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Abstract

Area of habitat (AOH) is defined as the “habitat available to a species, that is, habitat within
its range” and is calculated by subtracting areas of unsuitable land cover and elevation
from the range. The International Union for the Conservation of Nature (IUCN) Habitats
Classification Scheme provides information on species habitat associations, and typically
unvalidated expert opinion is used to match habitat to land-cover classes, which generates
a source of uncertainty in AOH maps. We developed a data-driven method to translate
IUCN habitat classes to land cover based on point locality data for 6986 species of terres-
trial mammals, birds, amphibians, and reptiles. We extracted the land-cover class at each
point locality and matched it to the IUCN habitat class or classes assigned to each species
occurring there. Then, we modeled each land-cover class as a function of IUCN habitat
with (SSG, using) logistic regression models. The resulting odds ratios were used to assess
the strength of the association between each habitat and land-cover class. We then com-
pared the performance of our data-driven model with those from a published translation
table based on expert knowledge. We calculated the association between habitat classes
and land-cover classes as a continuous variable, but to map AOH as binary presence or
absence, it was necessary to apply a threshold of association. This threshold can be chosen
by the user according to the required balance between omission and commission errors.
Some habitats (e.g., forest and desert) were assigned to land-cover classes with more con-
fidence than others (e.g., wetlands and artificial). The data-driven translation model and
expert knowledge performed equally well, but the model provided greater standardization,
objectivity, and repeatability. Furthermore, our approach allowed greater flexibility in the
use of the results and uncertainty to be quantified. Our model can be modified for regional
examinations and different taxonomic groups.
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Conversión de la Categoría de Hábitat a Cobertura de Terreno para Mapear el Área de
Hábitat de los Vertebrados Terrestres
Resumen: El área del hábitat (AOH) está definida como “el hábitat disponible para una
especie, es decir, el hábitat dentro del área de distribución de la especie” y se calcula medi-
ante la sustracción de las áreas de terreno inadecuado y la elevación del área de distribución.
El Esquema de Clasificación de Hábitats de la Unión Internacional para la Conservación
de la Naturaleza proporciona información sobre las asociaciones entre los hábitats de las
especies y con frecuencia se utilizan las opiniones no validadas de expertos para cotejar el
hábitat con los tipos de cobertura de terreno, lo que genera una fuente de incertidumbre
en los mapas de AOH. Desarrollamos un método orientado por datos para convertir las
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categorías de hábitat que maneja la UICN en cobertura de terreno basado en los datos de
localidad puntual de 6,986 especies de mamíferos terrestres, aves, anfibios y reptiles. Extra-
jimos la categoría de cobertura de terreno en cada localidad puntual y la cotejamos con la
categoría o categorías de hábitat de UICN asignada a cada especie incidente en la locali-
dad. Después modelamos cada categoría de cobertura de terreno como función del hábitat
según la UICN usando modelos de regresión logística. Las proporciones de probabilidad
resultantes fueron usadas para evaluar la solidez de la asociación entre cada categoría de
hábitat y de cobertura de terreno. Después comparamos el desempeño de nuestro modelo
orientado por datos con el desempeño de una tabla de conversión publicada basada en el
conocimiento de expertos. Calculamos la asociación entre las categorías de hábitat y las de
cobertura de terreno como una variable continua, pero para mapear el AOH como una
presencia o ausencia binaria, fue necesario aplicar un umbral de asociación. Este umbral
puede ser elegido por el usuario de acuerdo con el balance requerido entre los errores
de omisión y comisión. Algunos hábitats (p. ej.: bosques y desiertos) fueron asignados
a las categorías de cobertura de terreno con más confianza que otros (p. ej.: humedales
y artificiales). El modelo de conversión orientado por los datos y el conocimiento de los
expertos tuvieron un desempeño igual de eficiente, pero el modelo proporcionó una mayor
estandarización, objetividad y repetitividad. Además, nuestra estrategia permitió una mayor
flexibilidad en el uso de los resultados y de la incertidumbre para ser cuantificados. Nuestro
modelo puede modificarse para análisis regionales y para diferentes grupos taxonómicos.

PALABRAS CLAVE:

errores de comisión y omisión, Copernicus Global Land Service Land Cover (CGLS-LC100), Esquema de Clasifi-
cación de Hábitats de la UICN, Iniciativa de Cambio Climático ESA (ESA-CCI), Lista Roja de la UICN, modelos
de idoneidad de hábitat

INTRODUCTION

Because habitat loss is the most important driver of biodiver-
sity decline (Díaz et al., 2019), there is an urgent need to deter-
mine where habitat is located within each species’ distribution
(Brooks et al., 2019; Pimm et al., 2014). Several approaches have
been developed to map global species’ distributions, but accu-
rate spatial data are only available for a limited number of species
(Rondinini et al., 2005; Rondinini & Boitani, 2012).

The most complete data set of maps of species’ ranges is
that available in the International Union for Conservation of
Nature (IUCN) Red List (www.iucnredlist.org). The IUCN Red
List has assessed comprehensively more than 134,400 species
and species groups, including mammals, amphibians, and birds.
The IUCN range maps are generally drawn to minimize errors
of omission (i.e., false absence), with the result that they often
contain substantial areas that are not occupied by the species
and so contain errors of commission (i.e., false presence) (Fice-
tola et al., 2014; Di Marco et al., 2017).

Area of habitat (AOH) (previously known as extent of suit-
able habitat, or ESH) is the “habitat available to a species, that
is, habitat within its range” (Brooks et al., 2019). Maps of AOH
are produced by subtracting unsuitable areas from range maps
based on data on each species’ associations with land cover and
elevation (Beresford et al., 2011; Rondinini et al., 2011; Ficetola
et al., 2015), the aim of which is to reduce commission errors in
range maps. Therefore, the production of AOH maps requires
an understanding of a species’ habitat and where such areas are
within its range.

Information on habitat preferences is documented for each
species assessed on the IUCN Red List (IUCN, 2013) follow-
ing the IUCN Habitats Classification Scheme (IUCN habitat)
(IUCN, 2012), a classification and coding system of habitats
that ensures global consistency. The habitats are defined inde-
pendently of taxonomy or geography. However, IUCN habitat
classes are not spatially explicit, although attempts have been
made to delimit them (Jung et al., 2020). Land-cover classes
derived from remote sensing have been used widely as a sur-
rogate of habitat (e.g., Buchanan et al., 2008; Beresford et al.,
2011; Rondinini et al., 2011; Tomaselli et al., 2013; Montesino
Pouzols et al., 2014; Corbane et al., 2015; Santini et al., 2019),
although habitat is a complex multidimensional concept that is
difficult to simplify into land-cover classes.

A table that translates habitat into land-cover classes is typi-
cally used to represent IUCN habitat classes spatially and to pro-
duce AOH maps. Such tables have been based solely on expert
knowledge, raising concerns about the accuracy and objectiv-
ity of the resulting associations because the assumptions gen-
erated in the translation process are rarely considered in detail
and the errors are difficult or impossible to quantify (Bradley
et al., 2012). Furthermore, there is a lack of standardization and
repeatability in the procedure (Seoane et al., 2005), which is
subject to variability in expert opinion (Johnson & Gillingham,
2004).

Repositories of point locality data (i.e., locational records in
which particular species have been recorded [Rondinini et al.,
2006]) primarily from citizen science have been used success-
fully in habitat suitability models (e.g., Gueta & Carmel, 2016;
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Bradter et al., 2018; Crawford et al., 2020). The potential, there-
fore, exists to use such data to develop an objective data-driven
table that can be used to translate habitat into land-cover classes
by extracting information on land cover from point localities of
species with different habitat associations.

We sought to devise an objective, transparent, repeatable, and
data-driven method to produce a table that can be used to trans-
late IUCN habitat classes into land cover based on two widely
used global land-cover maps, the Copernicus Global Land Ser-
vice Land Cover (CGLS-LC100) (Buchhorn et al., 2020; Buch-
horn et al., 2019) and the European Space Agency Climate
Change Initiative land cover 2015 (ESA-CCI) (ESA, 2017) and
point-locality data for mammals, birds, amphibians, and reptiles
(the best documented groups of species). The aim of this analy-
sis was to develop a translation table that quantifies the power of
association between land cover and habitat classes. In doing so,
we aimed to illustrate a method that improves on expert opin-
ion by quantifying errors in associations between habitat and
land-cover classes and being flexible to the needs of the user in
terms of the required trade-off between reducing commission
errors and increasing omission errors and that can be developed
at different spatial scales, for different taxa, based on any set of
habitat or land-cover classes.

METHODS

Data cleaning and preparation

We downloaded point-locality data for mammals (GBIF, 2019;
GBIF, 2020), amphibians (GBIF, 2020), and reptiles (GBIF,
2020) from the Global Biodiversity Information Facility (GBIF)
and for birds from GBIF (GBIF, 2019; GBIF, 2020) and eBird
(eBird Basic Dataset, 2019). The data were restricted to point
localities dated from January 2005 to December 2018 for the
model building (70% training and 30% test) and from Jan-
uary 2019 to December 2020 for the evaluation of the model.
For eBird data, we selected only stationary point localities with
a coordinate uncertainty of <30 m. To minimize errors and
uncertainties inherent to repositories of point locality data, we
included only the most precisely georeferenced points (Ron-
dinini et al., 2006; Meyer, 2012) and applied a set of filters
following the guidelines of Boitani et al. (2011). The main
attributes considered were currentness, spatial accuracy, and
spatial coverage (Figure 1). To make it clear where we are refer-
ring to explicit classes, we present land-cover class names in
quotation marks and IUCN habitat class names in italics.

The habitat class or classes association for each species
was extracted from IUCN (2020). The IUCN habitat classes
are standardized terms describing the major habitat types in
which taxa occur globally. They follow a hierarchical classi-
fication of habitat with three levels. The definitions consider
land cover, biogeography, latitudinal zonation, and in marine
systems, depth. We used level-1 habitat classes for all habitats
except for artificial terrestrial, for which we used a modification
of level 2 (Appendix S1). We subdivided artificial terrestrial into
three subclasses because in terms of land cover these are distinct

habitat classes that could aggregate different species (Ducatez
et al., 2018).

Because the land-cover classes from the two remote sens-
ing products are exclusively terrestrial, we limited the analysis
to species coded only to terrestrial habitat classes, thus exclud-
ing species coded to one or more IUCN marine habitats. We
also excluded species coded to more than five level-1 habitat
classes because habitat generalists are likely to add little informa-
tion to the habitat–land cover relationship. In contrast, specialist
species coded to only one habitat class provide more insight into
the relationship between habitat and land cover. For that rea-
son, for each taxonomic class, we randomly subsampled point
records from species coded to more than one habitat class to
match the number of points of species coded to one habitat and
thereby gave equal weight to habitat specialists even when they
had fewer points.

The two land-cover products used in the analysis have differ-
ent characteristics. The CGLS-LC100 has a 100-m spatial reso-
lution and a global classification accuracy of 80.2% (Tsendbazar
et al., 2020). The ESA-CCI has a 300-m spatial resolution and
a global classification accuracy of 71.1% (ESA, 2017). It is part
of a time series from 1992 to 2015, of which we used the 2015
map. Both products use the United Nations Food and Agricul-
ture Organization Land Cover Classification System (UN FAO-
LCCS; Di Gregorio & Jansen, 2000), although they have differ-
ent legends. The CGLS-LC100 has 12 land-cover classes at level
1 and 23 classes at level 3 (level 2 is not used by CLGS-LC100);
we used level 3. The ESA-CCI has 22 land-cover classes at level
1 and 38 classes at level 2. We used only level 1 because level 2
is only available for some regions of the globe.

To prepare the data for the model, we extracted the land-
cover class at the coordinates of each point locality. Some land-
cover classes did not have enough point localities within them to
be modeled, although in all cases these were land-cover classes
with very low global coverage. For CGLS-LC100, the underrep-
resented land-cover classes were “open forest deciduous needle
leaf” (10 points, 0.03% of global land surface), “snow and ice”
(108 points, 3.1% of global land surface), “moss and lichen”
(124 points, 2.3% of global land surface), and “closed forest
deciduous needle leaf” (383 points, 3.0% of global land surface).
For ESA-CCI, the only class represented too infrequently for
analysis was “lichens and mosses” (713 points, 2.2% of global
land surface).

Modeling of habitat–land cover associations

To quantify the relationship between IUCN habitat classes and
land-cover classes, we modeled the presence or absence of
each land-cover class as a function of the IUCN habitat class
or classes of the species whose point localities fell within it
(Figure 2). An important consideration for modeling was that
the number of habitat classes per species varied from 1 to 5.
Therefore, it was impossible to model land-cover class as a one-
to-one relationship with habitat class because each point loca-
tion was associated with one or multiple habitat classes. This
consideration restricted the number of models we could use for
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FIGURE 1 Description of the repository point-locality cleaning process, following Boitani et al. (2011). The factors considered are currentness, spatial
accuracy, and spatial coverage and are applied from top to bottom (GBIF, 2019; GBIF, 2020; eBird Basic Dataset, 2019)

our analysis. We required a flexible model that allowed a many-
to-many match between habitat classes and land-cover classes to
model this matrix of habitat versus land-cover class relations. In
multinomial logistic regression models, the data and the com-
putational power requirements increase exponentially with the
number of response categories. In our case, with more than 20
land-cover categories, this option was not feasible. Therefore,
we modeled each land-cover class separately, transforming each
class into a binary variable of 1 (land cover present) or 0 (land
cover not present). Then, we used logistic regressions to model
the binary land-cover class variable as a function of the different
habitat classes:

log
plc

1−plc

= 𝛽0 + 𝛽1H forest + 𝛽2Hsavanna + 𝛽3Hshrubland + 𝛽4Hgrassland

+𝛽5Hwetlands + 𝛽6Hrocky areas + 𝛽7Hdesert + 𝛽8Harti ficial 1 + 𝛽9Harti ficial 2

+𝛽10Harti ficial 3 + 𝛽11Harti ficial 4 + 𝜀,

(1)
where (plc/[1–plc]) is the land-cover odds ratio, βx is the model
parameter for the IUCN habitats Hx, and ε is the error.

The transformation of the land-cover class into a binary form
for each of the models generated a highly unbalanced vari-
able, with many more zeroes than ones. In a logistic regres-
sion model, unbalanced data underestimate the probability of
an event, so it is recommended that the number of 1s and 0s be
adjusted (King & Zeng, 2001; Pozzolo et al., 2015). We, there-
fore, randomly subsampled the 0s in the training set before run-
ning the model. The assumption behind this is that in the major-
ity class, there are many redundant observations and randomly
removing some of them does not change the estimation of the
within-class distribution (Pozzolo et al., 2015).

To reduce the intrinsic spatial and taxonomic bias of point-
locality data (Boitani et al., 2011; Meyer et al., 2016) and to
account for multiple but varying numbers of point localities per
species, we added taxonomic and spatial variables as random
effects in the model (Bird et al., 2014). As taxonomic variables,
we added species nested within taxonomic class (Amphibia,
Reptilia, Aves, and Mammalia). Adding intermediate taxonomic
groupings (e.g., family or genus) in the nesting would result in
many factor levels with single or very few replicates. To test
whether there was any bias among taxonomic classes, we pro-
duced separate models for each class. This test showed that the
association between land-cover and habitat classes from the dif-
ferent translation tables was very similar; therefore, we decided
to model all classes together. As a spatial variable, we added the
country of the point record as a random effect.

We used the coefficients of the models to evaluate the associ-
ation between land-cover class and habitat classes. The intercept
did not provide any information on the relationship between
land-cover class and habitat class because it represented the
odds of a point locality falling within a particular land-cover
class after the subsampling of the data set, independently of
the habitat (Ranganathan et al., 2017). The coefficients repre-
sented the odds ratio, in other words, the odds of a point locality
falling within a particular land-cover class (when the species to
which the point locality relates is coded for a particular habitat
class) divided by the odds of the species occurring in that land-
cover class when it is not coded for that habitat class. The ratio,
therefore, indicates the extent to which being coded to a par-
ticular habitat class increases or decreases the odds of a species
being found in a particular land-cover class. The units of the
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FIGURE 2 Odds ratio values describing the association between Copernicus Global Land Service Land Cover (CGLS-LC100) classes and International Union
for the Conservation of Nature (IUCN) Habitat Classification Scheme (AUC, area under the curve from a receiver operating characteristic [ROC] curve, a measure
of accuracy of a classification mode). Odds ratio values <1 indicate a negative association, and values >1 indicate a positive association. The positive associations are
divided into tertiles (green), indicating three possible options for setting a threshold to convert continuous variables into a binary association-nonassociation variable
for creating area of habitat maps

logit function are log(odds ratio), but for easier interpretation,
we changed them to the exponential and present the results as
odds ratios.

Odds ratio values below 1 indicate a negative association
between land cover and habitat classes, whereas those above 1
indicate a positive association. Because the odds ratio is a con-
tinuous variable, it is necessary to set a threshold to transform
the results into a binary translation table that can be used to
assign, or not, a particular habitat class to a particular land-cover
class. The threshold can be modified according to the needs
of the user based on the required balance between minimiz-
ing commission errors (land-cover classes incorrectly associated
with a habitat class) and increasing omission errors (land-cover
classes incorrectly omitted from a habitat class). Coefficients
that had p >0.05 were considered to indicate a lack of associ-
ation between land cover and habitat classes. To adjust the sig-
nificance threshold of the p values for multivariable analysis, we
used Bonferroni corrections.

To validate the models, we set aside 30% of the point occur-
rence data for testing, leaving 70% to train the model. As a
validation test, we used the area under the curve (AUC) from
a receiver operating characteristic curve (Jiménez-Valverde,

2012). The AUC is a model accuracy measure that provides
information on how well a model can distinguish among classes.
In our case, we used it to test how well the models predicted
the presence or absence of a point locally in a given land-cover
class. The AUC values range from 0 to 1; a value of 0.5 meant
the model did not perform better than random, whereas a value
of 1 indicated the model perfectly separated the two groups.

The results of the models can also be mapped spatially with
one of the three thresholds of associations between habitat and
land-cover classes. In such maps, habitats are overlaid because
the same land-cover class may represent more than one habitat
class or because both habitats occur in the same geographical
areas. The overlap among habitats increases as the threshold of
association is reduced.

We then compared the performance of the data-driven trans-
lation table with that of an expert-knowledge translation table
(Santini et al., 2019) based on the same ESA-CCI land-cover
classification used here. We did not find any published trans-
lation table that used CGLS-LC100. Santini et al. (2019) com-
pared the ESA CCI land-cover classes with level-2 IUCN
habitat classes, so we aggregated the habitat classes to level-1
IUCN habitat classes to make the two translation tables compa-
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rable. We limited the comparison to birds and mammals because
they were the taxonomic groups considered by Santini et al.
(2019) For each species, we mapped habitat based on both
tables. We assessed the proportion of points located in the suit-
able areas (point prevalence) and compared it with the pro-
portion of habitat inside the species’ range (model prevalence)
to determine whether the results were better than a randomly
assigned set of points (Rondinini et al., 2011). We used 211,304
point localities for 489 species of mammal and 461,277 point
localities for 2112 species of bird.

RESULTS

The number of point localities and species available for analy-
sis was 200,683 and 455, respectively, for mammals, 4,083,510
and 5154 for birds, 92,327 and 479 for amphibians, and 131,077
and 898 for reptiles. For the CGLS-LC100 land-cover prod-
uct, 71 coefficients showed a significantly positive association
(odds ratio >1) and 38 coefficients showed a significantly nega-
tive association (odds ratio <1) between land-cover classes and
habitat classes (Figure 2). For the ESA-CCI land-cover prod-
uct, 101 coefficients showed a significantly positive association,
and 40 coefficients showed a significantly negative association
(Figure 3).

Higher odds ratios (>1) indicated stronger positive associa-
tions between land-cover and habitat classes, and lower odds
ratios (nearer to zero) indicated stronger negative associations.
We divided the significantly positive values into tertiles to iden-
tify three potential thresholds for creating a table of binary
association and nonassociation variables for producing AOH
maps: 1.138–1.351, 1.362–1.712, and 1.743–13.720 for CGLS-
LC100, and 1.121–1.393, 1.396–1.704, and 1.708–19.148 for
ESA-CCI.

Forest and desert had the strongest positive associations
between land-cover and habitat classes. The forest habitat class
was associated with almost all the forest and tree cover land-
cover classes (CGLS-LC100 average positive odds ratio = 3.8;
ESA-CCI average positive odds ratio = 4.0) and with no other
land-cover classes. The desert habitat class was also strongly
associated with particular land-cover classes: “shrubs,” “herba-
ceous vegetation,” and “bare/sparse vegetation” in CGLS-
LC100 (average positive odds ratio = 4.6) and “shrubland,”
“grassland,” “sparse vegetation (tree, shrub, herbaceous cover
< 15%),” and “bare areas” in ESA-CCI (average positive odds
ratio = 3.0). rocky areas were associated with almost the same
land-cover classes as desert but had lower odds ratios.

Savanna, shrubland, and grassland habitat classes were associated
with “shrubs,” “herbaceous vegetation,” and “cultivated and
managed vegetation agriculture” in CGLS-LC100 land cover
and “cropland,” “herbaceous cover,” “shrubland,” “grassland,”
“sparse vegetation,” “mosaic cropland,” and “mosaic herba-
ceous cover” in ESA-CCI. However, the power of association
varied between these different combinations. The savanna habi-
tat class was also associated with some forest classes, whereas
shrubland and grassland habitats were also associated with bare
areas.

We divided artificial terrestrial habitats into three different
classes: artificial arable and pasture lands, artificial degraded forest and

plantations, and artificial urban and rural gardens. These classes had
the least certain relationships because the odds ratio values were
the closest to 1 (CGLS-LC100 average positive odds ratio =

1.367, 1.333, and 1.577, respectively; ESA-CCI average posi-
tive odds ratio = 1.468, 1.370, and 1.579, respectively). Some
unexpected land-cover classes were associated with these habi-
tat classes; for example, Arable and pasture lands and degraded for-

est and plantations were associated with “urban areas.” However,
these unexpected associations disappeared when the threshold
increased.

Wetland and artificial aquatic habitats had intermediate odds
ratio values (CGLS-LC100 average positive odds ratio = 1.7;
ESA-CCI average positive odds ratio = 1.8). In terms of land-
cover associations, they were associated (in some cases strongly)
with land-cover classes related to water, but also to some land-
cover classes that have no relation with wetlands or aquatic envi-
ronments (e.g., some type of forest or cultivated areas).

The AUC of models for CGLS-LC100 ranged from 0.644
to 0.940. The land-cover classes with the lowest AUC were the
“open and closed unknown forest” (AUC = 0.644 and 0.736)
classes, followed by “water bodies” (AUC = 0.745) and “urban
areas” (AUC = 0.763). Those with the highest AUC values were
the other forest classes (AUC range 0.854–0.940) and “bare and
sparse vegetation” (AUC = 0.924). For ESA-CCI, the AUC
ranged from 0.709 to 0.972. The land-cover classes with the
lowest AUC were mosaic land-cover classes (AUC range 0.709–
0.874), followed by “water bodies” (AUC = 0.750) and “urban
areas” (AUC = 0.768). The land covers with the highest AUC
values were “lichens and mosses” (AUC = 0.972), “cropland
irrigated or post-flooding” (AUC = 0.954), “sparse vegetation”
(AUC = 0.937), and tree cover land classes (AUC range 0.834–
0.949).The spatial representation of the models showed the geo-
graphical distribution of the habitat classes (Figure 4 & Appen-
dices S2 and S3). Habitat classes savanna, shrubland, desert, and
rocky areas had the same geographical extent. In contrast, forest
had its own geographical distribution. Grassland had its own dis-
tribution and appeared in combination with artificial arable and

pasture and wetlands.
Point prevalence in Santini et al. (2019) was similar to the

point prevalence we found from our model when using the
middle and high odds-ratio thresholds (Table 1). The ratio
between point prevalence and model prevalence (proportion
of the range remaining after apparently unsuitable land-cover
classes are excluded) between the two methods was also very
similar, and higher than 1, indicating that the habitat associa-
tions were better than random for both approaches.

DISCUSSION

By modeling the relationship between IUCN habitat classes
and the CGLS-LC100 and ESA-CCI land-cover classes, we
generated two translation tables, quantifying the strength of
association between habitat and land-cover classes. Among
habitat classes, forest, desert, and rocky areas had the strongest
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FIGURE 3 . Odds ratio values describing the association between Copernicus Global Land Service Land Cover (CGLS-LC100) classes and International
Union for the Conservation of Nature (IUCN) Habitat Classification Scheme. Odds ratio values < 1 indicate a negative association, and values > 1 indicate a
positive association (AUC, area under the curve from a receiver operating characteristic [ROC] curve, a measure of accuracy of a classification mode). The positive
associations are divided into tertiles (green), indicating three possible options for setting a threshold to convert continuous variables into a binary
association-nonassociation variable for creating area of habitat maps
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FIGURE 4 Map of habitat classes (level 1) from the International Union for the Conservation of Nature Habitat Classification Scheme based on the highest
threshold for Copernicus Global Land Service Land Cover (CGLS-LC100) data-derived translation (Figure 2) (Geotiff version Appendix S2)

TABLE 1 Mean point prevalencea and model prevalenceb for birds and mammals using the three tertile thresholds for ESA CCI land cover derived from
data-driven assessment (see Figure 4) and the expert-knowledge-based assessment of Santini et al. (2019)

Model parameters Lower tertile threshold Middle tertile threshold Upper tertile threshold Santini et al. (2019)

Birds

point prevalence 0.94 0.81 0.66 0.74

model prevalence 0.91 0.76 0.59 0.68

Mammals

point prevalence 0.93 0.82 0.67 0.73

model prevalence 0.90 0.80 0.62 0.70

aProportion of points located in the habitat.
bProportion of habitat inside the species’ range.

associations with land-cover classes, perhaps owing to the
higher accuracy of the relevant land-cover classes. For both
CGLS-LC100 and ESA-CCI, the highest classification accuracy
classes were “forest,” “tree cover areas,” and “bare soil.” Using
a different approach based on a decision tree, Jung et al. (2020)
found that Forest has the highest validation accuracy, although
they obtained lower validation accuracy for rocky areas and desert

habitat classes.
In contrast, wetlands and artificial habitats were more difficult

to represent with land-cover maps. Wetland-related land-cover
classes have the lowest classification accuracy in both land-cover
maps. From a remote sensing perspective, wetlands are diffi-
cult to map because they are highly dynamic; rapid phenological
changes occur throughout the year (Gallant, 2015; Lumbierres
et al., 2017). Remote sensing products at a global scale cannot
distinguish small ponds or temporary water bodies (Pekel et al.,

2016; Klein et al., 2017). Therefore, wetland land-cover classes
had more omission errors, and this had a direct impact on the
results of our model.

Artificial land-cover classes are also difficult to map because
they tend to be more heterogeneous (Álvarez-Martínez et al.,
2018), producing misclassifications among land-cover classes.
Moreover, it is difficult to separate artificial land-cover classes
from natural ecosystems (e.g., plantation from forest, grass-
land from cropland, and lake from reservoir) with land-cover
maps (Álvarez-Martínez et al., 2018]). Overall, species richness
and average abundance are often lower in artificial environ-
ments than in their natural equivalent, even if there is varia-
tion across different biogeographical contexts (Barlow et al.,
2007; Newbold et al., 2015), and this introduces commis-
sion errors. Moreover, we found that artificial land covers are
associated with some natural habitat classes. This is likely a
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consequence of citizen science sampling bias produced by
the greater accessibility of these habitats (Meyer et al., 2015).
Because a high proportion of citizen science point location data
are recorded in artificial land-cover classes, there is an increased
probability that species primarily associated with natural habi-
tats are reported there, so a data-driven method may associate
some natural habitats with artificial land-cover classes. Address-
ing the biases in citizen science data is complex. For small data
sets, accessibility maps are a useful tool for estimating sam-
ple bias (Monsarrat et al., 2019). However, at the global scale,
accessibility is driven by an interplay of geographic and socioe-
conomic factors that require complex modeling approaches in
addition to more effective and structured data sampling tech-
niques.

Land-cover maps have an associated error that varies among
different land-cover classes (Grekousis et al., 2015) and conti-
nents (Tsendbazar et al., 2020. Moreover, land-cover classes that
do not occur in extensive blocks have edge effects (Smith et al.,
2002), which, combined with the mobility of animals, intro-
duces errors in the association of the point data with the land
cover. There are several differences between the two land-cover
layers used to produce the translation tables that could deter-
mine the use of the table. The CGLS-LC100 has a resolution
of 100 m, whereas ESA-CCI has a coarser resolution of 300
m, also CGLS-LC100 has an overall classification accuracy of
80.2% compared with 71.1% for ESA-CCI. Moreover, CGLS-
LC100 avoids mosaic classes and in general; mapping areas with
homogenous land cover is easier than mapping areas with het-
erogeneous land cover (Corbane et al., 2015; Álvarez-Martínez
et al., 2018). The mosaic land-cover classes in the ESA-CCI
table had very low odds ratio values and AUC. However, ESA-
CCI has the advantage of being available for a longer time series
(1992–2020 for ESA-CCI vs. 2015–2019 for CGLS-LC100),
which may be important for some applications. For both land-
cover maps, we excluded some land-cover classes because of the
lack of point localities. We recommend adding these land-cover
classes manually when using the translation tables, according to
the user’s needs.

The coding of habitats to each species on the IUCN Red List
could introduce some noise to the modeling process. Coding
is based on the qualitative assessment by experts and is, there-
fore, susceptible to individual biases (Brooks et al., 2019; Santini
et al., 2019). The current version of the IUCN Habitat Classi-
fication Scheme on IUCN’s website is described as a draft ver-
sion. We, therefore, recommend that IUCN update and improve
this document and anticipate this would influence our odds ratio
estimates. Our analysis also illustrates the complexity of linking
habitat and land cover (Tomaselli et al., 2013). Based on IUCN
usage, habitat is a description of the environments of organ-
isms (Kearney, 2006), whereas land cover is used to describe the
biophysical material over the Earth’s surface (Grekousis et al.,
2015). Different habitat or land-cover schemes, stemming from
the particular needs for each product, translate into different
definitions of classes. This problem is exacerbated in transitional
zones, where landscape heterogeneity is higher (Grekousis et al.,
2015). Although the FAO-LCCS scheme, a scheme that defines
the classes based on both land-cover maps, can better cope with

the complexity of habitat description compared with other land-
cover classification schemes (Grekousis et al., 2015), it is impor-
tant to understand that these classes are not optimized for bio-
diversity conservation studies (Joppa et al., 2016), so they do not
directly relate to the habitat of species.

Both the data-driven table and the expert-knowledge
translation table represented land-cover distribution inside
the range better than random. However, our data-driven
approach presents several advantages compared with an expert-
knowledge approach. First, it defines the relationship between
IUCN habitat and land-cover classes as a continuous variable,
allowing greater flexibility in its application. For example, for
producing AOH maps, the user is able to decide a threshold of
association to transform the results into a binary table accord-
ing to the required balance between omission and commission
errors. Second, a data-driven approach allows quantification of
the uncertainty associated with the habitat to land-cover asso-
ciation. Third, it represents a more objective approach: several
expert-knowledge translation tables exist, but there is no clear
basis for choosing among them.

These data-driven translation tables have a direct applicability
in the production of AOH maps because they provide a more
objective way of removing unsuitable areas from the range map
based on the information from the IUCN Habitat Classifica-
tion Scheme and enable evaluation of uncertainties in the AOH
maps. Our approach can be adapted to develop a translation
table between any set of habitat codes for any set of species and
any set of land-cover classes at a global or regional scale. As
better data (including land-cover maps, species point localities,
elevations, and habitat associations) become available, the trans-
lation table can be improved, ensuring objectivity and repeata-
bility.
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