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Asymptotically Safe theories of gravity have recently received much attention. In this work we discuss 
a class of inflationary models derived from quantum-gravity modification of quadratic gravity according 
to the induced scaling around the non-Gaussian fixed point at very high energies. It is argued that the 
presence of a three dimensional ultraviolet critical surface generates operators of non-integer power of 
the type R2−θ/2 in the effective Lagrangian, where θ > 0 is a critical exponent. The requirement of a 
successful inflationary model in agreement with the recent Planck 2015 data puts important constraints 
on the strength of this new type of couplings.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

If the inflationary scenario is correct, then it is possible that 
quantum gravitational phenomena could be detected in anisotropy 
experiments of the cosmic microwave background radiation and in 
observations of the large scale structure of the Universe [1].

Although a consistent quantization of the gravitational field is 
still lacking, it is assumed that quantizing the matter fields and the 
gravitational field on a classical background should be sufficient to 
explain the generation of the initial spectrum of perturbations.

In recent times a promising theory of quantum gravity has ap-
peared in the framework of the asymptotic safety (AS) proposal. 
Its central idea, as first discussed by Weinberg [2], is to define 
the continuum limit around a non-Gaussian fixed point (NGFP) 
characterized by an ultraviolet (UV) critical manifold of finite di-
mensionality [3–24].

One of the most striking consequences of this approach is the 
fact that the fundamental theory seems to be rather different from 
the classical gravity based on the Einstein–Hilbert action. In the 
infinite cutoff limit, it is characterized by a vanishing Newton’s 
constant which is therefore antiscreened at high energies. Classical 
gravity can only be recovered as a low-energy effective theory at 
some intermediate scale and it does not define a fundamental the-
ory. Although we do not know yet the structure of the fundamen-
tal Lagrangian, all the investigations performed so far, considering 

* Corresponding authors.
E-mail addresses: alfio.bonanno@oact.inaf.it (A. Bonanno), 

alessia.platania@oact.inaf.it (A. Platania).
http://dx.doi.org/10.1016/j.physletb.2015.10.005
0370-2693/© 2015 The Authors. Published by Elsevier B.V. This is an open access article
SCOAP3.
general f (R) truncations or more complicated tensorial structure 
like Rμν Rμν , have confirmed the finite dimensionality of the UV 
critical surface (see [25–27] for reviews and also [28] for a recent 
investigation within the f (R) truncation).

In the simple case of two relevant directions, as in the case 
of quantum Einstein–Hilbert gravity, several investigations have fo-
cused on the implications of the running of the Newton’s constant 
in models of the Early Universe. In [29–33] it has been shown that 
the renormalization-group induced evolution of the Newton’s con-
stant and cosmological constant can provide a consistent cosmic 
history of the Universe from the initial singularity to the superac-
celerated expansion.

In particular in [32] it has been argued that the scaling prop-
erties of the 2-points correlation function of the graviton near the 
NGFP induce a scale invariant spectrum of the primordial pertur-
bations, characterized by a spectral index ns which, to a very good 
approximation, must satisfy ns ≈ 1.

Subsequent investigations have tried to produce successful 
models of inflation by considering an extended structure of the 
effective Lagrangian near the NGFP [34], but it turns out that the 
use of an “optimal cutoff” might result in a fine tuning problem 
[35,36]. In [37] the running of the gravitational and cosmologi-
cal constants has been described in terms of a Jordan–Brans–Dicke 
model with a vanishing Brans–Dicke parameter, while the viability 
of the AS scenario in models where the inflaton is the Higgs field 
has been discussed in [38,39].

An effective Lagrangian encoding the leading quantum gravi-
tational effect near the NGFP has been proposed in [40] where a 
RG-improvement of the linearized β-functions has been performed 
using the idea that the relevant cutoff in this situation is provided
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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by the local curvature, i.e. k2 ∼ R (see also [41]). In a recent in-
vestigation a similar approach has been successfully applied to 
study the quantum gravity modifications of the Starobinsky model 
[42] (see also [43–48] for other examples of quantum deformed 
quadratic gravity inflationary models).

In this work we extend the analysis of [40] by including the 
additional relevant direction produced by the R2 operator on the 
UV critical surface.

It will be shown that the requirement of a successful inflation-
ary model in agreement with the recent Planck 2015 data release 
of CMB anisotropy puts significant constraints on the renormalized 
flow generated by the R2 term. In particular the dynamics of the 
inflaton after the inflationary phase can be rather different from 
the well known R + R2 Starobinsky model.

The rest of the paper is organized as follows: In Section 2 we 
introduce the basic formalism and obtain the effective field theory 
description in terms of a f (R) theory. In Section 3 we compute the 
spectral index ns for the primordial perturbations and the tensor-
to-scalar ratio r using a conformal mapping to the Einstein frame. 
In Section 4 the oscillatory phase after inflation is discussed, and 
Section 5 is devoted to the conclusions.

2. Basic formalism

Let us consider the quadratic gravity Lagrangian

Lk = k2

16π gk
(R − 2λkk2) − βk R2 (1)

where k is a running energy scale and gk , λk and βk are di-
mensionless running coupling constants whose infinite momen-
tum limit is controlled by a NGFP, i.e. limk→∞(gk, λk, βk) =
(g∗, λ∗, β∗) �= (0, 0, 0) [6,49]: does this running show up at the 
level of predictions for a specific inflationary model?

In the case at hand the qualitative behavior of the UV criti-
cal manifold of the quantum theory defined by (1) at the NGFP 
is rather simple, as its continuum limit can be described only by 
three relevant couplings. In particular there exist trajectories that 
emanate from the NGFP and possess a long classical regime where 
the effective action is approximated by the standard Einstein–
Hilbert action [49]. On the contrary the quantitative details of the 
renormalized flow around the NGFP are still rather uncertain. In 
fact, not only the precise location of the NGFP is regulator depen-
dent (as expected), but also the value of the critical exponents 
depends on the truncation strategy employed to solve the flow 
equation [12,50]. Moreover recent investigations based on unimod-
ular gravity [51], and general arguments [52] suggest that the crit-
ical exponents are indeed real [53,54].

For these reasons we would like to find an approximation to the 
renormalized flow which encodes the general qualitative feature of 
the scaling around the NGFP and assumes real critical exponents. 
We thus approximate the running of λk with its tree-level scaling 
λk ∼ c0 k−2 where c0 is a dimensionful constant, and decouple the 
running of gk from the running of βk . This latter approximation is 
justified by the impressive stability of the critical exponents for the 
Newton’s constant against the inclusion of higher order truncations 
as shown in several investigations [12], but it has also the impor-
tant advantage to allow for an analytic expression of the flow in 
our model. In fact, under these assumptions the renormalized flow 
thus reads [10]

gk = 6πc1k2

6πμ2 + 23c1(k2 − μ2)
(2)

βk = β∗ + b0

(
k2

2

)− θ3
2

(3)

μ

where μ is an infrared renormalization point, c1 = gk(k = μ) (see 
[10] for details). According to [6] β∗ = βk(k → ∞) � 0.002, while 
b0 is a free parameter obtained by the linearization of the RG flow 
around the NGFP, and θ3 is the critical exponent for the R2 cou-
pling.

It is important to stress that, as long as c1 < 6π/23 the running 
described by Eq. (2) smoothly interpolates between the Gaussian 
fixed point (GFP) and the NGFP, g∗ = gk(k → ∞) = 6π/23 and 
therefore it captures the qualitative features of the flow described 
in [49]. The constants b0, c0 and c1 depend on the physical situ-
ation at hand and must be fixed by confronting the model with 
observations: in principle these are the only free parameters of 
our theory corresponding to the three relevant directions of the 
UV critical surface of the action (1). In other words, by changing 
c1, c0 and b0 it is possible to explore various RG trajectories all 
ending at the NGFP. The relevant question is whether it is possible 
to actually constraint these numbers, in particular the value of b0.

As argued in [40,42,55] by substituting (2), (3) and λk = c0/k2

in (1), a renormalization group improved effective Lagrangian can 
be obtained by the scale identification k2 → ξ R , where ξ is pos-
itive number. It must be stressed that the general structure of 
the resulting RG-improved effective Lagrangian agrees very well 
with the high-curvature solution of the fixed point equation for 
a generic asymptotically safe f (R) theory, as it emerges from the 
analysis of [20] and [40].

At last, we obtain the following RG-improved action

S = 1

2κ2

∫
d4x

√−g

[
R + αR2− θ3

2 + R2

6m2
− 


]
(4)

where μ is chosen so that κ2 = 8πG N = 48π2c1/(6πμ2 −23(μ2 +
2ξc0)c1) ≡ 1/M2

pl. Moreover 
 = μ2c0(6π − 23c1)/(6πμ2 −
23(μ2 + 2ξc0)c1) and M2

pl/m2 = 12(23ξ/(96π2 − β∗)); in partic-

ular if ξ > 96π2β∗/23 and c0 < μ2(6π − 23c1)/46ξc1, then 1/m2

and 
 are positive definite.
On the other hand

α = −2μθ3 b0/M2
pl (5)

which only depends on θ3 and b0, but not on the fixed point val-
ues. Concerning θ3 the numerical evidence accumulated so far has 
shown that its value is rather stable against the introduction of 
higher order truncation in the flow equation [50], as it should be 
expected for a critical exponent. On the contrary b0 is by construc-
tion a non-universal quantity whose value cannot be determined 
by the RG group. It labels a specific trajectory emanating from the 
fixed point and its actual value should be determined by matching 
with a low energy observable.

Let us now introduce an auxiliary field ϕ defined via

ϕ(χ) ≡ 1 + α

(
2 − θ3

2

)
χ1− θ3

2 + χ

3m2
(6)

In principle this relation can be always inverted at least locally, 
provided ϕ,χ �= 0 so that (4) is equivalent to

S = 1

2κ2

∫
d4x

√−g

[
ϕR − (ϕ − 1)χ(ϕ)

− α

(
2 − θ3

2

)
χ(ϕ)1− θ3

2 + χ(ϕ)

3m2

]
(7)

In practice, due to its non-linearity, the task of inverting Eq. (6) can 
be very difficult and one must often resort to numerical methods. 
In our case, according to the analysis of [12], as θ3 is rather close 
to unity we can safely set θ3 = 1 for any practical calculation (as it 
can be numerically checked). In this case we explicitly obtain the 
two branches
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χ± = 3

8

(
27α2m4 + 8m2ϕ − 8m2

± 3
√

3
√

27α4m8 + 16α2m6(ϕ − 1)
)

(8)

with the reality condition χ ≥ 1 − 27m2α2/16.
Using these solutions we can obtain a canonically coupled 

scalar field by introducing a conformally related metric g E
μν by 

means of g E
μν = ϕgμν with ϕ = e

√
2/3κφ . In the Einstein frame1

[57,58] the action thus reads

S =
∫

d4x
√−gE

[
1

2κ2
R E − 1

2
gμν

E ∂μφ∂νφ − V±(φ)

]
(9)

where

V±(φ) = m2e−2
√

2
3 κφ

256κ2

{
192

(
e

√
2
3 κφ − 1

)2

− 3α4 + 128


− 3α2
(
α2 + 16 e

√
2
3 κφ − 16

)
∓ 6α3

√
α2 + 16 e

√
2
3 κφ − 16

− √
32α

[(
α2 + 8e

√
2
3 κφ − 8

)
± α

√
α2 + 16e

√
2
3 κφ − 16

] 3
2
}

(10)

and we have measured α and 
 in units of the scalaron mass m
by means of the rescaling α → α/3

√
3m and 
 → 
m2, so that 

both α and 
 are dimensionless numbers.

3. Inflation dynamics and primordial spectrum

For 
 
 1 the potential behaves as V±(φ) ∼ 1
2 e−2

√
2
3 κφm2
/κ2

while for α 
 1 we have V±(φ) ∼ ±α4e−2
√

2
3 κφm2/κ2. In both 

cases this implies aE (t) ∼ t3/8 which does not provide inflation.
In order to study the inflation scenario in slow-roll approx-

imation, we need to know the shape of the potentials V±(φ). 
First we notice that, for all values (α, 
), the potential has the 
plateau V±(φ) = 3m2

4κ2 for φ → ∞. To verify slow-roll conditions in-
flation must start from φ > Mpl and then proceed from the right 
to left. The behavior of the potential for φ � Mpl, and thus the 
inflation scenario, strongly depends on the values (α, 
). In par-
ticular V±(φ) can either develop a minimum, or V±(φ) → −∞ for 
φ → −∞. In this work we study the class of potentials such that 
the inflation ends after a finite number N of e-folds, with a phase 
of parametric oscillations of the field φ. In order to have a well 
defined reheating phase it is clear that the potential must have a 
minimum; furthermore it can be proved that, in our case, a well 
defined exit from inflation occurs only for potentials with a min-
imum φmin such that V (φmin) ≤ 0. These conditions are verified 
only for V+(φ) if α ∈ [1, 3] and 
 ∈ [0, 1.5] (the potential V−(φ)

can have a minimum for some special values of (α, 
), but it is al-
ways V (φmin) > 0). In these cases the potential is depicted in Fig. 1
for various values of α.

In other words, although for α and 
 very close to zero (10)
is only a small modification of the classical Starobinsky R + R2

model, for α ∈ [1, 3] and 
 ∈ [0, 1.5] the potential V+(φ) develops 
a non-trivial minimum at negative values of the potential which 
makes our model significantly different from the original R + R2

1 Note that, as discussed by [56] the field redefinition employed in going from 
the Jordan to the Einstein frame involves new additional contributions in the path-
integral arising from the Jacobians. In investigations including the presence of mat-
ter field in the starting Lagrangian, these new terms cannot be neglected.
Fig. 1. Inflation potential for various values α and 
 = 1.4.

Starobinsky inflation. In particular, as we shall see, after exit from 
inflation, the dynamics of the preheating phase is characterized by 
a lower limit to |φ̇| as it can be seen in Fig. 3 in the φ–φ̇ plane (see 
[59] for a general study of inflationary potentials with a negative 
value of the minimum).

Let us introduce the slow-roll parameters ε and η,

ε(φ) ≡ 1

2κ2

(
V ′(φ)

V (φ)

)2

, η(φ) = 1

κ2

(
V ′′(φ)

V (φ)

)
(11)

and define the number of e-folds before the end of inflation

N =
tend∫

tN

H(t)dt. (12)

The amplitude of the primordial scalar power spectrum reads

�2
R = κ4 V (φ)

24π2 ε(φ)
(13)

and, in this approximation, the spectral index ns and the tensor-
to-scalar ratio r are given by

ns = 1 − 6ε(φi) + 2η(φi)

rT = 16ε(φi) (14)

where φi = φ(tN ) is the value of the inflaton field φ(t) at the be-
ginning of the inflation.

In our case it is not possible to analytically evaluate these ex-
pressions, and we must resort to a numerical estimation of the 
initial value of the field which determines the final number of 
e-folds at the end of inflation. As usual inflation is supposed to 
stop when the slow-roll condition is violated, ε(φ) = 1. This con-
dition determines the final value φ f = φ(tend) of the inflaton field, 
while the initial value of the field φ(t) is obtained by inverting 
Eq. (12), once a number of e-folds is fixed. Our results are dis-
played in the following table:

Cases N = 50 N = 55 N = 60


 α ns r ns r ns r

1.0 0.965 0.0069 0.968 0.0058 0.971 0.0050
0 1.8 0.966 0.0074 0.969 0.0063 0.972 0.0055

2.6 0.967 0.0076 0.969 0.0065 0.972 0.0056

1.0 0.965 0.0070 0.968 0.0059 0.971 0.0051
1 1.8 0.966 0.0074 0.969 0.0063 0.972 0.0055

2.6 0.967 0.0076 0.969 0.0065 0.972 0.0056

Confronting ns and r with the ’15 Planck data, our model agrees 
very well, as displayed in Fig. 2.

According to Eq. (13) the normalization of the scalar power 
spectrum at the pivot scale k∗ = 0.05 Mpc−1 provides us with 
m ∼ (1.5 ÷ 7) · 1014 GeV, depending on the value of α.
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Fig. 2. We compare the theoretical predictions in the r–ns plane for different values 
of α for the Planck Collaboration 2015 data release for the TT correlation assuming 

CDM + r [60]. Triangles are for N = 55 and squares for N = 60 e-folds. Solid and 
dashed lines are the 1σ and 2σ confidence levels, respectively.

Fig. 3. Phase space evolution in the φ–φ̇ space for α = 1 and 
 = 1. Note the pres-
ence of a limit cycle.

It should be stressed that, in our model, if 
 < 0 there would 
be no exit from inflation with the standard reheating phase. As 
argued in [61] the presence of matter field could change the sign 
of 
 depending on the number of Dirac, scalar and vector fields. 
We hope to address this issue in a future investigation.

4. Oscillatory phase after inflation

After the end of inflation, the inflaton field φ begins to oscillate 
around the minimum φmin of V+(φ). To study this phase, we can 
do the following approximation

V+(φ) ∼ V (φ) = a

2

[
(φ − φmin)2 − b

]
(15)

where φmin(α, 
), a(α, 
) = V ′′+(φmin) and b(α, 
) =
−2 V+(φmin)/V ′′+(φmin) depend on the values of α and 
, and 
are given by the following expressions

φmin(α,
) =
√

3
2

(
3α3

(
α2 − 4

) − 32α
 + 4
(
α2 − 6

) |α|3)
6α

(
α2 − 8

) (
α2 + 2

) − 64α
 + 8
(
α2 − 9

) |α|3

a(α,
) = 48 + 18α2 − 3α4 + 32
 − 4α3 |α| + 36α |α|

24
Fig. 4. Phase space evolution in the φ–φ̇ space for α = 1.5 and 
 = 10. This case 
arises when V+(φmin) > 0.

b(α,
) = 8α
(
15α4 − 3α6 − 96
 + 8α2(15 + 4
)

) |α|
8
3

(
48 + 18α2 − 3α4 + 32
 − 4α

(
α2 − 9

) |α|)2

+ −25α8 + 132α6 − 384α2


8
3

(
48 + 18α2 − 3α4 + 32
 − 4α

(
α2 − 9

) |α|)2

+ 48α4(21 + 4
) − 1024
(3 + 
)

8
3

(
48 + 18α2 − 3α4 + 32
 − 4α

(
α2 − 9

) |α|)2

The time evolution of the field φ(t) is given by the Friedmann 
equation

φ̈(t) + 3 H(t) φ̇(t) + V ′(φ(t)) = 0 (16)

where H(t) is the Hubble constant

3 H(t) = 3

[
1

3

(
1

2
φ̇(t)2 + V (φ(t))

)]1/2

=
√

3

2

[
φ̇(t)2 + a (φ(t) − φmin) 2 − ab

]1/2
(17)

Putting x(t) = √
a (φ(t) −φmin) and y(t) = φ̇(t), equation (16) reads⎧⎨

⎩ ẏ = −
[

3
2

(
y2 + x2 − ab

)] 1
2

y − √
a x

ẋ = √
a y

(18)

The long time behavior of this dynamical system is mainly deter-
mined by the sign of ab = −2 V (φmin). If ab ≤ 0 (i.e. V (φmin) ≥ 0) 
then the point (0, 0), that is the minimum point (φmin, V (φmin)), 
is an attractive node. If ab > 0 (i.e. V (φmin) < 0) a limit cycle 
(y2 + x2 = ab) appears. Note that, in this sense, ab = 0 is an 
Hopf bifurcation point. A numerical study of the original Fried-
man equation (16) has confirmed our analytical findings. In par-
ticular we have obtained the phase diagrams relative to the cases 
V+(φmin) < 0 (our case, Fig. 3) and V+(φmin) > 0 (Fig. 4). The dy-
namical system analysis can be useful to determine the scale factor 
a(t) after the inflation era, that is related to the Hubble constant 
by H(t) = ȧ(t)

a(t) . In particular, using the polar coordinates and then 
performing the method of averaging, we obtain

a(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
sin

(√
3
8 |ab| t

)]2/3

ab > 0

t2/3 ab = 0[
sinh

(√
3
8 |ab| t

)]2/3

ab < 0

(19)

The scale factor a(t), in the case ab = 0 (V (φmin) = 0, Starobin-
sky model), describes the usual matter dominated era, while the 
solutions with V (φmin) �= 0 are compatible with a matter domi-
nated era only at the beginning of the oscillatory phase. On the 
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other hand a consistent treatment of the following reheating phase 
must include the contribution of the matter fields, an investigation 
which is beyond the scope of this work.

5. Conclusions

In this work we have extended the idea of [40] by including in 
the renormalized flow the presence of the additional relevant di-
rection associated to the R2 operator. We have approximated the 
flow of this operator around the NGFP with its linear expression, 
an approximation which should capture the essential qualitative 
features of the flow and allow an analytical treatment of the re-
sulting non-linear f (R) Lagrangian.

The most important point of our investigation is that our in-
flation model should significantly differ from the well known 
Starobinsky model because it predicts a tensor-to-scalar ratio 
which is significantly higher, and an inflationary dynamics which 
is characterized by a limit-cycle behavior at the inflation exit. More 
important, our predictions are in agreement with the latest Planck
data which put important constraints on our model.

An important limitation of this study is the simple tensorial 
structure of the effective Lagrangian which assumes a functional 
dependence of the f (R) type. Quadratic operators like Rμν Rμν

are also associated to relevant directions around the NGFP and 
in principle their presence could dramatically change the inflation 
dynamics and the generation of the primordial spectrum of fluc-
tuations. On the other hand, our approach can be easily extended 
in order to include the contribution of these additional operators, 
whose critical exponents have been calculated in [13]. We hope to 
address this issue in a future work.
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