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European governments use non-pharmaceutical interventions (NPIs) to control resurging

waves of COVID-19. However, they only have outdated estimates for how effective individual

NPIs were in the first wave. We estimate the effectiveness of 17 NPIs in Europe’s second

wave from subnational case and death data by introducing a flexible hierarchical Bayesian

transmission model and collecting the largest dataset of NPI implementation dates across

Europe. Business closures, educational institution closures, and gathering bans reduced

transmission, but reduced it less than they did in the first wave. This difference is likely due to

organisational safety measures and individual protective behaviours—such as distancing—

which made various areas of public life safer and thereby reduced the effect of closing them.

Specifically, we find smaller effects for closing educational institutions, suggesting that

stringent safety measures made schools safer compared to the first wave. Second-wave

estimates outperform previous estimates at predicting transmission in Europe’s third wave.
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The first wave of the novel coronavirus, SARS-CoV-2,
resulted in dramatic excess mortality across many Eur-
opean countries from approximately February to June

2020. Most of these countries implemented a suite of non-
pharmaceutical interventions (NPIs), including business closures,
school suspensions, and gathering bans1–4. Although partial
control was achieved in the summer months, a second wave5,6 of
the epidemic followed the reopening of European societies, lasting
approximately from August 2020 to January 2021. NPIs remain
the primary tool for infection control in the short term7, with
vaccines set to reach only a minority of the global population in
20218 and vaccination delays in Europe. The need to identify the
most effective interventions to control infections is further
increased by waning population immunity9 and new variants of
concern (VOC) with higher transmissibility, severity or antigenic
escape10–12.

The effectiveness of NPIs in the first wave of COVID-19 has
been studied extensively by relating the timing of NPIs to the
epidemic’s trajectory across different countries1–3,13–16. Funda-
mentally, the used statistical methods compare transmission in
the presence and absence of NPIs. First-wave NPI effectiveness
was measured relative to baseline contact patterns in the very
early phases of the pandemic, where organisational safety mea-
sures and individual protective behaviours were lacking. For
example, schools operated largely without safety measures before
they were closed in the first wave; closing them thus reduced
transmission considerably2,13–15,17. First-wave estimates can thus
serve as proxies for how much transmission is associated with
various areas of public and social life (if operated without safety
measures and protective behaviours), and as a valuable starting
point for NPI effects in the first wave of a potential future
pandemic.

However, first wave estimates alone are likely inadequate to
fully assess the impact of introducing or lifting NPIs during an
ongoing pandemic. After the first wave ended, contact patterns
did not return to the pre-pandemic normal (details in Supple-
mentary Note 1.1). Individuals and organisations have adopted
protective measures such as distancing, regular testing, and
improved ventilation18,19. These changes likely made various
areas of public life safer and thereby reduced the additional effect
of strict bans or closures. For example, closing a school with
various safety measures in place is expected to have a smaller
effect on transmission than closing a pre-pandemic school. If
organisational safety measures and personal protective beha-
viours stay in place, second-wave estimates are likely more similar
to current, yet to be studied, NPI effects and thus more relevant to
current policy decisions. Should safety measures and behaviours
be loosened as the pandemic declines, NPI effect sizes are
expected to change to levels between those seen in the first and
second waves. In Generalisation of NPI effectiveness estimates
across time, we further discuss this point and empirically assess
how well first- and second-wave NPI effectiveness estimates
generalised to the third wave.

In addition, governments require effectiveness estimates for the
specific NPIs presently used. In the second and third waves,
European governments implemented NPIs of finer granularity
than identified in the first wave studies1–3,13–16. These include the
closure of specific business sectors (gastronomy, retail and leisure
venues), bans on gatherings of various small group sizes below 10,
and nighttime curfews. Identifying their effects is crucial as they
form the building blocks of both present infection control and
reopening plans.

Here, we provide effect estimates for individual interventions
during Europe’s second wave of COVID-19. European countries
typically implemented several NPIs concurrently, e.g. in grouped
tiers20–22. Therefore, identification of individual NPI effects

requires a multinational dataset, making use of the fact that dif-
ferent countries implemented different groups of NPIs at differ-
ent times. We also require subnational intervention data as NPIs
in the second wave were often implemented in specific regions or
areas. National modelling would obscure local heterogeneity, not
only in NPIs but also transmission timings22,23 and socio-
economic factors, leading to ecological fallacies23 and biased
effect estimates. A salient example is the infection heterogeneity
preceding the second wave in the UK; the strong north/south
divide would obscure localised increases in transmission when
aggregated nationally.

Because existing NPI trackers lack granular subnational data
and suitable fine-grained intervention definitions24–27, modelling
NPI effectiveness during the second wave requires a novel NPI
dataset. We introduce a systematic categorisation of interventions
across a randomised sample of 114 regions in 7 European
countries (Austria, the Czech Republic, England, Germany, Italy,
the Netherlands and Switzerland). We manually gather inter-
vention data and ensure high data quality through several vali-
dation procedures.

To deal with the challenges of the second wave, we develop a
semi-mechanistic hierarchical Bayesian model that is more widely
applicable than previous models1–3,13–16. In particular, we
account for unmodeled changes in transmission with a latent
random walk and prevent artefacts from low case counts by
allowing stochasticity. This enables the estimation of 17 indivi-
dual NPI effects from case and death data. Since NPI effectiveness
estimates can be sensitive to modelling decisions16,28, we evaluate
robustness to changes in the data, model, epidemiological
assumptions, and potential unobserved confounding factors.

Results and discussion
The combined effect of all NPIs was smaller in the second wave
than in the first. Using a semi-mechanistic Bayesian transmission
model with a latent stochastic process, we link NPI imple-
mentation dates to case and death data in each region and esti-
mate intervention effect sizes expressed as percentage reductions
in the (instantaneous) reproduction number Rt (Fig. 2). The effect
sizes in the second wave were considerably smaller than those
estimated for the first half of 2020. All NPIs included in the study
together reduced Rt by 66% [95% CI: 61–69%], compared to
median reductions of 77–82% in the first wave1,2. The difference
between the waves is more pronounced if we consider the
effectiveness of the most stringent set of NPIs actually imple-
mented in each region, rather than the (hypothetical) combined
effectiveness of all NPIs included in the study. The most stringent
set of NPIs implemented in each region reduced Rt by an average
of 56% [95% CI: 40–64%], compared to 76–82% in the first wave,
even though NPIs in the second wave were often similarly strict
or stricter1,2. Finally, Rt was reduced from an average maximum
of 1.7 [95% CI: 1.4–2.4] to a minimum of 0.7 [95% CI: 0.5–0.8]
across regions in the second wave, compared to an average
maximum of 3.3–3.8 and a minimum of 0.7–0.8 in the first
wave1,2.

We believe that these differences between the waves can likely
be explained by differences in pre-intervention contact patterns,
safety measures, and personal protective behaviours (see
“Introduction”). These changes likely made various areas of
public and social life safer and thereby reduced the effect of strict
bans or closures. The results underscore the importance of
viewing NPI effectiveness relative to the counterfactual safety
measures and behaviour in the absence of the given NPI. Several
other factors seem less important but may have contributed to the
difference in NPI effects. First, a build-up of population
immunity likely does not explain the reduction in NPI
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effectiveness: attack rates were low in our period of analysis29 and
the in- or exclusion of population immunity did not change the
estimated effect sizes. Second, reduced adherence to NPIs in the
second wave30 may have played a role, although adherence seems
much more relevant to restrictions for individuals (nighttime
curfews, mask mandates and bans on private household mixing)
than for organisations (closures of business sectors and educa-
tional institutions). Finally, in many countries, the ascertainment
rate of cases was increasing during the first wave31,32. However,
this is expected to decrease the effects estimated from the first
wave, the opposite of what we find.

A detailed assessment of interventions in Europe’s second
wave. A key challenge for identifying the effects of individual
interventions is that governments often implemented several
NPIs simultaneously (Fig. 1). During the first wave, interventions
were implemented within a short time window; for a given
intervention and region, on average 83% of the other interven-
tions in that region started in the same 10-day period2. In the
second wave, NPI implementation was spaced out (Fig. 1), with
only 23% of interventions starting in the same 10 day period.
With enough data from the first wave, it was still possible to
identify the effects of broad interventions; in the second wave, we
can identify a more fine-grained set due to the increased temporal
spacing combined with a larger and subnational dataset (9.2×
more NPI implementations than the largest study that focused on
Europe2). For each pair of NPIs that we are able to disentangle,
on average we observed one without the other for 6969 days
across all regions (with a minimum of 635 days for limiting
household mixing in private to ≤10 attendees and to ≤30 atten-
dees). However, we only show the combined effect of indoor and
outdoor gathering bans (of various stringencies) since these
comprise all six NPI pairs that score lowest on the aforemen-
tioned metric. Our estimates are robust to changes in data and
model parameters (see below under “Robustness of estimates”), in
contrast to studies on smaller datasets from the first wave1,28,
indicating33,34 that the data are sufficient to overcome
collinearity.

We find that business closures were particularly effective, with
a combined effect of reducing Rt by 35% [95% CI: 29–41%]
(Fig. 2A). Closures of gastronomy (restaurants, pubs, and cafes)
had a large effect on transmission with an estimated reduction in
Rt of 12% [95% CI: 8–17%], broadly in line with the increases
estimated to have occurred as a consequence of the UK’s “eat out
to help out” scheme in August35. We find a similar effect for
closing night clubs [12%, 95% CI: 8–17%], which were
predominantly shut earlier than other businesses; this substantial
effect size may reflect early second wave superspreading36. The
combined effect of closing retail and close contact services (such
as hairdressers and beauty salons) is also considerable [12%, 95%
CI: 7–18%]. Assuming that much of the effect is due to retail,
which is the more common type of business, this underscores the
potential risks of brief but very numerous indoor contacts37.
Closing leisure and entertainment venues such as zoos, museums,
and theatres had a small effect [3%, −1 to 10%]. Closing
businesses remains an effective measure to control infections; on
the other hand, additional safety measures are likely needed to
avoid significant transmission in retail and close-contact services,
gastronomy and nightclubs, as they reopen.

As a broad intervention, we found that banning all gatherings,
including 1-on-1 meetings, had a large effect: a 26% [95% CI:
18–32%] reduction in Rt . By recording the number of persons
and households allowed to meet, we can understand the
effectiveness of various thresholds. We found no evidence for

diminishing returns in the number of persons allowed to meet; in
fact, the strictest thresholds had considerably larger effects than
less strict ones. This result is consistent with previous studies on
the English tier system—Tier 2, which limits gatherings to six
people, had a small effect while Tier 3, which further limits
gatherings to two people amongst other interventions, had a large
effect20,21,38. The small effect associated with more lenient person
limits (10 or higher) contrasts with estimates from the first wave,
which commonly found bans on much larger gatherings to be
effective2,13,15. The difference could be due to voluntary
protective behaviours, which were absent pre-pandemic, such as
avoiding crowds and distancing (Supplementary Note 1.1), but
also due to limited adherence to rules on private mixing39. The
results suggest that during an ongoing pandemic, infection
control can no longer rely on reductions in transmission from
banning gatherings with 10 or more people. Defining a
“lockdown” policy as a ban on all gatherings and closure of all
nonessential businesses, we estimate a total reduction in Rt of
52% [95% CI: 47–56%].

Most countries adopted different limits for public gatherings
and household mixing in private at various times. We can
therefore begin to disaggregate the effect of these gathering types
and examine their relative effects (Fig. 2B). We find that both
gathering types contributed to reducing the transmission of
COVID-19. While the total effect of banning all private mixing
exceeds that of banning public gatherings, it seems that private
mixing restriction was only effective at a strict threshold of two
people allowed to meet. As discussed above, this could be due to a
combination of low adherence, ongoing safety measures at
gatherings, and individuals voluntarily avoiding crowds18,19.

Observational studies of the first wave consistently found that
closing all educational institutions was among the most effective
NPIs2,13–15,17. In strong contrast, we find that this effect was
small in the second wave [7%, 95% CI: 4–10%]. We conjecture
that a combination of safety measures, behaviour changes, and
epidemiological factors40 in the education sector prevented large
undetected clusters which may have developed in the first half of
202041–44. Indeed, schools in Europe’s second wave operated
under safety measures that some other organisations lacked:
symptom screening, asymptomatic testing, contact tracing,
sanitising, ventilation, distancing, reducing group sizes, and
preventing the mixing of groups41,45. Our results are consistent
with agent-based and compartmental modelling studies which
predict large decreases in transmission in schools upon
implementation of multiple safety measures46,47. Further, the
effects of closures on transmission outside of the educational
institutions might provide an additional explanation for the
observed differences between the waves. In the first wave, closures
of educational institutions were among the first major NPIs
implemented in most countries1,2. This may have signalled the
gravity of the pandemic and prompted the general population to
behave more cautiously, reducing subsequent case and death
numbers. In the second wave, this signalling effect associated with
school closures may have been smaller, as school closures due to
COVID were usually not among the early NPIs (the early periods
of closed schools shown in Fig. 1 are normal school holidays
unrelated to COVID). In addition, there may have been changes
in how school closures impact interactions outside of schools,
such as parents of school children being forced to work
from home.

We documented student presence separately for universities
(or higher education) and schools (both primary and secondary)
by recording their local term times, holidays, and closure dates in
all 114 regions, as well as identifying regions without universities.
However, the relative effects for closing only schools or only
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universities are not robust in a sensitivity analysis designed to
adjust for undetected infections48 in schools (Supplementary
Fig. S10). We thus report the combined effect of closing all
educational institutions, which is more robust.

Our findings underscore the impact of safety measures in
educational institutions and support the view that school closures
can be avoided if effective safety protocols are in place. However,
safety measures vary by country18 and further assessments are

required. Without sufficient measures, opening schools could lead
to a resurgence49. In future pandemics, a promising strategy
could be to close educational institutions early to gain time to
implement safety measures, but then operate them throughout
the pandemic whenever possible.

The introduction of policies that require mask-wearing in most
or all shared/public spaces reduced transmission by 12% [95% CI:
7–17%]. Before the start of the second infection wave, countries in

Fig. 1 Dataset. A Cases, deaths and implementation dates of nonpharmaceutical interventions in an example region (Nürnberg, Germany). Coloured lines
indicate the dates that each intervention was active. Colours represent different interventions. B The total number of days that each intervention was used
in our dataset, aggregated across n= 114 regions but separated by country. The dashed vertical line indicates the total number of region days in our
dataset. C Additional timelines showing cases, deaths, and interventions in six regions. Comparing two regions within England (Lincolnshire and Greater
Manchester S.W.) and within Switzerland (Zürich and Géneve) reveals significant subnational variation, both in the interventions used and in the evolution
of the epidemic.
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our dataset had less stringent policies that required mask-wearing
only in select public spaces. The estimated effectiveness of this
NPI is therefore the additional benefit of a stricter policy. In
future epidemics with airborne pathogens, mandating mask-
wearing in almost all, and not just some, public spaces early on
will be an attractive strategy, given the comparatively low social
and economic burden of this intervention.

Finally, nighttime curfews were commonly used in the second
wave but have thus far received little study. In the countries in our
dataset, they reduced transmission by 13% [95% CI: 6–20%],
lending some evidence to their effectiveness as an infection
control measure. Due to the broad nature of curfews and mask-
mandates, these two interventions likely interact with other active
NPIs and effectiveness may depend on the context. For example,
a curfew may be less effective when all gatherings are already
banned. In contrast, the other NPIs affect largely distinct areas of
social activity and therefore are not expected to mutually interact
to a great extent.

Robustness of estimates. The utility of our effectiveness estimates
hinges on their robustness; estimates that are highly sensitive to
modelling assumptions or confounding should not be used to
guide policy. We perform 17 sensitivity analyses spanning 86
experimental conditions to evaluate robustness. Figure 3 shows
how the median estimates of effect sizes from Fig. 2 vary across
our sensitivity analyses, as we modify the priors and structure of
the model, change the distributions of epidemiological delays, and
randomly vary the set of regions and other aspects of the data.
Since we cannot model all possible factors that affect the trans-
mission, we also investigate sensitivity to unobserved factors50

that influence Rt, acting as possible confounders. These include
unrecorded NPIs and changes to ascertainment and fatality rates.
Each analysis is shown in Supplementary Note 2.1. Supplemen-
tary Notes 2.2–2.7 describe additional validation experiments
including multivariate sensitivity analysis, posterior predictive
checks51, simulation experiments, and a single-model meta-ana-
lysis across regions.

Fig. 2 Intervention effectiveness under default model settings. Posterior percentage reductions in Rt shown. Markers indicate posterior median estimates
from 5000 posterior samples across four chains. Lines indicate the 50 and 95% posterior credible intervals. A negative 1% reduction refers to a 1%
increase in Rt. A Effectiveness of the main interventions included in our study. Intervention names preceded by “All” show the combined effect of multiple
interventions. For example, “All gatherings banned” shows the combined effect of banning all public gatherings and all households mixing in private.
B Individual effectiveness estimates for gathering types, separated into public gatherings and household mixing in private.
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While median NPI effects vary across the different experi-
mental conditions, a broad picture emerges in which some NPIs
outperform others across all experiments (Fig. 3). This suggests
that high-level policy conclusions can be drawn from the results,
as they depend on modelling assumptions only to a limited
degree. Although our results are robust to varying strengths and
types of unobserved factors, the true strength of unobserved
confounding is unknown and our study is therefore subject to the
limitations of observational approaches.

A generalisation of NPI effectiveness estimates across time.
Empirical studies are limited to analysing past data, but NPI
effects change in time according to a range of factors. Present
policy decisions should therefore be informed by analysing per-
iods of time as similar as possible to the current situation.

Since organisational safety measures and personal protective
behaviours may account for much of the observed changes in NPI
effectiveness, we expect past analyses to predict current NPI
effects if similar safety measures and behavioural patterns are

Fig. 3 Robustness of median intervention effectiveness estimates across n= 86 experimental conditions (univariate sensitivity analysis). Each dot
represents the posterior median intervention effectiveness under a particular experimental condition. This figure contains only univariate sensitivity
analysis—please see Supplementary Note 2.2 for multivariate sensitivity. Dot colour indicates categories of sensitivity analyses. Each category contains
several sensitivity analyses (17 in total) and each sensitivity analysis contains several experimental conditions (n= 86 in total). Supplementary Table S1
lists all sensitivity analyses by category. A Robustness of effectiveness estimates of the main interventions included in our study. Intervention names
preceded by “All” show the combined effect of multiple interventions. For example, “All gatherings banned” shows the combined effect of banning all public
gatherings and all households mixing in private. B Robustness of the individual effectiveness estimates for separately banning public gatherings or
household mixing in private.
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observed today as in the analysed period. Indeed, safety measures
and behaviours have been relatively stable throughout the second
and third wave, and, at the time of writing, are far more widely
adopted than in early March 2020 (details in Supplementary
Note 1.1). For example, businesses incorporated measures to
ensure minimum distances between persons; a measure not yet
relaxed. Further, about two-thirds of YouGov survey respondents
have consistently indicated that they avoided crowded places in
the period from August 2020 to May 2021 (month-on-month
average changes of less than 2%), compared to only 14% on 1
March 2020 (early data only available for the UK). Even in the
UK, with low incidence and over 70% of the adult population
vaccinated, safety measures and personal protective behaviours
are considerably more prevalent today than in early March 2020
(Supplementary Note 1.1). At the time of writing, second wave
estimates may therefore be more representative of current NPI
effects than first wave estimates. In the coming months,
governments can measure safety protocols and protective
behaviours to inform which effectiveness estimates are appro-
priate. Should behaviours approach pre-pandemic levels as the
pandemic declines, NPI effect sizes are expected to increase to
levels between those of the first and second wave.

Novel VOCs52 and increased population immunity due to
vaccinations may affect overall NPI effectiveness. In addition, if
new VOCs resulted in a higher initial Rt , then stricter or more
NPIs would be required to bring Rt below 1. If new VOCs were
preferentially transmitted through certain demographics or
activities, interventions targeting these would increase in effec-
tiveness. Similarly, because vaccination campaigns prioritise older
age groups, NPIs that primarily affect the young (school and
university closures) can potentially achieve a higher relative
reduction in transmission. Although vaccinated people might
relax their protective behaviours, such behavioural changes only
affect NPI effectiveness insofar as they occur in people who
remain susceptible.

Finally, while we cannot experimentally test how well NPI
effect estimates will generalise to future situations, we can assess
how well estimates from the first and second wave have
generalised to the third pandemic wave until now (Supplemen-
tary Note 1.2). In brief, we collected national NPI data for 6
European countries between January and May 2021, a period
heavily influenced by the more transmissible VOC B.1.1.7 and
increasing vaccination coverage. We then compared the observed
changes in Rt upon implementing/lifting NPIs to the changes
predicted from first- or second-wave effectiveness estimates. The
first-wave estimates were taken from previously published work2.
The changes in Rt predicted by first-wave estimates are on average
18 percentage points larger than the observed changes in Rt. In
contrast, our second-wave estimates only overestimate the
observed changes by 2 percentage points. Although these results
are consistent with the aforementioned trends in safety measures
and behaviours, this experiment has limitations. We measure the
change in Rt when NPIs are implemented/lifted, which may be
affected by unobserved factors. For example, if an NPI is
implemented at the same time as B.1.1.7 enters a country or an
unrecorded NPI is lifted, we may observe an increase in
transmission even if the NPI actually reduced transmission. As
such, errors in prediction may not be due to errors in NPI effects.

Implications. European governments are presently debating
which interventions to keep and which to remove. These are
complex decisions that require weighing the clear social and
economic costs of stringent measures against the damage from a
continuously resurging and evolving epidemic. Our estimates
provide a starting point to control infections in case of a

resurgence, but also to preempt virus evolution, which has
spawned new variants in several areas where it appeared that the
pandemic was overcome10–12.

Using a European NPI dataset of unique scale and granularity
with a flexible transmission model, we provide effectiveness
estimates for individual NPIs in Europe’s second wave. At a time
when estimates from the first wave commonly form a basis for
reopening plans53, analysing NPI effects in the second wave
reveals new conclusions to inform policy. We find that closures
and bans still considerably reduced transmission in the second
wave, but to a lesser degree than they did in the first wave.
Estimates from the first wave overestimate NPI effectiveness in an
ongoing pandemic because they measure the reduction in
transmission compared to the pre-pandemic state where
protective behaviours and safety measures were absent. Safety
measures and behaviours likely made various areas of public and
social life safer. If they stay in place, policymakers should not
expect NPIs effects to be as large as they were in the first wave
and should additionally refer to second-wave estimates to inform
policy decisions. This is corroborated by experiments demon-
strating that our NPI effectiveness estimates are largely unbiased
estimates of the changes in Rt that were observed in the third
wave. Our results suggest that educational institutions, with
appropriate safety measures, can be made considerably safer than
they were before or early in the first wave; and that only the
strictest limits on gathering size remain effective tools for
infection control in an ongoing pandemic. In contrast, there is
still considerable transmission associated with face-to-face
businesses, and stricter mask-wearing policies and nighttime
curfews can help curb transmission.

We note that we chose to express results as a percentage
reduction rather than an additive reduction to ensure a property
of diminishing returns to NPIs when the transmission is already
low. This multiplicative model also naturally ensures positive
reproduction numbers. Our results are based on a limited set of
countries in the second wave. Expert judgement is thus needed to
adjust them to local and contemporary circumstances.

The observation that NPI effectiveness is dynamic in time is an
important and under-discussed consideration for policy. Our
framework, which draws strength from a diversity of geographical
localities and intervention timings, provides a systematic
approach for both modelling and data collection. It can be used
in near real-time and only requires routine case/death detection
and the systematic identification of the relevant NPIs. It,
therefore, generalises current approaches to real-time modelling
except that the object of interest is not simply to summarise
current transmission but also the factors driving it. To inform
critical policy decisions, real-time modelling of evolving NPI
effects should be a priority.

Methods
Data
Dataset overview. We collected a custom NPI dataset for this modelling study, as
existing datasets do not provide sufficient geographical resolution to model the
second wave (Table 1). Further advantages of our dataset are NPI definitions
tailored towards the second wave and high data quality through extensive vali-
dation. All data necessary for the replication of our results are publicly available on
https://github.com/MrinankSharma/COVID19NPISecondWave/tree/main/data,
or, in archived form, at54.

To create this dataset, we collected chronological data on NPIs that were in
place between 1 August 2020 and 9 January 2021 in administrative regions,
districts, and local areas of 7 European countries. The resulting dataset contains
over 5500 entries on various NPIs in 114 regions of analysis (Supplementary
Table S5). Every entry includes the NPI start date and end date, quotes and
comments, and one or more sources from websites of governments and
universities, legal documents, and/or media reports. Daily case and death data were
obtained from government websites (Supplementary Table S4).

We now describe how we selected the countries, regions of analysis within each
country, and NPI definitions.
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We first identified 7 European countries for which public data on daily reported
cases and deaths were available at the same geographical resolution at which the
country implemented NPIs (Austria, the Czech Republic, England, Germany, Italy,
the Netherlands and Switzerland).

To gather initial information about the transmission-reducing NPIs used in
these countries, we conducted an exploratory data collection and interviewed local
epidemiologists from the countries. Based on these data, we created NPI definitions
that faithfully represent the interventions that were implemented in these
countries. We focused on clear-cut, major interventions that were implemented in
many countries and we only recorded mandatory restrictions, not
recommendations. We also accounted for closures that are not due to NPIs, such as
vacation and term times in schools and universities, as we surmised that these
effectively function as NPIs.

The exploratory data also informed the appropriate level of geographical
granularity for the NPI data collection. In each country, we set our regions of
analysis to correspond to the highest possible level of administrative division for
which NPI implementations were identical throughout each region. The chosen
administrative divisions were (Supplementary Table S4):

● States in Austria,
● Administrative regions in the Czech Republic,
● Nomenclature of Territorial Units for Statistics (NUTS) 3 statistical regions

in England,
● districts in Germany,
● Administrative regions in Italy (with the exception of the Trentino-Alto

Adige region, which was split into the autonomous provinces Trentino and
Alto-Adige),

● Safety regions in the Netherlands, and
● Cantons in Switzerland.

For Austria, the Czech Republic, Italy and the Netherlands, it was feasible to
collect data from the whole country (9, 14, 21 and 25 regions of analysis). From
each other country, we took a stratified random sample of 15 regions of analysis.
The sample was stratified by the regions’ number of COVID-deaths in the first
wave, to ensure a sufficiently diverse sample and reduce the variance of our NPI
effect estimator. In Germany, each of the 16 German states had different
regulations for its districts. To reduce the work required for data collection, we
sampled the 15 districts only from the four largest states (Northrhine-Westphalia,
Bavaria, Baden-Württemberg and Lower Saxony). These four states make up 60%
of the population. Since regions with relatively few cases provide less evidence
about the underlying reproduction number (and thus NPI effects), we increase
statistical precision by excluding regions with fewer than 2000 reported cases
during the analysis period.

Data collection. To ensure high data quality, the NPI data were collected with semi-
independent double entry and several validation steps. Each country was collected
by two authors of this paper, who were provided with a detailed description of the
NPIs. The researchers manually researched all dates by using internet searches and
screening (local) government press releases, ordinances and legislation. There was
no automatic component in the data gathering process.

In the first round of data entry, the researchers initially collected the timeline of
national NPI implementations. The researchers then compared their national
timeline to the Oxford COVID-19 Government Response Tracker dataset27 and, if
there were any conflicts, visited all primary sources to resolve them. The data for
each region of analysis were then entered by one of the two researchers, drawing on
the national timeline and additional research. Several countries operated a tier or
traffic light system that governed NPI implementation in subnational
administrative divisions. For these countries, the researchers did not blindly enter
the NPIs prescribed by the tier or traffic light system but additionally consulted
local government websites and media reports to investigate if the NPIs prescribed
by the national system were, in fact, implemented in a region of analysis.

In the second round of data entry, every entry was independently entered again
by another researcher. This researcher had access to the sources found in the first
round as well as the associated quotes and comments, but not to the NPI data

entered in the first round. This semi-independent double entry is similar to the
validation used for parts of CoronaNet24.

Finally, data from the two rounds of entry were compared and all conflicts were
resolved by discussion and by visiting primary sources. A researcher then manually
compared the data from all countries to ensure the consistent application of NPI
definitions across countries. We also validated the data against further external
sources (e.g,.55 for Italy or38 for England), contacted local epidemiologists when in
doubt, and implemented a range of automated plausibility checks.

Throughout the data collection process, the researchers discussed edge cases
and judgement calls on a shared online workspace to ensure consistency across
countries. As expected, the validation process removed various sources of error and
inconsistency. Supplementary Note 5 contains detailed explanations on coding
decisions and judgement calls. The following software was used in the data
collection and validation process: Google Chrome (various version numbers),
Google Sheets (various version numbers) and Python/Numpy/Pandas for
validation (various version numbers).

The total time spent on manual data collection, not including the design of the
process, was 950 h, with 185 h on the national timelines, 470 h on collecting the
regions of analysis, and 290 hours on the validation steps.

Data preprocessing. To mitigate bias, we excluded all observations in a region of
analysis after the date when the VOC B.1.1.7 first made up >10% of infections in
that region. Specifically, we excluded cases 5 days after >10% of all infections were
due to the VOC and deaths 11 days after this value was reached. We chose these
values to ensure that on the last included day, more than 80% of the reported cases
and deaths were generated before the VOC exceeded >10% of all infections,
according to our delay distributions. This only affected regions in England, usually
towards the end of November11.

The last day recorded in the intervention data set is 9th January 2021.
Therefore, we included cases up to 5 days after this date and deaths up to 11 days
after this date, as they are predominantly generated by infections before the 9th of
January (see above).

Furthermore, to prevent influence from infections generated before the start of
the analysis period, we excluded cases in the first 8 days (until 8th August) and
deaths in the first 25 days (until 25 August). These values were chosen such that
80% of the cases and deaths recorded on the first observed day were generated in
our window of analysis (including seeded infections), according to our delay
distributions.

Supplementary Note 4.1 explains how we created the NPI features used in the
modelling from the raw data. The final NPIs used for modelling are described in
Table 2.

Model. We construct a semi-mechanistic Bayesian hierarchical model, similar to
that of Brauner et al.2, but with adaptations tailored for the second wave. Namely,
we allow for changes in transmission unrelated to NPIs, which allow the model to
explain e.g., unrecorded interventions. Furthermore, we account for the variance
inherent in low incidence settings. Our model implementation is available on
GitHub (https://github.com/MrinankSharma/COVID19NPISecondWave) or, in
archived form, at54.

We proceed by describing the model in Fig. 4 from bottom to top.

Reproduction number. The epidemic’s growth is described by the time-and-
location-specific (instantaneous) reproduction number Rt;l . Rt;l is the expected
number of secondary infections that would arise from a primary infection at time t
in location l, provided conditions remain the same after time t. We allow Rt;l to
change over time, even if the interventions implemented in location l do not
change. In particular, the value of Rt;l depends on three factors: (a) the repro-

duction number at the start of the period in the absence of NPIs, eR0;l ; (b) the active
nonpharmaceutical interventions (and their effectiveness); and (c) a latent (weekly)
random walk. The random walk term allows Rt;l to change from one week to the

Table 1 Main dataset characteristics.

Countries 7
Regions of analysis 114
Period 1 August 2020–9 January 2021*
Days across all regions 19,000
NPI entries in the dataset >5500**
Data validation (manual) Semi-independent double entry***; interviews with local epidemiologists; validation against external sources; cross-country

consistency checks

In total, we collated >5500 intervention entries through a systematic categorisation.
*We ended the period of analysis before 9 January 2021 for English regions depending on their prevalence of a new variant of concern (see “Methods”). **Each entry includes the NPI start date and end
date, quotes and comments, and one or more sources from websites of governments and universities, legal documents and/or media reports. ***Data were entered twice by two different groups of
researchers. In the second round of data entry, researchers had access to the sources, quotes and comments found in the first round, but not to the NPI data entered in the first round (see Methods).
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next. Precisely, Rt;l follows:

Rt;l ¼ ~R0;l|{z}
R at t¼0 if no
NPIs active

YI
i¼1

expð�βi xi;t;lÞ
 !zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{effect due to active NPIs

expðzt;lÞ|fflfflfflffl{zfflfflfflffl}
latent randomwalk

;

where xi;t;l ¼ 1 means NPI i is active in location l on day t (xi;t;l ¼ 0 otherwise),
and I is the number of NPIs. We now explain each of these terms in more detail.

We place a prior distribution over eR0;l , the reproduction number (in the absence
of NPIs) on August 1st, 2020. In fact, many locations had some recorded
interventions active at t ¼ 0. Therefore, we chose the mean of the prior on eR0;l

carefully. We ensured the prior on R0;l matched published estimates of Rt for the

first week of August from refs. 56 and 57. For clarity, eR0;l is the reproduction
number that would have been observed in location l at t ¼ 0 had no NPIs been

active. The prior over eR0;l follows:

eR0;l � Truncated Normal 1:35; 0:32
� �

;

where truncation prevents values of eR0;l less than 0:1.
We parameterise the effect of NPI i with the effect parameter βi. This parameter

is independent of time and shared across all locations, i.e., the effectiveness of a
particular NPI is assumed to be identical across regions (though the random walk
described below can account for differences). We place an Asymmetric Laplace
prior over the effect parameter βi , with scale parameter 30, asymmetry parameter
0:5, and location parameter 0. This prior has mean 0:05 and standard deviation
0:07. The prior allows for (unbounded) positive and negative effects as we cannot
exclude the possibility that an NPI increases transmission. However, our prior
places 80% of its mass on positive effects, reflecting a belief that NPIs are more
likely to reduce transmission than to increase it. Furthermore, this is a shrinkage
prior—it places more than 80% of its mass on “small” effectiveness (less than 10%
change in Rt;l).

Table 2 NPI definitions.

NPI Definition

Primary schools closed Most or all primary schools (ages 5/6 to 10/11) have moved all teaching
online or have closed (including for school holidays).

Secondary schools closed Most or all secondary schools (ages 10/11 to 17/18) have moved all
teaching online or have closed (including for school holidays).

Universities closed Most or all higher education institutions are on (summer) term-break,
(Christmas) vacation, or have sent students away from the university
town (e.g., by closing university accommodation). As a result, a large
fraction of students will have left their term-time accommodation to live at
their home addresses. We did not count online teaching as a university
closure if students were still expected to be present in the university town
because (i) this still allows (likely considerable) transmission from
students mixing outside of teaching events, and (ii) universities usually
moved various components of their schedule online throughout the
analysis period in a gradual manner. Some of the regions of analysis did
not contain universities. For these, we counted universities as closed
throughout the period of analysis.

Night clubs closed Most or all nightclubs, discos, and other late-night venues are closed.
Gastronomy closed Most or all gastronomy establishments/venues (restaurants, pubs and

cafes) are closed or limited to take-away.
Leisure and entertainment venues closed A large fraction of leisure and entertainment venues are closed. Common

examples include theatres, cinemas, concert halls, museums, gyms, dance
studios, indoor skating rinks, bowling alleys, public baths, indoor play
areas, escape games, casinos, billiard rooms, zoos and amusement parks.

Retail and close contact services closed All nonessential retail shops are closed. Only those retail shops designated
as essential may open; common examples are supermarkets, pharmacies,
and gas stations. In addition, all nonessential services that require close
contact between customers and service providers are closed. This
includes beauticians, nail salons, massage parlours, and—in all countries
but Italy— hairdressers, but not medical services.

Nighttime curfew Individuals must stay indoors during evenings/nights. There are
exemptions for limited reasons, such as emergencies or caregiving.
Whenever regions in our dataset introduced nighttime curfews, they
essentially always also implemented, or already had in place, several other
NPIs listed in this table (night clubs and gastronomy closure). These are
encoded as distinct NPIs in the data. In our results, we thus estimate the
additional effect of a nighttime curfew on top of other active NPIs16.

Stricter mask-wearing policy Mask-wearing is required in most or all shared/public spaces outside the
home (inside and outside) where other people are present or where social
distancing is not possible. Already before implementing this policy, all
countries in our dataset had some less strict policies in place that required
mask-wearing only in select public spaces (see Supplementary Note 4.1).
The estimated effectiveness of this NPI thus shows the additional benefit
of the stricter policy.

Public gatherings limited to ≤30, ≤10, 2 people or banned. Gatherings in public spaces are limited to a certain number of people. The
limits of 30 and 6 include all regulations with at least that level of
strictness. For example, a ban on public gatherings of more than 15 people
would be classified as “public gatherings limited to ≤30 people”.

Household mixing in private is limited to ≤30, ≤10, 2 people or banned. Gatherings of individuals in private spaces are limited to a certain number
of people. See the row above for additional explanations.
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The final component used to calculate Rt;l is a location-specific latent random
walk. This random walk allows for changes in Rt;l every week that are due to factors
outside the model. A random walk can explain lasting changes in transmission,
unlike typical noise models. For example, suppose there was an unrecorded
intervention in location l at time t, or a recorded intervention with unusually low
adherence. Then the random walk could be used to explain the observed change in
transmission. Mathematically, the random walk noise terms follow:

zt;l ¼
0 t ≤ 13

zt�1;l þ εbðt�14Þ=7c;l if tmod 7 ¼ 0

zt�1;l otherwise

8><>: ;

where b�c denotes the floor operation and ϵi;l � Normal 0; σ2R
� �

. In words, zt;l is set

to 0 for the first two weeks, meaning that Rt;l depends only on eR0;l and the active
interventions for the first 2 weeks. Then, every week, the value of zt;l may increase
or decrease depending on the noise variable ϵi;l . If we observe that transmission
increased in a particular week, then we may infer ϵi;l > 0 and vice versa.

The random walk addresses an important limitation–we cannot include all
possible factors that affect transmission. We can attempt to attribute effect sizes to
NPIs at a time t, but we need to agnostically account for other unobserved factors
that could have changed transmission (e.g., behaviour and adherence). By using a
random walk, we include a latent stochastic process that agnostically models
unobserved trends and residual structural correlations.

Furthermore, we place a prior over σR , which describes the scale of the random
walk process. As σR increases, the latent random walk can be used to explain larger
changes in transmission. An advantage of placing a prior over σR and performing
joint Bayesian inference is that, if warranted by the data, an appropriate value may
be inferred automatically. Our prior is σR � Half Normal 0:15ð Þ. We include this
prior distribution in our sensitivity analysis (Supplementary Fig. S12) and find low
sensitivity. Furthermore, we find that the data provide strong evidence about the
value of σR (see Supplementary Fig. S34 for a posterior and prior comparison).

Infection process. Let Nt;l denote the number of new infections at time t in
location l. Furthermore, the generation interval (GI), which is the time between
successive infections in a transmission chain, is denoted with the distribution
πGI τ½ � where τ refers to the number of days since infection. The expected number

of infections then follows a discrete renewal process58:

Nt;l ¼ Rt;l ∑
32

τ¼1
ðNt�τ;l � πGI ½τ�Þ :

Renewal processes have a strong relationship to Hawkes processes and arise
naturally from a Bellman Harris branching process58,59. The renewal equation has
also been shown to be equivalent to a susceptible-exposed-infected-recovered
Erlang model60. The renewal equation therefore specifies an epidemiologically
motivated function class. One issue with the renewal equation is that it specifies a
deterministic expectation for the number of new infections. This is generally
suitable as infections become large, but in low incidence settings, estimation of Rt;l

can be sensitive to random fluctations and noise. Therefore, we include an additive
noise term, reflecting a belief that changes in the number of infections at low
infection counts provide limited evidence to ascertain Rt;l , and must be treated with
caution. Thus, the actual number of infections follows:

Nt;l ¼ softplusðNt;l þ ϵt;lÞ;

where ϵ Nð Þ
t;l � Normal 0; σ2N ¼ 52

� �
. We use the softplus �ð Þ rectifier to ensure that

Nt;l ≥ 0. See Supplementary Fig. S11 for sensitivity to the infection noise scale, σN .
We seed the model with one week of unobserved initial infections.
N�t;l ¼ Lognormal eμ ¼ 0;eσ ¼ 3

� �
; for 1≤ t ≤ 7: Since we treat new

infections as a continuous number, their initial value can be between 0 and 1.

Infection ascertainment and fatality rates. Scaling all values of a time series by a
constant maintains its reproduction numbers. Our model is thus invariant to the
scale of the observations and therefore to time-invariant differences between
locations in the infection fatality rate (IFR), which is the proportion of infected
people that subsequently die, and the infection ascertainment rate (IAR), which is
the proportion of infected people who are subsequently tested positive. Since the
model is invariant to the absolute scale of these rates, we set IARl ¼ 1 for all local
areas, and we place a prior over IFRl . Both the IAR and IFR are assumed to be
constant over time. In addition, since we assume IARl ¼ 1, the IFR is actually a
case-fatality rate and the variable Nt;l effectively represents the infections that are
later confirmed as positive cases. The uninformative prior over IFRl follows:

IFRl � Uniform 10�3; 1
� �

:

Fig. 4 Model Overview. Dark blue nodes are observed. We describe the diagram from bottom to top. The mean effect parameter of NPI i is βi. On each day
t, a location’s reproduction number Rt;l depends on the basic reproduction number eR0;l, the NPIs active in that location and a location-specific latent weekly
random walk. The active NPIs are encoded by xi;t;l , which is 1 if NPI i is active in location l at time t, and 0 otherwise. A random walk flexibly accounts for
trends in transmission due to unobserved factors. Rt;l is used to compute daily infections Nt;l given the generation interval distribution and the infections on
previous days. Finally, the expected number of daily confirmed cases y Cð Þ

t;l and deaths y Dð Þ
t;l are computed using discrete convolutions of Nt;l with the relevant

delay distributions.
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We then have:

N ðCÞ
t;l ¼ Nt;l ; andN

ðDÞ
t;l ¼ IFRl � Nt;l :

As such, N Cð Þ
t;l represents infections that are later confirmed, and N Dð Þ

t;l represents
infections that later result in death.

As part of our validation, we replace the assumed time-constant IFR and IAR
with their estimates in England (applying these to all countries), taken from ref. 31.
These time-varying estimates of the IFR/IAR are estimated using seroprevalence
data from ONS61 and REACT62, along with case and death time series for England.
See Supplementary Fig. S24. We find that our NPI effectiveness estimates are not
sensitive to this change.

Observation model for cases. The expected number of confirmed cases on day t
in location l is given by a discrete convolution:

yðCÞt;l ¼ ∑
31

τ¼0
NðCÞ

t�τ;lPCðdelay ¼ τÞ;

where PC delay
� �

is the distribution of the delay from infection to case-reporting.
This distribution is truncated to 31 days for computational efficiency. As in prior
works1,2, the observed cases y Cð Þ

t;c follow a negative binomial distribution with mean

yðCÞt;c and a country-specific inferred dispersion parameter, Ψ Cð Þ
c . Since different

countries have different reporting practices, we allow Ψ Cð Þ
c to differ by country. The

prior over this parameter is as follows:

Ψ Cð Þ
c � Half Normal 5ð Þ:

Observation model for deaths. The expected number of deaths on day t in
location l is given by a discrete convolution:

yðDÞt;l ¼ ∑
63

τ¼0
NðDÞ

t�τ;lPDðdelay ¼ τÞ;

where PD delay
� �

is the distribution of the delay from infection to death reporting.
Similar to cases, the delay vector is truncated for computational reasons, but since
the delay between infection and death is longer, we truncate this distribution to a
maximum delay of 63 days.

Finally, the observed deaths y Dð Þ
t;c follow a negative binomial distribution with

mean yðDÞt;c and a country-specific inferred dispersion parameter, Ψ Dð Þ
c :

Ψ Dð Þ
c � Half Normal 5ð Þ:

Having separate dispersion parameters for cases and deaths ensures that they
can be weighted differently if there is a difference in their output variance.

Implementation. The model was implemented in NumPyro (version 0.6.0)63. The
model components in all previous equations are combined into a single likelihood
function and a set of prior distributions. These ingredients are needed to infer a
posterior over the unobserved variables in our model using the No-U-Turn
Sampler (NUTS)64, a standard Markov chain Monte Carlo sampling algorithm,
as implemented in NumPyro. We used 4 chains with 250 warmup samples
and 1250 draw samples, thereby obtaining 5000 posterior samples. We ensured
that the posterior had converged by ensuring there were no divergence transitions,
as well as monitoring the effective sample size and rank-normalised split-R̂ statistic.

Delay distributions—case and death delays. Recall that our model requires
external knowledge of the delay between infection and case confirmation as well as
the delay between infection and death reporting. Many previous studies use esti-
mates for delay distribution based on the data from the first wave2,65. However,
these delay distributions may be different in the second wave due to sustained
investment in testing capabilities and healthcare. Therefore, we re-estimate these
delay distributions using data from the second wave.

The delay from infection to case confirmation is composed of the incubation
period—the time from infection to onset of symptoms—and the symptom-to-
confirmation delay. Similarly, the delay from infection to death reporting is
composed of the incubation period and the symptom-to-death-reporting delay. We
take an estimate of the incubation period from a meta-analysis66. We then combine
this incubation period with estimates of the symptom-to-confirmation delay and

the symptom-to-death reporting delay from linelist data to form our total delay
distributions.

We use linelist data from Austria, Germany and the United Kingdom (UK).
This linelist data contains country-specific patient data of the date of symptom-
onset, the date of case confirmation (for Austria, Germany and the UK) and the
reported date of death (for Austria and the UK). To ensure that the linelist data we
used was appropriate for the second wave, and to avoid censoring bias, we filtered
the linelist data using the following conditions:

● Date of onset of symptoms ≥ 2020=07=01
● Date of onset of symptoms ≤ 2020=11=01
● Date of death ≤ 2021=01=22
● Date of death ≥ date onset
● Date of admission ≥ date onset
● Date of test confirmation ≥ date onset

By neglecting symptom onsets dates past November, we mitigate censoring bias.
There were almost 3 months since November for the latest possible onset date to
fully evolve. Furthermore, by filtering the date of admission to be after the
symptom-onset date, we prevent bias from hospital-acquired infections.

We fitted gamma distributions to the onset-to-confirmation and onset-to-
reported-death data. We also fit Weibull, Lognormal, and Negative Binomial
distributions to the data but, using model selection67, found these to have an
inferior fit. The fitted gamma distribution for the onset-to-confirmation delay has
mean 5:28 days and standard deviation 3:75 days. The fitted gamma distribution
for the onset-to-reported-death delay has mean of 18:61 days and standard
deviation 13:62 days.

To compute the discretised delay vectors from infection to case confirmation,
and for infection to reported death, we use Monte Carlo integration to discretise
and sum the incubation period with the relevant delay.

Delay distributions—GI. We take an estimate for the GI from a meta-analysis66.
We use Monte Carlo integration to discretise this delay.

Table 3 lists the delay distributions that we use, as well as their sources.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data necessary for the replication of our results are publicly available on https://
github.com/MrinankSharma/COVID19NPISecondWave/tree/main/data, or, in archived
form, at54. The NPI data were collected by the authors; case and death data was taken
from local data sources—please see https://github.com/MrinankSharma/
COVID19NPISecondWave/blob/main/data/raw_data_w_sources/sources.md. National
case and death data for the third wave experiments taken from John Hopkins University
https://github.com/CSSEGISandData/COVID-19, but accessed the OxCGRT tracker
https://github.com/OxCGRT/covid-policy-tracker.

Code availability
All code necessary for the replication of our results, including reproducibility
instructions, is available at https://github.com/MrinankSharma/
COVID19NPISecondWave, or, in archived form, at54
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