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1. Introduction

The persistence of Neanderthals and their subsequent replacement or 
partial absorption by modern humans is viewed by many as one of the more 
intriguing enigmas of palaeoanthropology. How they survived as a species, 
how they survived the hardships of severe ice ages, and why their peculiar 
morphological signal suddenly disappears from the archaeological record are 
still uncertain aspects (Hajdinjak et al. 2018; Hublin 2017). Many suggestions 
have been put forward to explain their disappearance and our relative success 
(Vaesen et al. 2021), including competition with more competitive modern 
humans (e.g. Richards and Trinkaus 2009; Wall-Scheffler 2012), environmen-
tal conditions (e.g. Golovanova et al. 2010; Müller et al. 2011), or demograph-
ic factors (e.g. Mellars and French 2011; Vaesen et al. 2019). However, most of 
these hypotheses remain largely untested because many aspects of the daily life 
of Neanderthals are still poorly known (Anwar et al. 2007). 

Computer-based simulation techniques are well suited to explore explicit 
models of ideas about the past, and are used for hypothesis exploration, the-
ory building, and method testing (Lake 2014). Here, we address the patterns 
of presence and absence of Late Pleistocene Neanderthals in western Europe 
(Scherjon 2019) by presenting results from simulations made with ‘Homin-
inSpace’, an agent-based model designed to simulate hominin dispersals and 
persistence. The HomininSpace simulation tool explores different hypotheses 
about Neanderthals and their behaviour in a reconstructed environment with 
changing sea-levels and varying climate. In each simulation, the modelled 
presence of hominin agents is compared against the archaeological record by 
computing matches between the simulated and archaeologically documented 
presence of Neanderthals (cf. Janssen 2009). 
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Neanderthals are the most frequently modelled non-sapiens hominin spe-
cies, with simulation studies regularly addressing their replacement by mod-
ern humans (e.g. Barton and Riel-Salvatore 2012; Greenbaum et al. 2019). 
However, in general Neanderthals are constructed as a less capable and in-
ferior hominin with, for instance, a lower birth rate (Zubrow 1989), higher 
mortality rates (Flores 1998; Sørensen 2011), or lacking a ‘population pump’ 
(Kolodny and Feldman 2017). Not surprisingly, these studies have confirmed 
that if such inferiority is assumed and implemented using selected model pa-
rameter values, Neanderthals would indeed have been likely to go extinct (e.g. 
Flores 2011; Gilpin et al. 2016; Horan et al. 2005). Such an outcome does not 
prove that Neanderthals were less capable than modern humans, but merely 
the obvious that if handicaps are modelled, the impeded species will suffer 
(Vaesen et al. 2019).

Since many details from the daily lives of Neanderthals are unknown (in-
cluding exact birth rates, energy requirements, and foraging modes), Homi-
ninSpace constructs hominin models by autonomously running simulations 
while assigning key parameter values for a generic hominin dispersal model. 
This model consists of parameters from demographic, subsistence, and social 
domains (see below). Due to the number of parameters and the wide range of 
possible values for each model parameter in HomininSpace, the total param-
eter value space is huge, and the sheer number of possible unique models is 
enormous—almost 400 million if we conservatively assume that each parame-
ter can take only three values out of its possible range: the minimum, medium 
and maximum value. A range of hypotheses and combinations thereof can be 
tested in the system where plausible values for the model parameters are found 
using a ‘genetic algorithm’ (GA), a technique borrowed from the artificial in-
telligence toolset to explore big datasets (Coello-Coello 2002; Forrest 1993; 
Grove 2014). The system can traverse the parameter space created by the set 
of all possible parameter value combinations to find those parameter values 
that will result in a simulation that matches well with the archaeological data 
given the selected hypotheses (Calvez and Hutzler 2006). First, a database of 
radiometrically dated archaeological Neanderthal sites for western Europe has 
been constructed for the simulation period (130-50 ka) to enable this compar-
ison. Then, each simulation is validated against the presence and absence of 
Neanderthals through time in that database. The validation result (the qual-
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ity of match with the archaeological data) for each simulation is compared 
against all other simulations to assess the explanation value of the implement-
ed hypotheses. Noteworthy, each model also produces a viability score, a pop-
ulation level measurement of the potential to persist.

Population persistence in a simulation for a given period is the presence of 
at least one agent (group of Neanderthals) at the end of the model run. In or-
der to address the ability of modelled Neanderthal populations to persist over 
time and through hardships, we use the conservation biology principles of 
representation, redundancy, and especially resilience (the ‘3Rs’) (Smith 2011). 
First, representation is often taken as the breadth of genetic diversity. How-
ever, since HomininSpace does not model diversity between agents (they vary 
between complete simulations), the presence in different ecological settings 
or habitats has been considered (Smith et al. 2018). To assess the correlation 
between agents and habitats, simulations that include delimited habitats are 
compared to simulations with the same settings in which habitats have been 
replaced by an energy continuum. These show that there are no substantial 
differences, which suggests that the modelled Neanderthals were present in 
all habitats. Therefore, representation is directly linked to validation results. 
Second, redundancy is the number and spatial distribution of populations, 
with high values illustrating the ability to withstand large scale catastrophes. 
In HomininSpace, the number of individuals is irrelevant, only the resulting 
geographical distribution through time (since the archaeological record only 
provides presence data, no population densities). By definition, populations 
that survive until the end of the simulation period prove that sufficient redun-
dancy is present in that model. This suggests that the persistence of modelled 
populations in HomininSpace depends primarily on their resilience over time 
(Crawford et al. 2020). Finally, in order to quantify resilience, we use the var-
iable ViabilityIndex (see below). 

The purpose of this paper is twofold. This paper will first describe the 
model, detail which parameters are included, and summarise the simulation 
method used to test many different hypotheses. Elsewhere (Scherjon 2019), 
we have discussed the simulation results in detail and provided interpretations 
and suggestions about some of the hypotheses that were implemented. Sec-
ond, we will focus on the resilience of the created Neanderthal models based 
on the best results from the different configurations. We will show that the 
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flexibility offered by a model that incorporates variables from different do-
mains achieves the resilience that enabled Neanderthals to withstand the most 
severe environmental hardships of the end of the Pleistocene in western Eu-
rope.

2. The model

The model underlying the HomininSpace simulation system consists of 
two major elements: (1) the environment and (2) the hominins. The envi-
ronment consists of a topography that varies through time and that utilises 
current geography, bathymetry, and reconstructed global sea-level changes to 
calculate available landmass. Net Primary Production (NPP), the amount of 
energy remaining in vegetation from the process of photosynthesis after res-
piration, is considered a crucial factor driving population density (Tallavaara 
et al. 2018).  An energy availability landscape derived from estimated NPP 
values is created using current and past distributions of key climate param-
eters, such as temperature and precipitation (see Scherjon 2019 for further 
details). Regarding the second element, the modelled agents represent homi-
nin groups that forage through the environment, extracting energy from the 
landscape according to group size and energy requirements. The simulation 
period for all simulations starts at 130kya and ends at 50kya. We know that 
in this period Neanderthals were the only species in the area (Higham et al. 
2014) and also that the strong disturbances of both the Eemian and the subse-
quent cooling of the last Glacial Period are included to test agent performance 
in extracting energy during varying climatic conditions.

The model is implemented in the Repast Simphony (version 2.2) simula-
tion system (REPAST). REPAST creates the simulation environment, keeps 
track of model variables, executes turn-based model runs, and visualises sim-
ulation results. In REPAST, source code is primarily written in Java or in any 
other supported programming language. Furthermore, external libraries can 
be connected, and debugging of the agent-based models is facilitated (Macal 
and North 2009; North et al. 2013). Variation in models (behavioural change) 
is created by assigning different values to model parameters. Parameters (see 
Table 1) were selected as candidates for variation either because exact values 
are disputed in the current literature (birth rate, energy requirements for sub-
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sistence, temperature tolerance, foraging range), they are directly related to 
other parameters (mortality or death rates), or they were found important to 
agent dynamics and interaction (cohort sizes, number of years before group 
maturity) (Scherjon 2019). The assigned values uniquely identify simulations 
for all parameters combined with the seed value for the random number gen-
erator. This combination is henceforth referred to as a ‘model’.

3. The simulations

The search for optimal solutions in simulated systems is computationally 
expensive, especially with an extensive environment and a large number of pa-
rameter combinations. HomininSpace is one of the first systems to employ a 
GA-based search and optimisation method that identifies models that match 
well the archaeological record while efficiently exploring the parameter space 
(Grimm and Railsback 2005; Grove 2014; Revay and Cioffi-Revilla 2018). 
The model parameter values are adjusted until an experimental optimum is 
reached with no substantial improvement in the simulation results for newly 
generated models (Calvez and Hutzler 2006). Due to the nature of the GA 
method, local optima are thus explored in the parameter space. The search 
ends when 100 new combinations have been tried that fail to score better than 
the maximum found so far. 

In each simulation run, results are validated by comparing the modelled 
presence of agents representing groups of hominins against the empirical 
archaeologically attested presence in the past (Barton et al. 2011). From the 
literature, a database has been constructed with archaeological sites for which 
archaeological finds have been radiometrically dated to the simulation period 
(see Table 2). Sites without proper dating or with dates outside the simulation 
period were not included. Each of these absolute dates (D) with associated 
standard deviations (SD) is translated into time intervals defined as [D+SD, 
D-SD]. All matches between simulated and archaeologically attested presence 
are counted and used in calculating the simulation score. When, during a sim-
ulation, an agent moves onto a grid cell with a site that has a time interval, 
and when the current time step falls in that interval, the score is increased. 
The increment is reversed proportional to an interval’s length, with matches 
to shorter intervals contributing more to the final score than agents visiting 
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longer intervals. The final simulation scores can be used to compare individ-
ual simulations, assuming that a higher score means a better match with the 
archaeological record, and the better matching model is a more accurate de-
scription of the hominins living in the past. 

The simulation area is divided into grid cells of 10km2, and each archaeo-
logical site is connected to the enclosing grid cell. 83 archaeological sites with 
470 dated finds are included in the database and distributed on the map—
Table 2 provides a list of all the sites with the constructed intervals. Then, 
the simulation score (MatchedIntervalCoverage) is calculated by summing all 
interval scores for all sites (fig. 1). The theoretically maximum possible score 
for the chosen study area and period is 39,200, that is when all sites are contin-
uously visited and all intervals fully matched. 

In a typical GA, a population of potential solutions evolves within the 
solution space towards higher fitness function values (Forrest 1993). These 
are nature-inspired numerical optimisation techniques that operate in a virtu-
al laboratory. The basic elements that compose evolutionary algorithms are a 
population of individuals to work with, a string with manipulable values that 
define individuals (referred to as the genes or the chromosome of that individ-
ual), and a fitness function that calculates how well adapted an individual is 
within the modelled environment (Michalewicz 1992).

In HomininSpace, an initial population of possible solutions (n = 1500) 
is constructed by assigning parameter values randomly from the domain of 
each parameter. Then, the user creates a specific scenario by selecting a com-
bination of hypotheses to be explored. Each hypothesis has a switch that can 
be used to (de)activate specific model functionality that implements the hy-
pothesis. Hence, simulations run for all the 1500 models in the initial popula-
tion and, from these simulation results, high scoring models are selected with 
promising parameter combinations. Seven new models are generated through 
recombination (n=4) and single point mutation (n = 3) (fig. 2). Simulations 
are run for these new, evolved models that, alongside their results, are then 
added to the population. This process continues until no further improve-
ment in the simulation score is found. 

The following hypotheses can be incorporated into a scenario: (1) a pref-
erence for habitats; (2) a mobile or more residential mobility character; (3) 
the use of coastal resources (fig. 3); (4) using a maximum foraging range; (5) 



35May 2021 / Resilience & Archaeology

crossing of open waters; (6) the presence of population core areas producing 
new hominin groups; and (7) the use of absence data. It is worth mention-
ing that a scenario can include more than one hypothesis. For instance, if the 
scenario includes coastal resources and the crossing of open waters, the best 
performing models will optimally use the extra resources from the coastlines 
where the ability to cross open water helps their dispersals match as many ar-
chaeologically attested Neanderthal locations and intervals. If the best model 
from this scenario outperforms the best model from a similar scenario, but 
without coastal resources, it can be argued that, all else being equal, Neander-
thals would indeed have included shells and sea mammals in their diet (Fa et 
al. 2016). Thus, the archaeology from the research area and simulation period 
is used to autonomously calculate the best matching model for the given cir-
cumstances using the GA to evolve new models that produce more matches.

4. Analysis of  the results

Each scenario was given a simple name and, for 18 scenarios, the best 
performing model was searched. For each scenario, at least 2000 simulations 
were executed; for some, many more were executed before convergence was 
achieved. Table 3 lists the maximum score achieved by the best model in each 
scenario, together with the number of needed simulations.

Table 4 lists the best performing models for scenario Habitat-C and it illus-
trates the effectiveness of the modelling system, with the best three scores from 
the initial population of 1500 models on top (generated with random param-
eter values), and the best three evolved models (created by the GA) below. 
For instance, the best-evolved model (Evolved 1) features a staggering annual 
mortality rate of 12% for the post-fertile cohort and an almost impossible high 
birth rate of 50, meaning that females reproduce every second year. The sec-
ond-best model (Evolved 2) illustrates another approach with a more relaxed, 
but still high, birth rate of 43, contrasted by a relatively high mortality rate 
of 3% for the pre-fertile cohort (i.e. many children do not reach adulthood). 
Interesting features in this model are the lowered subsistence requirements 
for all three cohorts. Note that the best three evolved models have almost the 
same value for the MatchedIntervalCoverage (score) and therefore match the 
archaeological data equally well (see fig. 4 for an illustration of a good scoring 
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model).
The ViabilityIndex, which is the theoretical number of individuals re-

maining when a default hominin group (standard size 25) is followed for 100 
years, given birth- and death rate values, is also included in the model. For 
instance, for model Evolved 2, the ViabilityIndex is equal to 30,712 (see Table 
4), meaning that the population of 25 individuals will grow to 30,712 after 
100 years. The ViabilityIndex gives a rough indication of the viability of a 
population without considering resource availability and can be used to assess 
the ability to persist.

When analysing the results in Table 3, we can identify two clusters of sce-
narios: those where the best models score around 30,000, and those that score 
substantially less. The names belonging to this last cluster are given in italics 
in this table and include, for instance, Habitat-B and Habitat-D. The cause 
for the lower scores is easily identified, as all these scenarios include absence 
of Neanderthals from the UK for certain periods; an absence that must be 
matched during the simulations. If only presence data is used in any mod-
el, theoretically an always omnipresent species would provide the maximum 
match with the data. In HomininSpace there is a clear tendency to achieve a 
maximum score with large populations; for instance, an increase in the birth 
rate will produce more agents, which therefore will allow a better match with 
the archaeology (e.g. see Evolved 1 in Table 4). However, genetic data analysis 
has shown that Neanderthal population size was consistently small (Prüfer 
et al. 2014). In addition, excavation results highlight that, at least in many 
locations, Neanderthals were not always present at all sites all the time (e.g. 
see Discamps et al. 2011 for a general overview, or Bertran et al. 2013 for an 
example). 

Modelling efforts and interpretation of simulation results where only pres-
ence data is matched must consider the inherent tendency of the system to 
simply create as many agents as possible to achieve maximum match with the 
data. One way to avoid this is to include absence data. As to our case, there is 
one large area for which the absence of hominins has been postulated for an 
extended period of time: the whole of Great Britain during MIS 5 and MIS 
4 (Ashton 2002; Wragg Sykes 2017). The initial breach of the chalk barriers 
formed the Strait of Dover sometime during MIS 12, which since then has 
allowed a rising sea-level that has periodically isolated Britain from the main-
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land of Europe (see Ashton et al. 2018). This assumed absence is implemented 
for an interval of 107 ka +/- 35 kyr, which represents most of the simulation 
period. To achieve absence for this period, evolution in the system attempts 
to slow down the spread of the Neanderthals. It does so in different ways, for 
instance, by reducing the birth rate, increasing death rates, or increasing sub-
sistence requirements. However, this also means that many presence intervals 
are not met. In the current implementation of HomininSpace, avoiding ab-
sence violations is more important than reaching presence intervals. Thus, in 
these scenarios with absence activated, high scores are very difficult to obtain.

5. Discussion 

In almost all scenarios with absence included, the ViabilityIndex of the 
evolved models is less than 100. The persistence probability of these modelled 
populations is extremely low, except for scenario Energy C where Evolved 1 
has a ViabilityIndex of 427 but a simulation score of 6273, which is a poor 
match with the archaeological data. All these populations, even with such 
low values for the ViabilityIndex, managed to survive in generally very low 
population densities and often remaining in the south of the simulation area, 
which automatically results in fewer matches with the archaeological data. If 
the absence test is not included, the system will attempt to spread Neander-
thals everywhere, at any point in time, to maximise the match with the archae-
ological data, for instance via an increase in the birth rates to unrealistic levels. 
However, we know that Neanderthals were not everywhere as they are absent 
from the archaeological record in specific areas for specific time periods. 

In all other scenarios, the GA creates more successful evolved individuals 
with values for ViabilityIndex that are high to extremely high, suggesting good 
persistence capabilities. The scores for all these evolved models are very simi-
lar, especially when we consider the uncertainty introduced into the model by 
using one standard deviation when calculating the match with the archaeo-
logical record. In other words, the HomininSpace simulation system can find 
values for the model parameters that allow Neanderthal populations to sur-
vive in varying and often difficult circumstances.

In order to obtain successful Neanderthal models, the system aims for re-
silience via the model’s parameter values since a key element of a successful 
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model is survival at the end of the simulation period. The autonomic parame-
ter value optimisation of the GA is consistently capable of using the flexibility 
in the model to realise persisting Neanderthal populations that vary depend-
ing on the tested hypotheses. Non-persisting models are eliminated from the 
system, while populations that disperse successfully are used to create models 
that produce more matches with the archaeology. 

Both the test for absolute absence with very low scores and the system’s 
tendency to create Neanderthals everywhere with very high scores produce 
unrealistic Neanderthals that have physically impossible parameter values or 
unlikely large population sizes. Alternatively, the system created other, more 
realistic Neanderthals, but their scores were not as high. With the GA being 
able to efficiently explore the huge parameter space, future efforts will be di-
rected at a reconciliation of these two opposing forcing powers in the Homi-
ninSpace modelling system. 

6. Conclusions

HomininSpace was designed to contribute to the discussion about dis-
persal and persistence of past hominins. Many parameters, some of which 
influence subsistence requirements, that effect population persistence and 
validated presence, were identified. Parameter values have been modified with 
a genetic algorithm, an Artificial Intelligence method aimed to find good scor-
ing models through optimization techniques inspired by evolution. These 
models were used to address a set of hypotheses on Neanderthal behaviours 
in the landscape. The system autonomously explores the parameter space and 
finds a diverse set of models that are capable of persistence throughout the 
simulation period combined with an optimal dispersal through the geograph-
ical and archaeological dataset. The results have underlined the importance 
of absence data in model validation, and with the inclusion of data about the 
absence of Neanderthals in England, HomininSpace becomes a virtual labo-
ratory where hominins evolve to match the archaeology with a novel imple-
mentation of representation, with redundancy where needed, and especially 
while showing resilience.
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Access to the ABM model

Both the model and a copy of the detailed model description, including a 
design document following the Overview, Design and Details protocol can be 
obtained through the NSF funded Computational Model Library of the Net-
work for Computational Modeling for Socio-Ecological Sciences (CoMSES).
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Fig. 1.
Combining the 
interval scores for 
all sites (CSTs) 
to compute the 
simulation score.

Fig. 2.
Illustration of the 
genetic algorithm.
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Fig. 3.
Density map illustrat-
ing the attractiveness 
of coastal resources. 
The darker colours are 
areas where hominin 
groups spend most of 
their time. 

Fig. 4.
Map showing 
population density 
through time for a 
model with a high 
MatchedInterval 
Coverage value.
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Name Description

BirthRate The number of females that conceive this year (a value of 33% 
means one child per three females, or one child every three 
years for a female).

DeathRate_PreFertileCohort Death rate for the pre-fertile segment per group, the percent-
age that does not survive.

DeathRate_FertileCohort Death rate for the fertile segment per group, the percentage 
that does not survive.

DeathRate_PostFertileCohort Death rate for the post-fertile segment, the percentage that 
does not survive.

Subsistence_PreFertileCohort Energy needs for an individual in the pre-fertile segment of a 
group in kcal.

Subsistence_FertileCohort Energy needs for an individual in the fertile segment of a group 
in kcal.

Subsistence_PostFertileCohort Energy needs for an individual in the post-fertile segment of a 
group in kcal.

Years_Before_Group_Maturity Period in years before a newly created group can interact with 
other groups (join) or settle.

GroupSize_BeforeMerge Groups can merge with other groups if their total size is small-
er than this value.

GroupSizeFertile_BeforeMerge Groups can merge with other groups if their size of the fertile 
segment is smaller than this value.

GroupSize_BeforeSplit A group can procreate by splitting in two, thereby generating 
a new group. This value is the minimum size before a group 
can split.

Temperature_Tolerance Minimum temperature that can be sustained by the hominins. 
If the coldest temp in a year falls below this value the group of 
hominins dies.

CohortSize_PreFertile The size of the pre-fertile segment in a group, with age bound-
aries in years.

CohortSize_Fertile The size of the fertile segment in a group in years. Note that 
the length of the post-fertile segment is not limited, but chanc-
es of survival decrease progressively with age.

Calories_Per_Kg_Meat The number of kilocalories that can be extracted from one 
kilogram of meat.

Max_ForagingRange Maximum annual foraging range from the current location. 
Groups cannot forage outside this range (in grid cells).

Tab. 1. The 16 parameters of the HomininSpace model (Scherjon 2019: Tab. 13).
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Tab. 2. 83 alphabetically ordered archaeological sites that are used for validation of the simulation 
results. Combined, these sites have 370 intervals (adapted from Scherjon 2019: tab. 12).

Checkpoint Intervals

Abauntz 40000 - 54000

Abri Bourgeois-Delaunay 130000 - 166000, 91000 - 116000, 111800 - 128670, 77060 - 79280, 
107000 - 117000, 65000 - 121000

Abri des Canalettes 68500 - 78500

Abri des Pecheurs 49000 - 59000

Abri du Brugas 57200 - 68800

Abri du Maras 81000 - 99000, 53000 - 57000, 40000 - 52000, 69000 - 95000

Abri Suard 111000 - 141000, 217000 - 287000, 45000 - 57000, 94000 - 108000

Ange 59700 - 161800

Anse de Query 114720 - 136360

Artenac 96650 - 119000, 122200 - 123200, 64000 - 70000

Ault 45000 - 65000

Barbas I 117000 - 175000

Baume Vallee 71000 - 86000

Beauvais 1 51600 - 59600

Berigoule 61300 - 122100, 49800 - 97600

Biache-Saint-Vaast 162000 - 188000, 112000 - 166000

Boxgrove 72000 - 142000

Cantalouette II 55000 - 66870

Caours 109000 - 139000, 108700 - 124500, 105000 - 131000

Champlost 52500 - 60900

Chez-Pinaud Jonzac 55300 - 80700, 67000 - 95600, 59500 - 82700, 40200 - 75300, 
56100 - 79200, 56000 - 75200, 36400 - 79600, 47900 - 89300

Combe Brun 56600 - 69600, 105000 - 131000

Combe Grenal 40000 - 48000, 54000 - 68000, 55000 - 69000, 61000 - 75000, 
91000 - 126000

Combe-Capelle Bas 48000 - 57000, 48300 - 57500, 49100 - 64700, 33900 - 61600

Coudoulous I 88200 - 112600, 110100 - 146200, 127700 - 152000, 119000 - 
161000, 40300 - 65300, 61800 - 67600, 99600 - 138300

Cova de l-Arbreda 74300 - 93700

Covalejos Cave 87857 - 95857

Croix du Canard 74900 - 83700
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Tab. 2. (Continued)

El Castillo 58500 - 79900, 54300 - 84400

Estret de Trago 65600 - 141000, 67500 - 122000, 37200 - 46200, 42900 - 58800, 
38400 - 47600, 41500 - 50700

Fermanville-La Mondree 63700 - 75700

Fonseigner 44900 - 55500, 47300 - 58300, 49600 - 63200

Fresnoy-au-Val 99300 - 114300

Gouberville 108000 - 148000

Grossoeuvre 122000 - 138000

Grotte de Coudoulous II 39000 - 51000, 34600 - 85700, 23300 - 56600, 79100 - 97400, 
78000 - 102600, 86900 - 147500

Grotte des Barasses II 98000 - 124000, 43000 - 53000, 53000 - 66000

Grotte du Figuier 43000 - 61000

Grotte du Lazaret 53000 - 175000

Grotte Vaufrey 110000 - 140000, 102000 - 116000

Grotte XVI 53600 - 74500

Havrincourt 1 61200 - 71500, 50800 - 65200

Igue des Rameaux 34800 - 53500, 34500 - 69200, 129300 - 158600, 75600 - 102200

Jupiter 45000 - 55000, 58000 - 78000, 90000 - 132000

Kents Cavern 72000 - 142000

La Butte d-Arvigny 97000 - 141000, 56000 - 116000, 59000 - 87000, 42000 - 94000, 
75000 - 125000

La Chapelle aux Saints 44000 - 60000

La Ferrassie 56000 - 66000, 53000 - 57000, 41800 - 57800, 41800 - 59600, 
58500 - 78800, 79500 - 100300

La Folie 55300 - 60100

La Quina 39400 - 46600, 40300 - 58000

La Roche a Pierrot 29700 - 52000, 33100 - 43600, 38100 - 46700

La Rochette 49100 - 55900

La Roquette II 52900 - 61500

Le Moustier 32400 - 45200, 35500 - 53900, 36300 - 53800, 37700 - 42900, 
36500 - 45300, 36600 - 51000, 38000 - 45200, 37300 - 44500, 
38700 - 53300, 38200 - 48200, 44800 - 55800, 50800 - 60800, 
40700 - 49500

Le Prisse 78700 - 89900

Le Rescoundudou 62500 - 201000
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Le Rozel 92000 - 112000, 102000 - 124000, 97000 - 117000, 104000 - 
126000

Les Canalettes 60800 - 88400

Les Cottes 46100 - 55300

Les Forets 85300 - 103900

Les Pradelles 53000 - 62200

Lezetxiki 109000 - 153000

Mauquenchy 69800 - 84200, 75400 - 90600

Ormesson 46800 - 53000, 41400 - 48200

Payre 117000 - 147000

Pech de l-Aze I 24000 - 60000, 66000 - 196000

Pech de l-Aze II 60000 - 162000, 102000 - 158000, 120000 - 155000, 113000 - 
161000, 37300 - 133000, 47800 - 63000, 51000 - 66300, 35900 
- 101400, 40700 - 84700, 49900 - 85000, 63200 - 90400, 105000 
- 133000

Pech de l-Aze IV 40000 - 59600, 41000 - 57000, 61900 - 78500, 61900 - 97800, 
79600 - 118000, 46000 - 76000

Pie-Lombard 62300 - 77700

Pont-des-Planches 45000 - 60900, 41100 - 54800

Port Racine 62000 - 81000, 55000 - 88000

Roc de Marsal 45000 - 52200, 48900 - 57100, 46900 - 53900, 42600 - 60700, 
52000 - 82000

Saint Germain-des-Vaux 55100 - 87600

Saint-Amand-les-Eaux 45860 - 52540

Sainte-Anne 96200 - 129700, 82700 - 97500, 80800 - 102300

Saint-Hilaire-sur-Helpe 89600 - 108200

Saint-Illiers-la-Ville 97200 - 112800

Savy 48000 - 54000

Scladina 110000 - 150000

Seclin 80000 - 106000

Sous les Vignes 40300 - 47800

Villiers-Adam 99000 - 121000

Walou Cave 78500 - 105800, 38000 - 57000

Tab. 2. (Continued)



49May 2021 / Resilience & Archaeology

Tab. 3. Summary of all simulation results.

Scenario name #simulations MatchedIntervalCoverage

Habitat-A 2,148 30436

Habitat-B 3,102 13758

Habitat-C 2,008 30206

Habitat-D 2,618 19168

Habitat-E 2,42 27948

Habitat-F 2,24 17486

Habitat-G 2,043 31016

Habitat-H 2,192 31119

Habitat-I 2,355 31142

Habitat-J 2,21 30954

Energy-A 2,089 30522

Energy-B 2,278 29896

Energy-C 2,118 6273

Energy-D 2,012 26112

Energy-E 2,176 30651

Energy-BR 2,127 28125

Energy-CR 2,079 3301

Energy-ER 2,037 30439

Total number of simu-
lations:

40,252 18 scenarios
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Tab. 4. Example: the best performing models for scenario Habitat-C (adapted from Scherjon 2019: 
tab. 29).

Scenari-
oNumber

matched-
Interval-
Coverage

BirthRate DeathRate
PreFertileCo-
hort

Death-
Rate_
FertileCo-
hort

Death-
Rate_
Post-
Ferti-
leCo-
hort

Subsist-
ence_
PreFerti-
leCohort

Standard 1 1365 28532 43 3 1 12 2000

Standard 2 39 26593 47 5 1 11 2750

Standard 3 486 26542 49 2 2 12 2750

Evolved 1 2008 30206 50 1 1 12 3500

Evolved 2 1952 30001 43 3 1 2 2000

Evolved 3 2002 29877 49 3 1 8 2500

Subsistence_
FertileCohort

Subsist-
ence_
PostFer-
tileCohort

Years_
Before_
Group_
Maturity

Group-
Size_Be-
foreMerge

GroupSize-
Fertile_Be-
foreMerge

Group-
Size_
Before-
Split

Tempera-
ture_
Tolerance

Standard 1 5000 3250 2 4 2 16 -17

Standard 2 3250 3750 5 5 2 56 -28

Standard 3 4750 4250 5 2 1 56 -23

Evolved 1 3250 5000 8 1 1 16 -22

Evolved 2 2475 3250 7 4 2 14 -25

Evolved 3 4000 4675 4 4 2 14 -25

CohortSize_
PreFertile

CohortSize_
Fertile

Calories_Per_
Kg_Meat

Max_Foragin-
gRange

ViabilityIndex

Standard 1 9 37 2700 12 28722

Standard 2 12 23 3000 10 4053

Standard 3 8 25 2550 10 41287

Evolved 1 9 33 2750 14 138160

Evolved 2 9 37 3150 15 30712

Evolved 3 9 37 2750 10 73985


