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Abstract

Currently, the High Performance Computing (HPC) sector is undergoing a

profound phase of innovation, in which the main stopper in order to achieve ”ex-

ascale” performance is the power-consumption. The usage of ”unconventional”

low-cost computing systems is therefore of great interest for several scientific

communities looking for a better trade-off between performance and power con-

sumption. In this technical report, we make a performance assessment of com-

modity low-power System on Chip (SoC) using a direct N -body application for

astrophysics. We also describe the methodology we have employed to measure

the power drained by the application while running. We find that SoC tech-

nology could represent a valid alternative to traditional technology for HPC in

terms of good trade-off between time-to-solution and energy-to-solution. This

work arises in the framework of the ExaNeSt and EuroExa projects, which inves-

tigate the design of a SoC-based, low-power HPC architecture with a dedicated

interconnection scalable to million of compute units.
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1. Introduction and motivation

New challenges in Astrophysics are urging the need of a large number of com-

putationally intensive simulations. New High Performance Computing (HPC)

facilities are mandatory to address the size of data coming from upcoming

observational instruments and of the exceptionally computationally intensive5

simulations to interpret such observations and to make theoretical predictions.

However, the main stopper in the achievement of ”exascale” computational in-

frastructures is the power consumption.

Technology is rapidly shifting towards power-efficient Systems-on-Chip (SoC),

designed to meet the requirements of the scientific community. These hardware10

platforms host integrated circuits composed of multicore CPUs combined with

either graphic-processing units (GPUs) or Field Programmable Gate Arrays

(FPGAs) aiming to optimize the energy-to-performance ratio.

Commonly, in order to benchmark the performance of platforms, test suites

publicly available and documented in literature are used, namely the HPCG15

Benchmark1 and LINPACK Benchmark2, both metrics for ranking HPC sys-

tems. The results of such metrics are in terms of pure performance (time-to-

solution), i.e. they are designed to perform computational, communication, and

memory access patterns, without give any insight about the power-efficiency

(energy-to-solution) of the devices exploited in the platforms.20

In this technical report we choose a real-scientific application commonly

used in the Astrophysics sector, instead of a synthetic benchmark, in order

to assess the power-efficiency of SoC architecture. The following research is

related with the activity done by INAF in the framework of the ExaNeSt3

and EuroExa4 projects. They are delivering prototypes based on low power-25

consumption ARM64 processors, accelerators and low-latency interconnections

1Available: https://www.hpcg-benchmark.org/
2Available: http://www.netlib.org/benchmark/hpl/
3https://exanest.eu/
4https://euroexa.eu/
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implementing a co-design approach where scientific applications requirements

are driving the hardware design [1].

For our test we use two single boards equipped with ARM SoC, the Firefly-

RK3399 board5 (one computational node of INCAS [2]), the ASUS Tinker30

board6 and a general purpose x86 desktop. In order to fully exploit the ARM

SoC (i.e. the workload across the whole CPU+GPU system), a direct N -body

code, called ExaHiGPUs [3, 4, 5], is employed. Such a code is a re-engineered

and optimized version of a widely used code [6], which is an implementation of

the numerical integration of the classical, gravitational, N -body problem, based35

on a 6th order Hermite’s integration scheme with block time steps, with a direct

evaluation of the particle-particle forces.

The technical report is organized as follows. Section 2 describes the code

used to perform the power measurements. In Section 3 we present the platforms

used in our tests. Section 4 is devoted to present how the power measurements40

have been performed and to describe the experimental setup. Section 5 presents

the results. Conclusions and future developments are exposed in Section 6.

2. Code profiling

Figure 1: Call graph of ExaHiGPUs profiled using gprof tool. The figure shows nodes and

edges above the threshold 0.01.

5http://en.t-firefly.com/Product/Rk3399/spec.html
6http://www.asus.com/Single-Board-Computer/Tinker-Board/specifications/
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This work aims to compare the relative power efficiency between the CPU

(single-core, dual-core, multi-core) and the GPU on SoC using a real scientific45

application (it is like to measure the energy footprint of a scientific application).

The N -body application, called ExaHiGPUs, is able to exploit both CPUs and

GPUs, and it is our candidate application to study the electric power consump-

tion of such devices during a simulation run.

Actually, two version of the code are available (all details of the application50

in [3, 4, 5]):

i) Standard C code: cache-aware designed for CPUs and parallelized with

hybrid MPI7 + OpenMP8 programming. The code has been instrumented

to get the time spent executing the stages of the Hermite integrator;

ii) OpenCL code: conceived to target accelerators like both PCIe GPUs and55

GPUs on SoC. All the stages of the Hermite integrator are performed on

the OpenCL-compliant device(s). The kernel implementation exploits local

memory (OpenCL terminology) of device(s), which is generally accepted as

the best method to reduce global memory latency in PCIe GPUs (hereafter

we refer to this implementation as PCIe-GPU-implementation). However,60

on ARM GPUs on SoC, the global and local OpenCL address spaces are

mapped to main host memory (as reported by the ARM developer guide9).

So, a specific ARM-GPU-optimized version of all kernels of ExaHiGPUs,

in which local memory is not used, has been implemented (hereafter we

refer to this implementation as SoC-GPU-implementation). In the results65

shown in this technical report, we use the PCIe-GPU-implementation in

order to exploit the NVIDIA-GPU and the SoC-GPU-implementation to

exploit the Mali-GPU (devices are detailed in Section 3). Kernel execution

times on the GPUs have been obtained by means of OpenCLs built-in

profiling functionality, which allows the host to collect runtime information.70

7https://www.open-mpi.org/
8https://www.openmp.org/
9https://bit.ly/2T1yrrw
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Although ExaHiGPUs performs several calculations during a single time

step, the 99% is spent on the Evaluation stage of the 6th order Hermite inte-

gration schema (serial application when I/O is disabled). That has been found

profiling the whole application (standard C version of the code) by means of

GNU gprof [7], the performance analysis tool for Unix applications. Then, the75

profiler output is visualized using GProf2Dot10 tool as a colorful call graph that

makes it easy to understand the statistics taking into account nodes and edges

above a threshold value of 0.01, as shown in Figure 1. The profiling of the whole

application is shown in the Appendix A. The code profiling results suggest to

measure the energy consumption during the execution of the Evaluation kernel,80

in an infinite while loop11.

2.1. Arithmetic precision considerations

Arithmetic precision plays a key role during the integration of the equations

of motion of an N -body system. We have already demonstrated in a previous

technical report [3] that both double-precision (hereafter DP) and emulated-85

double-precision (also called extended-precision, hereafter EX) arithmetic12 are

able to minimize the accumulation of the round-off error during the Hermite

integration, so preserving the total energy of the system during the simulation.

3. Computing platforms

In this section we describe the three platforms used in our tests. In Table 1,90

we list the devices, and we highlight in bold the ones exploited in this technical

report.

10https://github.com/jrfonseca/gprof2dot.
11Source code of the Evaluation kernel is shown in [5].
12An EX-number provides approximately 48 bits of mantissa at single-precision exponent

ranges. More details in [3].
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Platform Firefly-RK3399 board Asus Tinker board x86 Desktop

SoC/Motherboard Rockchip RK3399 Rockchip RK3288 ASUS P8B75-M LX

CPU ARM 2x A72 + 4x A53 64-bit ARM 4x A17 32-bit Intel 4x i7-3770 64-bit

GPU ARM Mali-T864 ARM Mali-T764 NVIDIA GeForce-GTX-1080

RAM 4GB DDR3 2GB DDR3 16GB DDR3

OS Ubuntu 16.04 LTS Ubuntu 18.04.2 LTS Ubuntu 18.04 LTS

Compiler gcc version 7.3.0 gcc version 7.3.0 gcc version 7.3.0

OpenCL OpenCL 1.2 OpenCL 1.2 OpenCL 1.2

Table 1: The main characteristics of the boards used in the test. The devices exploited are

highlighted in bold.

3.1. Firefly-RK-3399 board

The Firefly-RK3399 single-board13 is equipped with the big.LITTLE archi-

tecture: 4x(Cortex-A53) cores with 32kB L1 cache and 512kB L2 cache, and95

a cluster of 2x(Cortex-A72) high-performance cores with 32kB L1 cache and

1M L2 cache. Each cluster operates at independent frequencies, ranging from

200MHz up to 1.4GHz for the LITTLE and up to 1.8GHz for the big. The multi-

processor-SoC (MPSoC) contains 4GB DDR3 - 1333MHz RAM. The MPSoC

features also the OpenCL-compliant Mali-T864 embedded GPU that operates100

at 800 MHz.

3.2. Asus Tinker board

The Asus Tinker single-board14 is equipped with the MPSoC Rockchip-

RK3288 featuring a Quad core 1.8 GHz ARM Cortex-A17 32-bit and a 600

MHz Mali-T760 MP4 GPU. The MPSoC contains 2GB Dual Channel DDR3.105

Even though the Mali-T760 MP4 GPU is an OpenCL-compliant device and it

is able to perform the calculations required by the code, the profiling OpenCL-

APIs fail to retrieve the 64-bit value that describes the current device time

13Available: https://en.t-firefly.com/Product/Rk3399.html
14https://www.asus.com/Single-Board-Computer/Tinker-Board/specifications
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counter, raising an invalid OpenCL event. So, the Mali-T670 MP4 is not used

in our tests.110

3.3. x86 Desktop

The commodity x86 desktop is equipped with a Quad core Intel core i7-

3770 64-bit running at 3.9 GHz with 32kB L1, 256kB L2, and 8192 kB L3, and

an PCIe NVIDIA GeForce-GTX-1080 GPU with 8 GB GDDR5X dedicated

RAM, and 2560 CUDA cores running at 1733 MHz. The ASUS P8B75-M LX115

motherboard hosts 16GB of DDR3.

4. Measuring the Energy Consumption

We took the following steps in order to minimize the inaccuracies in estimat-

ing the current consumed by the CPU and the GPU while running the kernel.

In Appendix B we clarify the units of measurements.120

• Single-boards:

– to avoid dynamic device frequency scaling and to maximize perfor-

mance, we set the frequency governor to performance level;

– to avoid the power draw by the AC-to-DC transformer, which makes

the readings more noisy and spread out, the boards are powered by125

a DC power supply (Keysight E3634A);

– after booting up the platform, we measure its stable current while

the system is in idle. This gives us the Ibaseline consumption by the

system;

– Idevicebaseline is the total current consumed by the system running a given130

code implementation using a particular device (CPU or GPU), in-

cluding the idle energy;

– Idevice = Idevicebaseline − Ibaseline is the current that we are interested in;

– Idevicebaseline and Ibaseline are the mean values over a range of three min-

utes.135
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– Edevice = V ×Idevice×T device is the energy consumed by a given im-

plementation of the kernel (energy-to-solution), where V and T device

are the voltage and the kernel running time (time-to-solution aver-

aged over ten runs), respectively (voltage is constant, namely V = 12

Volt).140

• Desktop:

– we set the frequency governor to performance level;

– the electric power draw is measured by means of a power meter (Yoko-

gawa WT310E);

– after booting up the platform, we measure the energy consumed in145

idle during a period of three minutes, giving us the Wbaseline of the

system;

– W device
baseline is the electric power drawn by the system running a given

code implementation using a particular device (CPU or GPU) over

a period of three minutes (∆T3);150

– the power drawn by the dedicated GPU (Nvidia GeForce-GTX-1080)

is also monitored by a current probe (Fluke i30s);

– W device = (W device
baseline−Wbaseline)× T device/∆T3 are the watts hours

(energy-to-solution) that we are interested in, where T device is the

kernel running time (time-to-solution averaged over ten runs).155

4.1. Experimental setup

To measure the current consumption of the devices under test, two simple

setups were used, depending on the power supply type of the device.

• Devices powered by Direct current:

– Benchtop Laboratory Power Supply, Keysight model E3634A;160

– Benchtop Multimeter, Hewlett Packard model 34401A;

– AC/DC Current clamp, Fluke model i30s;
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Figure 2: Experimental setup in the laboratory at OATS Basovizza Observing Station.

– Digital Storage Oscilloscope, Keysight model MSOX3024T.

The benchtop laboratory power supply was set at the nominal supply volt-

age for the system and the multimeter was connected in series to measure165

the current flow. The output used in our test is the mean value of 300

measurements taken at each run with a sample rate of 5 Hz (1 sample

every 200 msec). The oscilloscope was used to measure the dynamic be-

haviour of the current consumption taken by means of the current clamp.

These devices were used just to monitor that the measurements are taken170

under almost constant load. Figure 2 shows the experimental setup, while

the circuit used is shown in Figure 3. As final remark, we have also mea-

sured the efficiency of the AC power supply of the Firefly-RK3399 board

provided by the vendor. The AC power supply efficiency is ' 85% in idle,

while is ' 91% at full workload.175

• Devices powered by Alternate current (mains supply):

– Digital Power Meter, Yokogawa model WT310E;

– AC/DC Current clamp, Fluke model i30s;

– Digital Storage Oscilloscope, Keysight model MSOX3024T.
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Figure 3: Direct current measurement circuit for the device under test (D.U.T.).

In this case, the systems were powered by their own power supply and180

the measurements were taken at the 230V mains input. The Power me-

ter integrates the total power used during the chosen time period, and

the energy-to-solutions (both W device and Wbaseline) rely on these mea-

surements obtained by means of the power meter. For completeness of

our tests, the dynamic behaviour of the current consumption of the PCIe185

GPU was also monitored using an oscilloscope and a current clamp mea-

suring the auxiliary power supply input of the GPU. Since the GPU is

powered by both the PCIe connector and the auxiliary power supply, the

measurements taken with the current clamp intercept only a part of the

total energy required by the GPU for the computation (i.e. without the190

power provided by the PCIe connector), that we quantify in ' 70% of the

total. The measurement circuit is shown in Figure 4.
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Figure 4: Alternate current measurement circuit for the device under test (D.U.T.).

5. Results

Energy-to-solutions and time-to-solutions are obtained running the applica-

tion for one time step using 65536 particles and both DP and EX arithmetic195

(details in Section 2.1).

Figure 5 shows measurements for DP arithmetic. The most effective device,

in terms of time-to-solution, is the PCIe NVIDIA-GeForce-GTX-1080 GPU.

Regarding CPUs, the time-to-solution scales linearly with the number of

cores exploited, and saturates when the number of OpenMP threads exceeds200

the available cores, as expected. Multi-core implementation is always the most

effective solution, both in terms of time-to-solution and energy-to-solution. It

is worth noting that dual-core ARM-Cortex A72, running at 1.80 GHz, is ' 4.4

times more power-efficient than the single-core Intel-i7, running at 3.40 GHz,

with a time-to-solution increased by 17% (we are comparing in Figure 5 the red205

circle for the ARM-A72 with the violet triangle for the Intel-i7).

Figure 6 shows measurements for EX arithmetic. In this case, both GPUs

outperform CPUs.

To better study the effect of the EX arithmetic, in Figure 7 we show the

ratio of time-to-solution between DP and EX arithmetic. The results are shown210
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Figure 5: Energy-to-solution (in Joule) as a function of time-to-solution (in second) for DP

arithmetic. Blue symbols for ARM-A53x4 CPU, red symbols for ARM-A72x2 CPU, gold sym-

bols for ARM-A17x4 CPU, green symbols for ARM Mali-T864 GPU on SoC, violet symbols

for Intel-i7x4 CPU and orange symbols for GeForceGTX1080 PCIe GPU. Triangle up for 1

OMP thread (serial calculation), circle for 2 OMP threads, diamond for 4 OMP threads, and

pentagon for GPU kernel implementation (work-group size of 64).

exploiting all the available CPU cores. The performance improvement is a factor

of ' 2 for the Mali-T864 GPU on SoC and ' 20 for the GTX-1080 PCIe GPU,

while all CPUs suffer a significant performance degradation.

The results show that, basically, PCIe GPUs for gaming, like the NVIDIA-

GTX-1080, and GPUs on SoC are suitable for 32-bit arithmetic. DP arithmetic215

is resource-eager on such devices and the EX arithmetic can be a trade-off in

order to efficiently exploit such GPUs, actually not designed for HPC.

6. Conclusions and future developments

The energy footprint of scientific applications will become one of the main

concerns in the HPC sector. SoC technology is specifically designed to opti-220

mize, among others, the energy-to-performance ratio. In this first work, we have
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Figure 6: Energy-to-solution (in Joule) as a function of time-to-solution (in second) for EX

arithmetic. Blue symbols for ARM-A53x4 CPU, red symbols for ARM-A72x2 CPU, gold

symbols for ARM-A17x4 CPU, green symbols for ARM Mali-T864 embedded GPU, violet

symbols for Intel-i7x4 CPU and orange symbols for GeForceGTX1080 dedicated GPU. Trian-

gle up for 1 OMP thread (serial calculation), circle for 2 OMP threads, diamond for 4 OMP

threads, and pentagon for GPU kernel implementation (work-group size of 64).

started to explore the impact of software design of a scientific application on

the energy-to-solution and time-to-solution exploiting low-cost SoC-based plat-

forms. We have shown that SoC technology is emerging as a valid alternative to

”traditional” technology for HPC, which is focused more on peak-performance225

than on power-efficiency. However, code parallelization and optimizations are

mandatory in order to fully exploit heterogeneous SoC platforms, but they are

not so widely applied by the scientific community.

In future works, we will assess the energy footprint of other aspects of the

application, such as the network and the I/O.230
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Figure 7: The ratio of the time-to-solution between DP arithmetic and EX arithmetic for all

devices. The results are shown exploiting all the available CPU cores.
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Appendix A. ExaHiGPUs profiling

In Figure A.8 the profiling of the entire application obtained by means of

GNU gprof 15 and GProf2Dot16 tools is shown.

Appendix B. Units of measurement

In this technical report the energy-to-solution refers to the total energy re-275

quired to perform a given calculation.

The joule is a derived unit of energy in the International System of Units

(SI). In terms of SI units, a joule is defined as below:

1 Joule = 1 Ampere · 1 Volt · 1 second (B.1)

In the case of single-board platforms, we measure the electrical current (in

Ampere), and the computing time (in seconds), while the voltage is constant.280

The energy-to-solution is obtained applying the Equation B.1.

In the case of the desktop, we measure the energy W consumed over a period

of three minutes (in W*h) and the computing time T (in seconds). Given that,

the energy-to-solution E (in Joules) is obtained applying the following equation:

E = (W ∗ 3600) ∗ (T/180) (B.2)

15https://ftp.gnu.org/old-gnu/Manuals/gprof-2.9.1/html mono/gprof.html
16https://github.com/jrfonseca/gprof2dot.
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Figure A.8: Call graph of ExaHiGPUs profiled using GNU gprof and GProf2Dot tools.
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