKA2. CMB polarization can be crucial to determine
or constrain the nature of the stochastic background, given the different dependence of the Faraday
effect on Bλ and the magnetic field power spectrum index nB.

5. Galactic foregrounds

For many of the above topics the accurate study of Galactic emission is particularly crucial
(see e.g. Burigana et al. 2013). The possibility of mapping intermediate and large scales with the
SKA relies on the ability to merge different FoVs into maps with appropriate large-scale calibration
and matching, possibly in combination with other radio surveys. On the other hand, the relatively
bright Galactic radio signal does not require the extreme sensitivity demanded, for instance, by
CMB fluctuation mapping at the SKA highest frequencies. SKA1 and SKA2 observations in the
radio domain will allow us to test Galactic synchrotron emission models, 3D physical models of
the Galaxy and the large scale coherent component of the Galactic magnetic field (Sun et al. 2008,
Sun & Reich 2009, Sun & Reich 2010, Fauvet et al. 2011, Fauvet et al. 2012), based on advanced
numerical codes (Strong & Moskalenko 1998, Waelkens et al. 2009) and including turbulence
phenomena (Cho & Lazarian 2002).

For both Galactic science and the treatment of foregrounds in cosmology, it is also important
to improve our understanding of the anomalous microwave emission (AME) and of the haze com-
ponent. AME is the recently identified emission component which is well-correlated with far-IR
dust emission. It is produced by rapidly spinning small dust grains having an electric dipole mo-
ment (Draine & Lazarian 1998) and its spectrum is expected to peak in the range 15–50 GHz. For
the first time Planck was able to define the shape of the spectrum on the high frequency side of the
emission peak in a number of dust/molecular/HII regions (Planck Collaboration 2011). In the fre-
quency range 20–40 GHz AME is typically comparable in brightness to the free-free for the inner
Galactic plane. SKA2 could provide precise mapping on the low frequency tail of this emission.

Planck was also able to identify and characterize the emission from the Galactic haze at mi-
crowave wavelengths (Planck Collaboration 2013). This is a distinct component of diffuse Galac-
tic emission, roughly centered on the Galactic centre, extended to |b| ∼ 35◦ in Galactic latitude
and |l| ∼ 15◦ in longitude. By combining WMAP and Planck data, Planck Collaboration (2013)
were able to determine the spectrum of this emission to high accuracy, unhindered by the large
systematic biases present in previous analyses. The derived spectrum is consistent with power-law
emission with a spectral index of−2.55±0.05, thus excluding free-free emission as the source and
instead favoring hard-spectrum synchrotron radiation from an electron population with a distribu-
tion (number density per energy) dN/dE ∼ E−2.1. At Galactic latitudes |b| < 30◦, the microwave
haze morphology is consistent with that of the Fermi γ-ray haze or bubbles (see also Carretti et
al. 2012), indicating that we have a multi-wavelength view of a distinct component of our Galaxy.
Given the very hard spectrum and the extended nature of the emission, it is unlikely that the haze
electrons result from supernova shocks in the Galactic disk. Instead, a new mechanism for cosmic-
ray acceleration in the centre of our Galaxy is implied. With the SKA multifrequency mapping in
total intensity and polarization we will have the opportunity to firmly constrain these models.

In general, a large sky coverage is crucial for mapping Galactic radio emissions. Among the
SKA continuum surveys (Prandoni & Seymour 2015), we compare the sensitivity (on the same
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resolution element) of the ' 75% sky coverage surveys at 1.4 GHz and at 0.12 GHz, planned for
1–2 years of integration and dedicated respectively to strong gravitational lensing and legacy/rare
serendipity and to non-thermal emission in clusters and filaments, with that of radio surveys (La
Porta et al. 2008) currently adopted as ancillary maps in CMB experiment analyses. The former
will have a sensitivity about 20 times better than the available all-sky radio survey at 1.4 GHz, the
latter will have sensitivity about 4 times better than the Haslam map at 408 MHz (Haslam et al.
1982), thus representing a significant improvement with respect to current ancillary radio maps.

Summarizing, the SKA high resolution maps of the Galactic emission will contribute to a
better understanding of the Galactic foreground and will provide key astrophysical information for
the separation of CMB and the cosmological HI 21 cm emission.
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