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SUMMARY

Plant epidermis are multifunctional surfaces that directly affect how plants
interact with animals or microorganisms and influence their ability to harvest or
protect from abiotic factors. To do this, plants rely on minuscule structures that
confer remarkable properties to their outer layer. These microscopic features
emerge from the hierarchical organization of epidermal cells with various shapes
and dimensions combined with different elaborations of the cuticle, a protective
film that covers plant surfaces. Understanding the properties and functions of
those tridimensional elements as well as disentangling the mechanisms that con-
trol their formation and spatial distribution warrant a multidisciplinary approach.
Here we show how interdisciplinary efforts of coupling modern tools of experi-
mental biology, physics, and chemistry with advanced computational modeling
and state-of-the art microscopy are yielding broad new insights into the seem-
ingly arcane patterning processes that sculpt the outer layer of plants.

INTRODUCTION

Humans have tried to see beyond their sight for as long as�1000 BC. The first cells observed by Hook were

plant cells. One of those cells, a hair on a stinging nettle, is beautifully illustrated in the bookMicrographia

(Hooke et al., 1665), and microscopic structures on the surfaces of plants have been an object of fascination

ever since. The plant epidermis is a single-cell layer that covers all plant organs and consists of a handful of

characteristic cell types: pavement cells are the most common and form the bulk of the epidermis; guard

cells work in pair to control gas exchange, whereas trichomes, or hairs, made of one or several cells consti-

tute highly specialized structures that fulfill a wide range of functions. Other less common cell types can be

found in specific species or tissues: the epidermis of grasses for instance often displays species-specific dis-

tribution patterns of silica cells, a type of biomineralized cell, paired with cork cells (Kumar et al., 2017).

Epidermal cells are topped with a waxy waterproof layer, the cuticle. The cuticle combines a polymer of

C16 and C18 fatty acids known as cutin (although another biopolymer, cutan, is sometimes present) with

a mixture of waxes made of very long-chain fatty acids (C20 to C34), terpenoids, sterols, and flavonoids.

Waxes can be embedded within or deposited on top of this cuticular matrix. We now have a good under-

standing of the biosynthetic pathways involved in the synthesis of the cuticle ‘‘building blocks’’ (reviewed in

Fich et al., 2016; Leide et al., 2020; Lewandowska et al., 2020, Table 1). Recent studies have also shed light

on the mechanisms involved in the delivery and assembly of cuticular components (Stępi�nski et al., 2020,

Table 1) as well as on the origins and evolution of associated pathways (Kong et al., 2020; Leide et al.,

2020; Li and Chang, 2021). However, the processes that sculpt the cuticle and give the plant epidermis

its texture are not well understood. The cuticle varies in thickness (from a few nm to a few mm), ultrastruc-

ture, and composition between species, organs, or during development, but together with the epidermis it

creates a multifunctional interface between the plant and its environment, participating in protection,

communication, gas exchange, and water retention.

Colorful markings such as those found on the petals of many flowers can easily catch the eye, but local accu-

mulation of chemical pigments is by nomeans the only way to pattern plant surfaces. Indeed, amultitude of

cell shapes combined with cuticular elements of various geometries produce intricate tridimensional pat-

terns on the epidermis of aerial organs. In this review we will refer to those patterns as ‘‘structural patterns’’

to distinguish them from the colorful ‘‘chemical patterns’’ produced by pigments only. Those microscopic

patterns can confer remarkable physicomechanical properties to plant surfaces. Scientists from all disci-

plines are working together to explore their biological functions and the roles played by physics and chem-

istry in their formation. Engineers, designers, architects, and artists alike use them as a source of inspiration
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Table 1. Recent reviews covering in details specific aspects relevant to plant epidermis sculpting

Topic Reference DOI

Plant epidermis Robinson, D.O. and Roeder, A.H., 2015. Current Opinion

in Genetics & Development, 32, pp.55–65.

https://doi.org/10.1016/j.gde.2015.01.008

Cuticle biosynthesis Bhanot, V., Fadanavis, S.V. and Panwar, J., 2021.

Environmental and Experimental Botany, 183, p.104364.

https://doi.org/10.1016/j.envexpbot.2020.104364

Fich, E.A., Segerson, N.A. and Rose, J.K., 2016. Annual

review of plant biology, 67, pp.207–233.

https://doi.org/10.1146/annurev-arplant-043015-111929

Lewandowska, M., Keyl, A. and Feussner, I., 2020. New

Phytologist, 227(3), pp.698–713.

https://doi.org/10.1111/nph.16571

Stępi�nski, D., et al., 2020. Cells, 9(8), p.1778. https://doi.org/10.3390/cells9081778

Cuticle origins & evolution Li, H. and Chang, C., 2021. Plant Signaling & Behavior,

p.1943921.

https://doi.org/10.1080/15592324.2021.1943921

Kong, L., et al., 2020. Plant Physiology, 184(4), pp.1998–

2010.

https://doi.org/10.1104/pp.20.00913

Plant cell wall synthesis Lampugnani, E.R., Khan, G.A., Somssich, M. and Persson,

S., 2018. Journal of Cell Science, 131(2), p.jcs207373.

https://doi.org/10.1242/jcs.207373

Hoffmann, N., King, S., Samuels, A.L. and McFarlane, H.E.,

2021. Developmental Cell.

https://doi.org/10.1016/j.devcel.2021.03.004

Polko, J.K. and Kieber, J.J., 2019. The Plant Cell, 31(2),

pp.282–296.

https://doi.org/10.1105/tpc.18.00760

Lampugnani, E.R., et al., 2019. Trends in Plant Science,

24(5), pp.402-412.

https://doi.org/10.1016/j.tplants.2019.02.011

Zhang, B., Gao, Y., Zhang, L. and Zhou, Y., 2021. Journal of

Integrative Plant Biology, 63(1), pp.251–272.

https://doi.org/10.1111/jipb.13055

Cell growth Bidhendi, A.J. and Geitmann, A., 2016. Journal of

experimental botany, 67(2), pp.449–461.

https://doi.org/10.1093/jxb/erv535

Chebli, Y. and Geitmann, A., 2017. Current opinion in cell

biology, 44, pp.28–35.

https://doi.org/10.1016/j.ceb.2017.01.002

Cosgrove, D.J., 2018. Plant Physiology, 176(1), pp.16–27. https://doi.org/10.1104/pp.17.01541

Cosgrove, D.J., 2018. Current opinion in cell biology, 46,

pp. 77–86

https://doi.org/10.1016/j.pbi.2018.07.016

Franciosini, A., Rymen, B., Shibata, M., Favero, D.S. and

Sugimoto, K., 2017. Current opinion in plant biology, 35,

pp.98–104.

https://doi.org/10.1016/j.pbi.2016.11.010

Cell shape Sapala, A., Runions, A. and Smith, R.S., 2019. Current

Opinion in Plant Biology, 47, pp.1–8.

https://doi.org/10.1016/j.pbi.2018.07.017

Eng, R.C. and Sampathkumar, A., 2018. Current opinion in

plant biology, 46, pp.25–31.

https://doi.org/10.1016/j.pbi.2018.07.002
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Table 1. Continued

Topic Reference DOI

Plant surface & environment Heredia-Guerrero, J.A., et al., 2018. Global change

biology, 24(7), pp.2749-2751.

https://doi.org/10.1111/gcb.14276

Fernández, V., et al., 2017. Journal of Experimental

Botany, 68(19), pp.5293–5306.

https://doi.org/10.1093/jxb/erx302

Aragón, W., Reina-Pinto, J.J. and Serrano, M., 2017.

Journal of Experimental Botany, 68(19), pp.5339–5350.

https://doi.org/10.1093/jxb/erx327

Arya, G.C., Sarkar, S., Manasherova, E., Aharoni, A. and

Cohen, H., 2021. Frontiers in Plant Science, 12, p.1264.

https://doi.org/10.3389/fpls.2021.663165

Plant Biomimetics Barthlott, W., Mail, M., Bhushan, B. and Koch, K., 2017.

Nano-Micro Letters, 9(2), p.23.

https://doi.org/10.1007/s40820-016-0125-1

Almeida, A.P., et al., 2018. Advanced Materials, 30(19),

p.1703655.

https://doi.org/10.1002/adma.201703655

Speck, O. and Speck, T., 2021. New Phytologist. https://doi.org/10.1111/nph.17396

Imaging plant surfaces & measuring their properties Zhao, Y., Man, Y.,Wen, J., Guo, Y. and Lin, J., 2019. Trends

in plant science, 24(9), pp.867–878.

https://doi.org/10.1016/j.tplants.2019.05.009

Komis, G., Novák, D., Ove�cka, M., �Samajová, O. and
�Samaj, J., 2018. Plant physiology, 176(1), pp.80–93.

https://doi.org/10.1016/j.tplants.2019.05.009

Grossmann, G., et al., 2018. Journal of Cell Science, 131(2),

p.jcs209270.

https://doi.org/10.1242/jcs.209270

Urban, M.A., Barclay, R.S., Sivaguru, M. and Punyasena,

S.W., 2018. Microscopy research and technique, 81(2),

pp.129–140.

https://doi.org/10.1002/jemt.22667

Otegui, M.S., 2021. Recent Advances in Polyphenol

Research, 7, pp.281–295.

https://doi.org/10.1002/9781119545958.ch11

Farber, C., Wang, R., Chemelewski, R., Mullet, J. and

Kurouski, D., 2019. Analytical chemistry, 91(3), pp.2472–

2479.

https://doi.org/10.1021/acs.analchem.8b05294

Otegui, M.S. and Pennington, J.G., 2019. Microscopy,

68(1), pp.69–79.

https://doi.org/10.1093/jmicro/dfy133

Ove�cka, M., et al., 2018. Nature Plants, 4(9), pp.639–650. https://doi.org/10.1038/s41477-018-0238-2

Vignolini, S., Moyroud, E., Glover, B.J. and Steiner, U.,

2013. Journal of The Royal Society Interface, 10(87),

p.20130394.

https://doi.org/10.1098/rsif.2013.0394

Vogler, H., Felekis, D., Nelson, B.J. and Grossniklaus, U.,

2015. Plants, 4(2), pp.167–182.

https://doi.org/10.3390/plants4020167

Bidhendi, A.J. and Geitmann, A., 2019. Journal of

Experimental Botany, 70(14), pp.3615–3648.
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Figure 1. Diversity of tridimensional features patterning the surface of plant epidermis

Examples of patterns created by distinct cell shapes and cuticular features on the surface of flower epidermis, imaged by scanning electron microscopy

(SEM).

(A) Conical cells on the petal of Dianthus fruticosus (adaxial side, distal region).

(B) Multiple papillate cells on the petal of Cistus cyprius (rock rose).

(C) Puzzle-shaped cells of Sinapis alba (white mustard) petal ornated with disordered cuticular striations.

(D) Flat elongated and striated cells of Ursinia speciosa petal.

(E) Elongated and smooth stigmatic cells of Arabidopsis thaliana.

(F) Tabular cells of the petal of Nymphaea micrantha.

(G) The corolla of Nolana paradoxa displays a structural pattern made of smooth papillate cells in the blue region of the petal limb contrasting with flat cells

covered with prominent cuticular ridges in the white portion of the corolla tube.

(H) Schematic representations of plant cell displaying various examples of hierarchical structural patterns: epicuticular waxes forming nanoscopic patterns,

nano/microscopic features involving cuticular and/or cell wall sculpting and micropatterning relying on the formation of specific cell shape. Scale bars in (A),

(B), (F), and (G), 50 mm; scale bars in (C) and (D), 20mm; and scale bars in (E), 100mm. Picture credit: (F) Yercaud-elango and (G) Magnus Manske via Wikimedia

Commons.
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to build novel materials with advantageous properties. However, the mechanisms underpinning the forma-

tion and organization of those microscopic patterns remain largely unexplored. Here we review our current

knowledge of physical features that pattern the plant epidermis. We focus in particular on recent studies

that illustrate how interdisciplinary approaches can transform our understanding of how plants sculpt their

surfaces.

STRUCTURAL PATTERNS: DIVERSITY OVERVIEW AND BIOLOGICAL FUNCTIONS

Uncovering and characterizing structural patterns

Plants can display a huge range of patterns on their epidermis, yet we are only just starting to ‘‘scratch the

surface’’ of the diversity that populates themicroscale. Most flowering plant species remain to be examined

with cellular resolution, and not all plant parts have received equal attention. The surface of petals, leaves,

seeds, and pollen grains have been examined most frequently. One of the earliest large-scale study of

petal epidermal structures recognized six distinct basic cell shapes, including conical/papillate (Figure 1A)

and multiple papillate cells, which exhibit one or several small projections on their surface, respectively
4 iScience 24, 103346, November 19, 2021
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(Figure 1B) (Kay et al., 1981). Already, the authors acknowledged that basic cell types can vary enormously

in the geometry of their base (e.g., jigsaw in Figure 1C or rectangular in Figure 1D) or in the scale and pro-

portions of the projection. Indeed, cell expansions can involve the entire apical side of a cell or can stem

from localized deformations and range from extremely acute (Figures 1E and 1A) to stumpy (Figure 1F).

Although such studies provided an unprecedented window into the huge morphological diversity that

lays on the surface of plants (Barthlott, 1981; Kay et al., 1981), they also had some shortcomings. We use

below a selection of recent examples to illustrate how latter studies have attempted to overcome those

limitations by applying a more comprehensive framework, which deploys interdisciplinary and quantitative

approaches benefiting from technological advances, to explore plant ‘‘skins.’’

First, tridimensional features do not fit well into discrete categories but rather belong to a geometrical con-

tinuum. Thus, providing qualitative information is often insufficient. As the physical properties of epidermal

cells depend on their geometry, a quantitative characterization of cell proportions and dimensions is

necessary to investigate their role (e.g., Koch et al., 2013; Schulte et al., 2019) and understand the mecha-

nisms accounting for their formation. The outlines of leaf epidermal cells from more than 270 species of

land plants were recently extracted and quantified using morphometric descriptors, ranging from cell

area to solidity and circularity (Vofely et al., 2018). The results revealed that most species only exhibit

mild undulations of leaf cell margins unlike the prominent interdigitations of the jigsaw pavement cells

found in the leaf epidermis of the classic plant model Arabidopsis. The significant diversity of leaf cell

shapes exposed by this study hints at the possible existence of different programs regulating cell shape

in distantly related species. Alternatively, different cell outlines could easily emerge from modifications

of the molecular mechanisms known to regulate jigsaw cell formation in Arabidopsis. Such changes could

involve modifications of the cytoskeleton behavior but also differences in the biochemical and mechanical

properties of the cell wall itself (Altartouri et al., 2019).

Second, cell shapes can be combined with a diversity of overlaying nanostructures (Figure 1H) involving

components of the cuticle and sometimes the cell wall. Cells apical surfaces can be smooth (Figures 1A

and 1B) or decorated with minute structures (such as striations seen in Figure 1D) that must be accounted

for to understand epidermis properties. By deploying a 3D surface profiler to quantify precisely leaf rough-

ness in various species, a team of engineers showed that the ability of leaves to wet is highly dependent on

the height and relative spacing between the micro/nanofeatures that generate the coarseness (Abbott and

Zhu, 2019). Similarly, measuring accurately the geometry of conical cells from flowers displaying UV-

absorbing and UV-reflecting sectors revealed that the UV-absorbing regions tend to have higher, more

acute, cellular profiles. As transparent replicas of the petal surface retained the UV motifs, this further

showed that UV patterns are not solely due to the local accumulation of UV-absorbing pigments but

they also have a structural cause (Schulte et al., 2019).

Finally, cell shape and cuticular ornamentation not only differ between species but can also vary in both

space and time across an epidermis. The surface of developing organs changes as cells differentiate,

and cells located in different regions can acquire distinct fates, creating higher-order patterns (Figure 1G).

Detailed examinations of petal epidermis micromorphology in Lotus and Broad bean showed that distinct

cell types can be found in the different petal types that make the complex flowers of legumes: in bee-polli-

nated species, the jigsaw-like flat cells that cover the bottom surface of the lateral petals are often replaced

by conical cells in the top region directly contacted by pollinators (Bailes and Glover, 2018; Ojeda et al.,

2009, 2012, 2016). A papillate shape is thought to provide better grip, as surfaces with conical cells are

preferred by visiting bumblebees when flowers are difficult to handle, either because presented vertically

(Whitney et al., 2009) or because of movement (Alcorn et al., 2012). Other cell types are also restricted to

very specific regions of the epidermis. In Broad bean, overlapping rows of flat striated cells associate with

folds of the lateral petals that act as hinges and could play an essential role in the opening mechanism of

the flower (Bailes and Glover, 2018).
Physical properties emerge from hierarchical sculpting

The link between surface properties and structural patterning is far from being completely understood.

However, an increasing number of studies led by interdisciplinary teams are uncovering some of the

remarkable qualities those structural patterns confer to various plant parts, which have been extensively

reviewed elsewhere (Barthlott et al., 2017; Fernández et al., 2016), and we only discuss here selected exam-

ples to illustrate key conclusions.
iScience 24, 103346, November 19, 2021 5
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Optical and mechanical properties are most commonly reported. For example, the disordered wax plate-

lets that cover the surface of Purple heart leaves (Tradescantia pallida ‘‘purpurea’’) can act as light scatterers

producing enhanced long wavelength reflection visible as a characteristic golden shimmer (Kerkhof et al.,

2020), whereas silica deposits on the epidermis of rice leaves can form ladder-like structures at the junction

between two cell walls, preventing torsion and keeping the thin leaf flat (Yamanaka et al., 2009). The sculpt-

ing of plant surfaces can provide other interesting physical properties (air retention, water repellent etc.)

and even account for thermal and electrical attributes of the epidermis: cell shape can modulate the tem-

perature locally on petals (Whitney et al., 2011), and variations in temperature across a leaf surface are

mostly due to the tridimensional microtopography of the leaf that impacts both air flow and light intercep-

tion (Saudreau et al., 2017).

The properties of a surface rarely stem from one single element but rather originate in the hierarchical com-

bination of tridimensional features at different scales. Cells geometry and texture need to be captured at

the micro- and nanoscale, respectively, but the topography of the whole organ or tissue at the macroscale

must also be accounted for, as they all contribute to the overall physical effect. Dimensions and hierarchical

organization matter too: the margins of pitcher plant trap (a modified leaf) and the petals of many tulips are

covered with cuticular ridges; however, those striations operate at different scales and confer very distinct

properties to the epidermis of each species. The edges of the pitcher trap exhibit cuticular folds with 100–

200 mm periodicity, overlaid with microscopic striations spaced by 10–20 mm. This hierarchical structure,

when wet, renders the rim extremely slippery to preys: the macroscopic grooves act as slippery tracks by

stopping water to spread laterally, whereas the microscopic folding stabilizes water films, preventing

the surface from drying out (Labonte et al., 2021). The petals of many Tulip species also display long

pseudo-parallel cuticular striations but those are only a few hundreds of nanometers apart from each other,

interfering with visible light and producing a visible iridescent effect, particularly pronounced in the blue-

UV part of the spectrum (Moyroud et al., 2017).

It remains extremely challenging to predict the properties of an organic surface from experimental obser-

vations alone. Theoretical modeling plays an essential role in disentangling the relative contribution of the

different structural elements and in understanding the origins of plant tissues behaviors. The vast majority

of flowering plants have conical cells on their petals, and modeling explains how these cells can act as

lenses and light trap for incident light, refracting and focusing the rays to the cell vacuole that contains

the red to blue anthocyanin pigments—the end result being a striking enhancement of pigment visual

display (Gorton and Vogelmann, 1996). California poppy petals owe their emblematic orange hue to the

presence of carotenoids pigments. A cross-section of California poppy petals revealed that epidermis cells

also have a triangular appearance; this can be surprising at first, as unlike anthocyanins, carotenoids are not

water soluble and reside in chromoplasts instead of the vacuole. Further investigations showed that the

conical projection of those cells does not involve the cell membrane and content but instead corresponds

to an accumulation of cell-wall material on top of an otherwise flat apical membrane, creating a prism-like

structure (Figure 2D). Computational simulations demonstrated that this device focuses the incident light

on the basal portion of the cell content, where the carotenoid-rich chromoplasts accumulate, creating the

intense color and silky effect characteristic of poppy petals (Wilts et al., 2018).

Finally, physical properties are not mutually exclusive, and plant epidermis often behave as multifunctional

surfaces. The wax crystals behind the golden appearance of Purple heart leaves, when combined with other

structural elements of the epidermis, also provide para-hydrophobic behaviors, allowing efficient harvest

of water droplets (Suvindran et al., 2018). Such a behavior could facilitate self-irrigation and might

contribute to survival in drought habitats. Whether both optical and water-adhesion properties play a

role or whether the optical effect is a by-product of the evolution of a water-retention device is unclear.

To answer such questions, functional investigations by behavioral ecologists and physiologists are vital.
Biological roles of structural patterns

Amyriad of biological functions has been attributed to the features that pattern plant surfaces. More often

than not, those are hypotheses that still remain to be rigorously tested experimentally. However, as hier-

archical sculpting equips the plant epidermis with a broad range of physical properties, it is not surprising

that structural patterns participate in an equally large catalog of functions: from enhancing flower salience

(Moyroud et al., 2017; Whitney et al., 2011; Wilts et al., 2018), seed dispersal (Middleton et al., 2020; Vigno-

lini et al., 2012, 2016), or prey capture by carnivorous plants (Bohn and Federle, 2004; Scholz et al., 2010) to
6 iScience 24, 103346, November 19, 2021



Figure 2. Experimental methods to modify gene activity in plants and investigate the mechanisms controlling the

development of tridimensional features on plant surfaces

(A) The floral dipping method is commonly used to transform Arabidopsis, but it is often not suitable for other model

plants or emerging model systems.

(B) Virus-induced gene silencing (VIGS) is an efficient tool to affect gene expression transiently, and it has been used

successfully to silence a gene required for spur development in Aquilegia coerulea (Ballerini et al., 2020).

(C) Tissue culture is used to generate Mimulus guttatus transgenic lines used to study the development of spotted

pigmentation patterns on the ventral petal (Ding et al., 2020).

(D) VIGS and/or tissue culture protocols are now available for emerging model systems well suited to investigate the

mechanisms controlling the development of epidermal structures with interesting optical properties such as prism-like

cell shape in California poppy (Eschscholzia californica) and cuticular ridges at the base of Venice mallow (Hibiscus

trionum) petals.
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protecting against herbivores, pathogens, or damaging UV rays (Aragón et al., 2017; Arya et al., 2021;

Schulte et al., 2019; Vermeij, 2015).

The sculpting of the epidermis helps petal to function as multisensory billboards. In addition to increasing

color depth, conical cells also provide grips for visiting insects, thus contributing both visual and tactile

cues for pollinators before and after landing (Whitney et al., 2011). The trichomes (hairs) that surround

the flower of Espostoa frutescens, a cactus from the Andes mountains, are more absorbent to ultrasonic

frequencies than the rest of the flower, creating an acoustic contrast that can be used by pollinating
iScience 24, 103346, November 19, 2021 7
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bats to locate flowers efficiently (Simon et al., 2019). Structural patterns still matter after pollinator depar-

ture, as not only must pollen grains reach a recipient flower but they also need to adhere to the pistil, the

female reproductive structure. The top of the pistil, or stigma, comprises hundreds of stigmatic cells (Fig-

ure 1E), each corresponding to a single epidermal cell. Distinct stigmatic cell geometries are often paired

with specific pollen types, maximizing pollen capture efficiency (Basso-Alves et al., 2011). Pollen adhesion

to different plant parts can even be fine-tuned with surgical precision: for pollination to be successful pollen

departure from the flower donating the pollen must be facilitated, whereas pollen grains need to be re-

tained efficiently by the receiving flower. The stigma of false dandelions (Hypochaeris radicata) is covered

with flexible conical papillae that clump together when wet. Atomic force microscopy (AFM, Table 2) mea-

surements showed that these act as a gripping system where pollen adhesion strongly increases over time

so that pollen grains that reach the pistil of accepting flowers are locked on the stigma and cannot leave (Ito

and Gorb, 2019). In flowers acting as pollen donors, the pollen produced by the male organs first fall onto

the style (portion of the pistil directly below the stigma) before relocating on the bodies of visiting insects.

Crucially, the style surface is radically different from the pistil top: papillae are absent, and pollen grain

adhesion does not increase when the style is wet, allowing easy transfer to pollinators (Ito and Gorb, 2019).

Glossy plants devoid of epicuticular crystals are often more prone to infestation by pest than waxy ones—

this is because cuticular waxes can interfere with the ability of predatory insects to attach to the surface and

conduct their predatory activities. Wax crystals and other cuticular structures are effective shields against a

broad range of harmful visitors: surface topography can prevent both insect legs and eggs adherence,

interfere with predator motion by acting as obstacles or making the surface slippery, and even modify

the optical appearance of leaves, influencing herbivores choice (Gorb and Gorb, 2017; Lewandowska

et al., 2020). Microscopic elements, and in particular wax crystals with specific thickness and tridimensional

organization, also interfere with the attachment and successful colonization by fungal spores and microor-

ganisms susceptible to cause plant diseases (Aragón et al., 2017). Cell shape can influence plant-herbivores

interaction too: sharp and stiff trichomes, sometimes reinforced by biomineralization, can cause mechan-

ical damage and prevent insects from chewing, moving, or depositing their eggs on the epidermis. Simi-

larly, the silica needles that adorn the exterior of many grasses deter herbivores using a dual mechanism:

first by causing mechanical damage, second by facilitating the transfer of bacteria and pathogenic fungi to

predators (Lev-Yadun and Halpern, 2019). Interestingly, physical deterrents against herbivores and patho-

gens are sometimes effective defense against other plants too, preventing the attachment of dodders, a

genus of parasitic plants (Runyon et al., 2010).

The distribution of those tridimensional elements matters when it comes to protecting plant surfaces. For

instance, trichome geometry, orientation, and position could play a role in keeping predators at bay (Sale-

rno et al., 2018; Vermeij, 2015). An elegant modeling study recently showed that mechanosensitive tri-

chomes that produce defensive compounds in response to vibrations specifically respond to acoustic

waves produced by chewing caterpillars (Liu et al., 2017). Interestingly, those trichomes tend to accumulate

near leaf veins. The physical proximity between so-called ‘‘acoustic antennae’’ and a long-distance trans-

port system raises the exciting possibility that higher-order patterning of plant surface could effectively

couple local perception of a predator with the activation of systemic defense mechanisms.

The texture of the epidermis affects how easily pollutants and dust can be removed from plant surfaces

(Burkhardt, 2010; Lu et al., 2018). Adhering particles block efficient light capture, and any residual water

layer on leaves surfaces is also likely to reduce photosynthetic gas exchanges. Thus, self-cleaning proper-

ties and hydrophobicity can significantly impact on a plant photosynthetic capacity. The texture of plant

surfaces also directly participates in the accumulation of attractive or repellent compounds on the plant

exterior: such molecules can be directly produced by epidermal cells (e.g., glandular trichomes of stinging

nettle) or be a component of the cuticular microstructures themselves (e.g., crystals containing substances

acting as allomones or toxic molecules). Alternatively, compounds produced elsewhere, by a visiting ani-

mal or nearby plants, can be captured by plant surfaces, as certain textures adsorb or absorb the vapors of

organic compounds present in the air layer covering the epidermis (Himanen et al., 2010; Mofikoya et al.,

2018). These trapped compounds are perceptible by animals and neighboring plants. They can contribute

to camouflage, making the plant less detectable to herbivores. Plants can also ‘‘borrow’’ predator-repellent

compounds from their neighbors and display them on their surface (Himanen et al., 2010). Captured com-

pounds can even participate in plant-plant communication by triggering the expression of defense genes

in the receiving plant (Peng et al., 2011). However, whether it is the surface topography itself or its chemistry
8 iScience 24, 103346, November 19, 2021
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(e.g., leaves lipid content correlate positively with their ability to capture hydrophobic terpenes) that con-

tributes most significantly to volatile capture often remains to be established.

UNDERSTANDING PATTERN FORMATION ON PLANT SURFACES USING THE TOOLS OF

MODERN EXPERIMENTAL BIOLOGY

The plant epidermis is a living tissue, generated by groups of undifferentiated cells that acquire character-

istic shapes and textures as development progresses—a process known as cell differentiation. By
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manipulating this process in planta and capturing its dynamics with enough spatiotemporal resolution, the

mechanisms regulating the formation and distribution of surface features can be dissected. We provide

below a brief overview of current approaches used to modify gene expression in living plants for readers,

especially nonbiologists, who might not be familiar with those techniques. We also highlight how those

methods could specifically help us understand the mechanisms sculpting the epidermis of plants by

focusing on two specific examples: prism cells and cuticular ridges.
Manipulating gene expression to understand structural pattern formation

Higher order structural patterns on a plant epidermis often involve contrasting cell types. Different cell

types emerge because cells can deploy the information encapsulated in their genome each in their own

unique ways: particular genes can be switched on (expressed) or switched off (repressed) with extreme

spatiotemporal accuracy so that even neighboring cells can eventually acquire distinct biochemical capa-

bilities and morphologies. A key experimental approach to investigate the mechanisms regulating the

structural patterning of plant surfaces is the targeted manipulation of gene expression. This often relies

on the production of transgenic plants, which carry the machinery (transgenes) necessary to change the

expression level of a gene of interest (i.e., overexpression or downregulation), modify the timing of its

expression (e.g., constitutive expression), or trigger its expression in cells where it is normally silent

(e.g., misexpression or ectopic expression). Most methods to introduce transgene into plants do not offer

any control on where the transgene is incorporated in the genome—as the local genomic landscape influ-

ences gene expression, the phenotype intensity often varies between transgenic lines. Genome editing

methods offer a powerful alternative. The CRISPR/Cas9 technology is particularly versatile and now widely

used in a range of species (Sukegawa et al., 2021). It enables the targeting of any site in the genome with

surgical precision—routine genome editing in plants introduces point mutation in genes of interest so that

they fail to produce functional proteins (i.e., gene knock-out), but more sophisticated approaches such as

those targeting the DNAmotifs that control when and where a gene is normally expressed (Rodrı́guez-Leal

et al., 2017) or those capable of precisely replacing or introducing a DNA sequence emerge in plants (Su-

kegawa et al., 2021).

The most widely used approach to introduce a transgene in the classic model Arabidopsis utilizes the natural

ability of a soil bacterium, Agrobacterium, to transfer part of its DNA (transfer DNA) to infected plant cells, a pro-

cess knownas transformation.Most of the transferDNA sequence canbe replacedwith any sequenceof interest,

providing a convenient vector to deliver transgene into plant cells (Chilton et al., 1977). Introducing foreign DNA

in a plant cell is only the first step: to generate a transgenic individual, a full organismmust be obtained from this

modified plant cell using in planta or in vitromethods. In plantamethods require the co-culture of the targeted

plant tissue (usually reproductive organs) with a transformed Agrobacterium. These are based on the assump-

tion that either egg cells or sperms will accept the transgene and will give rise to a transformed embryo after

fertilization (Chee and Slightom, 1995). Although in planta transformationmethods are straightforward in Arabi-

dopsis, attempts to apply these methods to other species often fail (Bent, 2000). In vitromethods require tissue

culture: fragments of plant tissues such as roots, embryonic stems, or pieces of leaves are co-cultivated with

transformed Agrobacterium and grown in presence of hormones promoting cell proliferation and then differen-

tiation into a full transgenic plant (regeneration). Specific hormone cocktails supporting regeneration must be

empirically deduced for each species and limiting factors include the recalcitrance of some species to respond

to culture conditions (Benson, 2000) and the regeneration time, as several months are often necessary to obtain

plantlets. This is particularly problematic when studying structural patterning, as plant surfaces with interesting

properties are often found in nonmodel organisms with long life cycles. However, those methods can be effec-

tive in establishing novel model systems, well suited to investigate the formation of pigmentation motifs (Ding

et al., 2020; Figure 2C) or structural patterns such as cuticular striations that can formdiffraction gratings and pro-

vide visual cues for pollinating insects (Figure 2D). Indeed, theoretical approaches (see next section) suggest that

cell growth and cuticle production are central to the emergence of such semi-ordered striations (Antoniou Kour-

ounioti et al., 2013; Huang et al., 2017). The development of transformation protocols for a species that produces

such diffraction gratings on its petals (e.g., Hibiscus trionum, Figure 2D) would provide a mean to manipulate

in vivo the direction and extent of cell growth and the synthesis of cuticular components. This represents an

exciting venue to test experimentally the predictions of theoretical models.

A comprehensive understanding of the processes used by plants to sculpt their surface requires the modi-

fication of gene expression in a wider range of species. Although this remains an ongoing challenge, so-

lutions are emerging. In 2019, Gordon-Kamm and colleagues proposed a way to get around species
10 iScience 24, 103346, November 19, 2021
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recalcitrance by exploiting morphogenic genes involved in controlling plant growth and development, to

facilitate the regeneration step (Gordon-Kamm et al., 2019). Virus-induced gene silencing (VIGS) is also a

promising approach. VIGS enables targeted gene downregulation by exploiting viral gene silencing, an

innate plant defense system (Lange et al., 2013). The effect is transient and only affect parts of a plant,

but this method has been very successful in uncovering the genetic basis of spur development in Colum-

bine (Aquilegia) (Ballerini et al., 2020) (Figure 2B). It has also been validated in California poppy (Becker and

Lange, 2010) and constitutes an effective approach to investigate the formation of the prism-like cells that

render the petal epidermis of California poppy particularly glossy (Wilts et al., 2018) (Figure 2D).
High-resolution imaging to capture the dynamic of structural pattern formation

Until recently, our knowledge of plant structural patterns was limited to the observation of fully developed

mature tissues, using optical or scanning electron microscopes (Table 2), the latter being particularly useful

to image cuticular features (Figure 1). However, pattern establishment requires the specification of distinct

cell identities in young developing tissues that are actively growing and dividing. Such a dynamic process is

challenging to study. To understand how genes activity alters cellular growth, division, and differentiation

in a controlled manner to produce a robust structural pattern, the methods described above must be

coupled with approaches capable of capturing cell behavior with high spatiotemporal resolution. New

powerful bioimaging techniques (Prunet and Duncan, 2020; Rambaud-Lavigne and Hay, 2020) provide

valuable tools to boost advances in the field.

Arabidopsis cotyledons and sepals are good systems to study surface patterning being easy to access and

displaying a substantial range of cell sizes, shapes, and identities. Confocal time-lapse imaging in a living

tissue is an important tool to capture dynamic processes such as cell growth and division or protein pro-

duction, movement, and accumulation at cellular and subcellular scales (Table 2). In the context of pattern

formation, being able to capture images regularly over time is of particular interest to characterize the

emergence of specific cellular shapes and features and to track the behavior of molecular players that

may regulate or bring about those changes. Confocal time-lapse imaging has been instrumental to

describe the emergence of cotyledon jigsaw puzzle cells (Sapala et al., 2018), sepal trichomes (Hervieux

et al., 2017), giant cells (Meyer et al., 2017), and cuticular ridges (Hong et al., 2017). These chronological

image series represent a large amount of data that need to be rigorously analyzed to quantify changes

in cellular behavior as patterns emerge. Image processing softwares are now available to extract cellular

contours and surfaces, perform 2D or 3D reconstruction, and identify individual cells (segmentation)

from confocal z-stacks (Barbier de Reuille et al., 2015; Erguvan et al., 2019; Fernandez et al., 2010). For

instance, MorphoGraphX (MgX) can automatically track cellular lineage and quantify growth rate and direc-

tion as well as cell division rate and orientation. These parameters must be taken into account to under-

stand both when and how tridimensional features form (Coen et al., 2004): trichome precursors were shown

to grow twice as fast as their neighboring cells before bulging (Hervieux et al., 2017), revealing the exis-

tence of cell growth heterogeneity across a patterning tissue and early divergence in the behavior of cells

destined to become trichomes. By quantifying cell lobeyness change overtime in cotyledons cells, Sapala

and colleagues showed that their characteristic puzzle shape starts to appear long before the cotyledon

reaches its final shape, when tissue growth is still isotropic (Sapala et al., 2018). These results rely on accu-

rate cell segmentation and often involve manual correction of segmentation errors. Software benefiting

frommachine learning developments such as PlantSeg (Wolny et al., 2020) or pipelines combining convolu-

tional neural networks with watershed-based segmentation techniques (Eschweiler et al., 2019) can bypass

those issues and perform superior cell segmentation guided by neural network predictions.

The establishment of different cell types and sizes can be determined by early divergence in cell prolifer-

ation activities across the epidermis. Spatiotemporal patterns of growth and cell division can be extracted

from time-lapse series (Hong et al., 2017), but it is not always possible to follow a given tissue over time.

Indeed, live tracking individual cells can be challenging, especially when growing tissues, for instance

petals, are hidden under other plant parts. In this case, clonal analysis can be performed after labeling

sets of epidermal cells at fixed time points, to extract information such as the main direction of growth

and its rate from the clone patterns obtained (Sauret-Güeto et al., 2013). Dividing cells can also be marked

using transgenic lines expressing the labile chimeric mitotic cyclin CycB1;1:uidA reporter (Huang and Irish,

2015) or stained with ethynyl-20-deoxyuridine (EdU) that incorporates into newly synthesized DNA (Yang

et al., 2019). These techniques were instrumental to show that cell division predominantly occurs in the

distal part of developing Arabidopsis petal where cells will become conical (Huang and Irish, 2015; Yang
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et al., 2019). Failure to divide also contributes to surface patterning: endoreduplication occurs when DNA

replication is not followed by cell division. This phenomenon, mapped using techniques such as DAPI stain-

ing and flow cytometry, often takes place in cells destined to become the largest cells of an epidermis, such

as those at the base of cabbage petals (Kudo and Kimura, 2002) or the giant cells dispersed across the Ara-

bidopsis sepal surface (Meyer et al., 2017).

Controlled cell growth can influence the texture of plant surface. Conical cells start as rather flat cells on the

epidermis of young petal. Detailed live-confocal examination revealed that outgrowth emergence coincides

with the formation of an ordered array of previously randomly arrangedmicrotubules in conical cell precursors.

Preventing cells from remodeling their cytoskeleton is sufficient to impair correct cell expansion and thus

directly impacts on the topography of themature petal (Ren et al., 2017). Cell growth also affects the formation

of tridimensional cuticular elements. Hong and colleagues showed that the appearance of cuticular ridges on

the surface of Arabidopsis sepals coincides with the slowdown of growth and the end of cell division (Hong

et al., 2017). Discrepancy between the growth of the cuticle and the underlying cells could even be a general

mechanism, allowing epidermal cells to sculpt their surface (Antoniou Kourounioti et al., 2013; Huang et al.,

2017). Indeed, when present on anisotropic cells, cuticular striations often align with the main direction of

cell growth, forming for instance parallel ridges on flat tabular cells at the base of Hibiscus trionum petals

(Antoniou Kourounioti et al., 2013; Moyroud et al., 2017) or adopting a ‘‘star’’ pattern on rose conical cells,

by radiating from the cone tip to the cell base (Figure 4C SEM). However, control of cell growth does not solely

explain the formation of a specific texture. The chemical composition and organization of the cuticle also

matters: a comparative study of cuticle ultrastructure in various genetic backgrounds established a clear

correlation between the amount of 10,16-dihydroxyhexadecanoic acid, a typical monomer of cutin, and the

presence/absence of cuticular striations as mutants that only produce very low amount of this specific cutin

monomer fail to form the stellate cuticular ridges normally found on the conical cells of Arabidopsis petals

(Mazurek et al., 2017). Interestingly, the expression pattern of CUTIN SYNTHASE 2 (CUS2), a gene involved

in cutin biosynthesis, matches the zone of slower growth rate in sepals, where cuticular ridges form (Hong

et al., 2017), and transgenic lines analysis showed that CUS2 is crucial for ridge maintenance during sepal

growth, but the precise mechanism is still unknown.

What make neighboring cells start behaving differently? One of the current challenges is to link growth pat-

terns to genetic activities as processes instructing cells what features to develop, where, and when to

remain poorly understood. As in animals, molecular cues are needed to coordinate these processes (Var-

gesson, 2020; Wolpert, 2016). ‘‘Morphogen-like’’ factors such as phytohormones, transcription factors, mi-

cro-RNAs, or small peptides have been suggested to act as diffusible signals, delivering spatial information

to epidermal cells and specifying fate (reviewed in Gundu et al., 2020; Klesen et al., 2020; Rogers and

Schier, 2011). By combining high-resolution imaging with transgenic approaches to introduce fluorescent

sensors and reporter constructs in plants, the expression of multiple genes and the activity and outputs of

hormonal pathways can be followed simultaneously in developing tissues (e.g., Galvan-Ampudia et al.,

2020). For example, imaging Arabidopsis expressing a marker of auxin signaling implicates this pivotal

plant hormone in the elaboration of at least two contrasting cell shapes, influencing both conical cell

expansion in petals and lobe formation in jigsaw leaf cells (Dang et al., 2020; Grones et al., 2020). The ge-

netic networks that specify and execute cell shape programs are far from being completely understood but

interestingly transcription factors regulating cell geometry can also participate in cuticle production (Osh-

ima and Mitsuda, 2013), providing epidermal cells with a simple way to coordinate structural patterning at

the micro- and nanoscale. Being able to quantify gene expression with cellular resolution is starting to illu-

minate our understanding of pattern establishment. By carefully monitoring the levels of an HD-Zip tran-

scription factor, MERISTEM LAYER1 (ATML1), in individual epidermal cells of the sepals and simultaneously

capturing the size and shape of nuclei and cells, Meyer and colleagues demonstrated that ATML1 expres-

sion varies among and within cells over time and that high levels of ATML1 during the G2 stage of the cell

cycle are associated with giant cell formation (Meyer et al., 2017). Thus, cell-autonomous fluctuation-

dependent mechanisms can account for the distribution of different cell sizes on plant surfaces.
COMBINING PHYSICS, CHEMISTRY, AND MATHEMATICS TO UNDERSTAND PATTERN

FORMATION AND PROPERTIES

The plant epidermis is a complex dynamical system in which gene regulation, intercellular signaling, and

morphogenesis all interact. Thus, identifying genetic players behind pattern formation is necessary but

not sufficient to understand the overall mechanisms leading to a peculiar topography. In this section, we
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use selected examples to illustrate how computational mathematics, physics, and chemistry are joining

forces with experimental biology to shed light on the processes that carve the surfaces of plants.
Role of mechanics in cell-shape acquisition

Turgor pressure pushes cell wall, and thus both cell wall mechanical properties (as extensibility and

stiffness) and turgor pressure play a key role in growth (Cosgrove, 2016; Sampathkumar, 2020;

Trinh et al., 2021). Their roles in the morphogenetic process have been reviewed in details in Altartouri

and Geitmann (2015), Chebli and Geitmann (2017), Eng and Sampathkumar (2018), and Sampathkumar

(2020).

Spatial variations in cell wall properties influence morphogenesis, contributing directly to the formation of

structural patterns. The wall of growing plant cells is a complex assembly of cellulose microfibrils

embedded in a polysaccharide matrix, made of pectins and hemicelluloses. Cell wall composition, ultra-

structure, and thickness (100 nm to 1 mm) vary locally and influence the wall ability to expand and adopt

certain shapes. Enzymes and other proteins are also present in small quantity and can play a key role in re-

modeling of the wall during cell growth. Indentation methods such as AFM (Majda et al., 2017) or cellular

force microscopy (Routier-Kierzkowska et al., 2012) can measure the mechanical properties of the cell wall

in surface (Bidhendi and Geitmann, 2019a, 2019b). Brillouin microscopy, a noninvasive method well suited

to assess the mechanical properties of live tissues (Elsayad et al., 2016), has also recently been used to draw

a relative stiffness map through the thickness of the wall (Altartouri et al., 2019). These techniques have

been essential to discover that the acquisition of specific cell shapes relies on the mechanical properties

and constraints imposed during growth. Brillouin microscopy on Arabidopsis cotyledons showed for

instance that stiffness is not uniform along the periclinal wall of developing jigsaw-puzzle cells. Such stiff-

ness differential between lobe and neck regions of emerging protrusions could play a central part in pro-

moting the expansion of cell wall undulations at later stages (Altartouri et al., 2019). The tool arsenal to

probe the role of mechanics in cell morphogenesis is ever expanding (Table 2). To understand how a tissue

reacts to mechanical stress such as deformation, and to measure its mechanical properties while growing,

an automated confocal micro-extensometer (Table 2) capable of applying a controlled mechanical stress

by stretching the living sample is now available (Robinson et al., 2017).

Cell wall anisotropy is linked to the orientation of the cellulose microfibrils (Baskin, 2005). The relationship

between cellulose deposition and the mechanical properties of growing cell walls is a very active field of

study that has yielded significant discoveries in the last few years. Cortical microtubules usually orient along

the maximum stress direction (recently reviewed in Hamant et al., 2019) and guide the trajectories of the

cellulose synthase (Paredez et al., 2006) and cellulose microfibrils deposition. This can reinforce the direc-

tion of maximal stiffness in the wall and promote growth in the perpendicular direction (Sampathkumar

et al., 2014; Zhao et al., 2020). However, growth does not always occur perpendicularly to cellulose micro-

fibrils orientation: probing the structure of the cell wall at the nanoscale revealed that cellulose microfibrils

are organized in stacked layers, giving the cell wall a polylamellate architecture. Interestingly, cellulose mi-

crofibrils in onion epidermal cell wall are arranged along the same direction within a layer, but this orien-

tation shifts between adjacent layers so that across the entire wall the orientation of cellulosic fibers is

almost isotropic (Cosgrove, 2018a, 2018b; Kafle et al., 2017).

Cellulose deposition is guided by the orientation of microtubules (reviewed in Li et al., 2015; Paredez et al.,

2006). Thus, to understand cell shape patterning, the dynamic remodeling of the cytoskeleton must be

captured, and tools have been developed to quantify microtubule anisotropy at the cellular (Boudaoud

et al., 2014) and subcellular (Tsugawa et al., 2016) levels. Molecular actors that sculpt plant surfaces by con-

trolling the organization of the cytoskeleton have also started to be identified. Small GTPases from the Rho

family (ROPs) and their partners are responsible for the organization of both microtubules arrays and mi-

crofilaments networks that promote lobe formation in puzzle cells (Fu et al., 2005, 2009). Interestingly,

the formation of the circumferential microtubules arrays that control conical cell expansion also involves

ROPs and is jointly regulated by two pathways: one involving KATANIN1, a microtubule-severing enzyme

(Ren et al., 2017) and one implicating ANGUSTIFOLIA, a repressor that lowers the reactive oxygen species

levels that would otherwise inhibit microtubules ordering (Dang et al., 2018).

We are starting to better understand how epidermal cells control their shape, but the mechanisms prompting

the emergence of distinct cytoskeletal behavior in different cells to create the overall pattern remain elusive.
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Interestingly, differences in turgor pressure have recently been observed between neighboring cells, using AFM

(Longet al., 2020). This is yet tobe tested in epidermal cells, but spatial variations in turgor pressure could act as a

cue to pattern plant surfaces. At a higher scale, mechanics could also act as a supracellular instructive signal,

regulating the overall patterning of an organ surface. Indeed, mechanical forces control the direction of cell

growth and cell division patterns but also provide some positional information that can inform cell fate specifi-

cation (Mirabet et al., 2011).

Modeling approaches to probe the mechanisms sculpting plant surfaces

A myriad of molecular and mechanical inputs is likely to coordinate cell behavior and produce structural

patterns. Computational modeling is a useful approach to decipher the respective contribution of each

parameter, by using Finite Element Method (FEM), a numerical approach used to solve 2D (Hernandez-La-

gana et al., 2021; Kierzkowski et al., 2019) or 3D problems (Bassel et al., 2014; Belteton et al., 2021) in con-

tinuum mechanics (reviewed in the context of shape changes in Bidhendi and Geitmann, 2018). Most

importantly, mathematical models and simulations permit the exploration of several hypotheses in silico

and make predictions by incorporating growth properties, division, mechanical signals, gene activity,

and signaling aspects. These predictions can then be tested experimentally, and the results obtained

can be used to refine models. This iterative approach is key to challenge competing models, discriminate

between hypotheses, and help design and select subsequent experiments most likely to be informative.

FEM simulations were used to investigate the role of mechanics in puzzle-shape formation and trichome

bulging (Belteton et al., 2021; Hervieux et al., 2017; Sapala et al., 2018), and computational modeling

was instrumental to show how differential growth between neighboring cells generate mechanical stresses

and conflicts, leading to a diversity of cell shape through local deformation (Rebocho et al., 2017). Theo-

retical approaches were also deployed to understand the formation of cuticular ridges. A model invoking

mechanical buckling could generate different cuticular patterns by modulating two parameters: the rate of

cuticle production and the extent of anisotropic cell growth (Antoniou Kourounioti et al., 2013). This model

is in broad agreement with experimental data associated with ridges formation on the sepal surface (Hong

et al., 2017), but it remains to be tested rigorously in petals (Figure 2E).

Modeling has been widely used to get insight into lobe formation in pavement cells. The model first pro-

posed by Majda and colleagues, in which structural heterogeneity in anticlinal walls can initiate wavy cell

contours in presence of tension (Majda et al., 2017), has recently been challenged (Bidhendi and Geitmann,

2019a, 2019b). By reproducing the FE simulations, Bidhendi and Geitmann suggested that anticlinal wall

stretching only produce weak bend in the wall, rather than a significant wavy curvature (Bidhendi and Geit-

mann, 2019a, 2019b). Models explaining pavement cell morphogenesis are still debated (Altartouri et al.,

2019; Belteton et al., 2021; Bidhendi et al., 2019), but their re-evaluation and associated discussions are

central to challenge assumptions and illuminate the processes at play.

Pairing modeling with accurate quantifications can help relate patterns of gene activity to cell behavior, a

task known to be extremely difficult (Rebocho et al., 2017). For instance, the computational model built by

Meyer and colleagues supports their experimental observation that a high level of ATML1 during the G2

phase of the cell cycle is essential for giant cell fate specification (Meyer et al., 2017). It also allowed the

authors to define a fluctuation-driven process, involving a weak positive feedback loop, as a patterning

mechanism capable of sculpting the plant epidermis (Meyer et al., 2017). Software able to integrate image

processing and simulation modeling, directly using templates from confocal images, play a key part in link-

ing the regulation of gene expression to cell morphogenesis. Means to include mechanics simulation (e.g.,

MorphoMechanics) in MgX will be extremely useful and are currently in development.

The chemistry of plant surfaces impacts on structural pattern formation

Plant cuticles are complex biomaterials, commonly composed of twomajor components: a polymer of cutin and

a cocktail of intra- and epicuticular waxes. Other constituents such as cutan, polysaccharides such as pectin or

cellulose, and phenolic compounds are also frequently present, and these can act as nanofillers and impact

on themechanical behavior of the cutin polymer (for a recent review seeKhanal andKnoche, 2017). In short, cutin

behaves as a viscoelastic polymer but its extensibility can be greatly modified via impregnation with other com-

ponents: for example, waxes and cutan are known to increase cuticle stiffness (Khanal et al., 2013; Takahashi

et al., 2012). Chromatography,mass spectroscopy, nuclearmagnetic resonance (NMR) spectroscopyor RAMAN,

and IR imaging have all been applied to plant material (Table 2), but most studies have focused on analyzing
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cutin and wax chemistry on a limited number of species, where cuticle can be isolated or easily extracted (Fer-

nández et al., 2016; Heredia-Guerrero et al., 2014). To determine whether chemical heterogeneity plays a part in

the cuticle ability to form different nanotextures on different tissue parts and to investigate possible links be-

tween changes in cuticle chemistry and emergence of specific surface features during development, access

to spatially and temporally resolved information is required.

Direct surface analysis methods (Table 2, Giorio et al., 2019, 2015; Hemalatha and Pradeep, 2013) can now

be used to detect the presence of chemicals in situ and generate spatial maps of plant surfaces metabo-

lites. Recent analysis showed that distinct compounds can associate with different cuticular textures:

methods based on LESA-MS can easily detect epicuticular waxes and cutin monomers on the striated sur-

face of H trionum and H richardsonii petals basal regions but not on the distal smooth portions (Giorio

et al., 2015, 2019). Other studies have linked chemical composition with distinct cuticle architectures (Fer-

nández et al., 2016), showing that different amounts of 10,16-dihydroxy hexadecanoic acid, a monomer of

cutin, lead to the cuticle adopting different organizations. Remarkably, only specific configurations appear

compatible with nanoridge formation (Mazurek et al., 2017).

The cuticle is not an invariable material, but its formation follows a dynamic process, changing in struc-

ture, composition, and properties as the epidermis grows: Bourgault and colleagues recently showed

that the composition of maize leaves cuticle follows a base-to-tip gradient as development progresses

(Bourgault et al., 2020). Thus, not only the nature of the chemicals present but also the order and timing

of their production and delivery to the plant surface are likely to deeply affect the final topography. Self-

organization could also be instrumental: self-organization properties are thought to be involved in wax

crystal growth (Fernández et al., 2016) especially during healing responses after wounding. Huth and col-

leagues mechanically removed the epicuticular waxes found on the surface of Eucalyptus leaves and

used AFM to show those structures are capable to regenerate their original morphology—interestingly

the process work regardless of leaf age (Huth et al., 2018). Environmental factors associated with global

warming, such as temperature increases, and frequent droughts can significantly modify the composition

and properties of the cuticle (reviewed in Heredia-Guerrero et al., 2018; Suseela and Tharayil, 2018).

Those modifications are thought to improve plants protection and their ability to buffer the impact of

climate change, and it will be important for future studies to investigate how these affect the topography

of the cuticle.

The chemistry of the cell wall can impact on the formation of both cuticular and cellular patterns. First,

the inner side of the cuticle is often enriched in polysaccharides from the cell wall, which govern the

cuticle elastic behavior, and thus are likely to impact on its ability to generate distinct textures (Guzmán

et al., 2014; Khanal and Knoche, 2017). Second, the cell wall is chemically modified during growth,

affecting its stiffness and its ability to deform and expand to create different cell shapes. Cell wall loos-

ening enzymes, such as EXPANSIN1, are important to maintain the sharp tip of conical cells found on

Petunia petal (Zenoni et al., 2004). As with cuticle analysis, a variety of approaches from solid state

NMR (Wang et al., 2015) to diverse imaging techniques such as AFM and Field Emission SEM (Zhang

et al., 2017; Zheng et al., 2017) (Table 2; Figure 3) have been employed to investigate the behavior of

cell wall constituents. Cellulose appears the stiffest component of the wall, whereas hemicelluloses

and pectin network are softer (Mirabet et al., 2011). However, the mechanical properties that result

from the interactions between those elements are still far from understood (Cosgrove, 2018a, 2018b).

Haas and colleagues have used 3D-STORM super-resolution microscopy and cryoSEM to study leaf

pavement cell wall (Haas et al., 2020). Pectin nanofilaments were seen oriented perpendicularly to the

cell outer surface in the anticlinal walls of the pavement cells, but this organization was not found in

the periclinal walls (Haas et al., 2020). This contrasts with previous studies that consider a physical

connexion between both walls as major for cells morphogenesis (Bidhendi and Geitmann, 2019a,

2019b; Chebli et al., 2021; Cosgrove and Anderson, 2020; Zhang and Zhang, 2020). Haas and colleagues

propose instead that de-esterification of pectin homogalacturonan nanofilaments could, by swelling,

contribute to cell growth and shape formation independently from turgor pressure (Haas et al., 2020).

This theory is actively debated and will require more experimental and theoretical investigations (Bid-

hendi and Geitmann, 2019a, 2019b; Chebli et al., 2021; Cosgrove and Anderson, 2020; Zhang and Zhang,

2020). Nevertheless, it implies that there is still a lot to learn about the physical properties of the cell wall

and how those relate to the production of structural patterns at the microscale.
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Figure 3. Typical workflow combining quantitative analysis of multiscale aspects, experiments, and theoretical modeling, to characterize pattern

formation on plant surfaces.
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EXPLOITING NATURE’S CREATIVITY TO CREATE ‘‘SMART’’ MATERIALS

Biomimetics ambition is to manufacture structures that imitate ones found in Nature, using synthetic com-

ponents to produce useful materials. Given the remarkable range of qualities structural patterns confer to

the plant surfaces, it is not surprising those often serve as starting point to create new materials with trans-

parent, self-cleaning, self-healing, or light-harvesting properties (Figure 4). Plant biomimetics is the focus

of several excellent reviews (Barthlott et al., 2017; Kumar et al., 2019; Speck and Speck, 2021). Here, we

chose to highlight recent examples to illustrate specific key points and promising new venues.

First, the manufacturing areas to which biomimetics can contribute are as diverse as the plant structures that

inspire them: as the structures that sculpt petal epidermis assist the collection and focusing of sunlight, they

have often been used to design and improve photovoltaic systems. Based on the micropatterning of the rose

petal epidermis, researchers have created a scattering bio-film that improves light capture (Li et al., 2017),

whereas the texture of pansy petals (Viola sp) has led to the development of solar cell coating (Schmager

et al., 2017). The high aspect ratio of viola conical cells gives efficient light harvesting properties and a low

reflection loss and replicating this structure using a transparent coating encapsulating a silicon-based solar

cell improved by 6% the power conversion efficiency (Schmager et al., 2017). Plant structural patterns also

impact construction and architectural design with the development of a new generation of building material

and innovative facades to optimize shading systems and reduce heat costs (Durai Prabhakaran et al., 2019).
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Figure 4. Multidisciplinary approaches are based on plant science research power biomimetics and lead to innovations

(A) The self-cleaning properties of Lotus (Nelumbo nucifera) leaves rely on the presence of papillae-like cells covered with hydrophobic waxes. This

hierarchical structure has inspired Material Sciences and Engineering for the conception of nonsticky pans.

(B) The ability of Salvinia fern leaves to trap air and repulse water rest upon the elaborate multicellular plier-shaped hairs found on the epidermis. These

microscopic egg-beater features have been mimicked to engineer drag-reducing coating surfaces for the maritime shipping field.

(C) The conical cells that make the rose petal epidermis are efficient light harvesters and have inspired the design of improved solar cell coatings.

(D) The helicoidal stacking of cellulose fibers within the cell wall of Pollia condensata fruit creates an intense blue structural color. This ability to create visible

color using transparent and renewable material such as cellulose nanocrystals property is a promising venue to produce sustainable and nontoxic colored

materials. Scale bars in the SEM images in A, 20 mm; B, 100 mm; C, 50 mm; and D, 10 mm. Picture credit for Natural properties column: (A) Wilhelm Barthlott &

Christoph Neinhuis, (B) Iseempa, and (D) Juliano Costa via Wikimedia Commons. Picture credit for Product conception column: (B) Baxito and (D)

Yapadaryko via Wikimedia Commons. Picture credit for Studied structure column: (A & B) Raymond Wightman. SEM image used in Studied structure (D) is

based on the TEM image used in Figure 2C (Vignolini et al., 2012).
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Second, biomimetic approaches have recently managed to recreate the dynamic behavior of biological

material. Not only the final architecture is reproduced, but the mechanisms leading to its production itself

are mimicked. Indeed, some plant leaves have the ability to self-heal by secreting a new wax layer once

damaged (Huth et al., 2018). These regeneration properties have been chemically simulated by incorpo-

rating the chemical n-nonadecane wax into a PDMS molding of a lotus leaf, creating a surface able to

self-repair in about 20 min, making it the quickest self-healing material without external stimuli (Wang

et al., 2020).
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Third, there is more than one way to achieve a chosen effect. As different species have evolved specific

properties independently from each other, some structures might be easier to replicate than others or

be better suited to different applications. Hence, exploring natural diversity is a way to exploit nature in-

genuity to our advantage. The epidermis of the floating fern Salvinia molesta exhibits a superhydrophobic

behavior, reminiscent of the self-cleaning effect first reported for lotus leaves (Nelumbo nucifera) (Figure 4).

However, although lotus leaves stay clean and dry, thanks to the hierarchical roughness created by

papillae-like cells covered with hydrophobic waxes, the fern surface is covered with multicellular plier-

shaped hairs. Those microscopic eggbeaters are mostly hydrophobic except for their tip that lacks the hy-

drophobic coating of wax crystals. This results in water being pinned at the top of the hairs, creating a layer

of trapped air retained on the leaf surface and supporting respiration and photosynthesis when submerged

(Barthlott et al., 2010). This discovery led to the development of drag-reducing coating surfaces. If applied

to shipping, it could decrease the friction between hull and water up to 30% and reduce fuel consumption

and CO2 emission (Busch et al., 2019).

Replicating structural patterns found on the plant surface is not only useful to produce devices with inter-

esting properties but also advances our understanding of the biological structures themselves, as the exact

dimensions and geometry of the replicas can be varied at will and the impact on the properties recorded.

Comparing the shape (hemisphere, pyramids, etc.) and characteristics (irregularity, height, position, and

tilt angle) of epidermal cells found on the surface of various leaves and petals revealed that patterns

comprising hemispherical features exhibit the best antireflection properties (Huang et al., 2016; Li et al.,

2018; Schmager et al., 2017). The complex hierarchical pattern of multicellular hairs found on Salvinia

was also successfully replicated in 3D using laser lithography, permitting the production of materials

with similar hydrophobic and air retention properties (Tricinci et al., 2015). It also showed that the amount

of air retained on the surface directly depends on the number of filaments that compose each ‘‘head’’ of the

eggbeater so that the greater the number of filaments, the greater the amount of air trapped. The ‘‘air

mattress’’ on the surface of Salvinia can sometimes collapse, but interestingly the fern is able to reconsti-

tute this air layer—by combining theoretical modeling and 3D printing techniques, Xiang and colleagues

showed that this recovery behavior stems from microgrooves generated by adjacent cells at the leave sur-

face (Xiang et al., 2020). This microstructure feature, overlooked in the past, could influence future strate-

gies to optimize underwater structures and make them resistant to extreme environments.

Finally, even if the biomimetic field is inspired by nature’s ingenuity, fabricated devices are not necessarily

made of sustainable materials. In the context of environmental awareness, several researchers are now aim-

ing to develop a new generation of biomimetic materials using organic, renewal and biodegradable ele-

ments as building blocks. Cellulose is the most abundant organic polymer on earth and represents a

fantastic sustainable raw material: helicoidally stacked fibrils of cellulose in Pollia fruits skin give them their

shiny metallic blue appearance: each cell gives a specific color as the thickness of cellulosic layers varies

from cell to cell, creating a pixelated effect (Vignolini et al., 2012). This organization relies on the self-as-

sembly properties of the cellulose nanocrystals. Those can be exploited using evaporation processes

and fine-tuned to selectively produce a range of different colors (Frka-Petesic et al., 2020), and this led

to the creation of sustainable cellulose-based colored films as alternatives to potentially harmful colorants

routinely used in textiles, cosmetics, or food industries (Parker et al., 2018).
Conclusions and outlooks

Plants are fantastic architects that can sculpt a remarkable diversity of microscopic features on their sur-

faces. Those hidden patterns provide the outer layer of plants with striking properties that participate in

all aspects of plant interactions with the environment but also with neighboring plants, visiting animals,

or hostile pathogens. However, we are only just starting to ‘‘scratch the surface’’ of plant structural

patterns.

First, it is clear that the function of those structures greatly depends on their hierarchical organization and

their spatial distribution, but the mechanisms that decide what structure form where and thus the overall

patterning of the epidermis are generally not well understood. Although we can now identify correlations

between the presence of specific compounds and the formation of specific structures, establishing causal-

ity remains difficult. In particular, the precise mechanisms accounting for how peculiar cocktails of chem-

icals could lead to a specific pattern at the plant surface, as well as the mechanisms specifying boundaries

between two differentially textured regions across a tissue still need to be unraveled.
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Acquiring spatiotemporal quantitative information related to emerging surface features is necessary to un-

derstand how, where, and when they form. Such data are essential to decipher the mechanisms that control

cell shape and cuticle patterning. It is also useful to infer the likely function(s) of the structural patterns pro-

duced as the properties of tridimensional features often depends on their organization. Newly developed

analytic tools, together with live-imaging approaches and techniques borrowed from other disciplines,

have started to relate different cell behavior and identities to different gene activities and decipher

patterning mechanisms. However, recent findings all rely on a high-quality imaging and accurate quantifi-

cations, but imaging a complete organ in real time with sufficient resolution is still limited to easily acces-

sible structures (e.g., root tips, leaves or sepals). There is a strong demand for developing novel microscopy

techniques supporting the imaging of deep tissues and hidden organs without compromising the physio-

logical state of the living material during the experiment. A recent study used light sheet fluorescence mi-

croscopy to investigate developmental processes occurring beneath several cell layers in floral buds,

including whole-organ growth (Valuchova et al., 2020). Even if limitations persist, such a technical tour

de force represents a promising avenue.

Finally, our understanding of the cellular mechanisms controlling structural patterning in plants largely

comes from a handful of classic model systems. Features of interest are generally found in species not pre-

viously studied at the bench, and a broad understanding of structural pattern establishment will rely in part

on the development of novel model systems (Figures 2D and 2E). Organ size is also a limitation: many

flowers are much larger than those of Arabidopsis rendering both confocal imaging (Prunet and Duncan,

2020) and data processing complex, as segmentation of a large numbers of cells is difficult. Overcoming

such technical difficulties is not a simple task but new experimental and quantitative methods need to

be developed so that developmental aspects can be studied in species exhibiting patterns with interesting

properties and functions. This will also enable us to understand how conserved the mechanisms sculpting

plant surface are: are the molecular entities that pattern plant epidermis as diverse as the structures they

produce, or can similar mechanisms be re-deployed in different organs to create contrasting architectures?

We believe that to fully understand the formation of structural pattern, it will be crucial to pursue a multi-

disciplinary research strategy (Figure 3), which combines molecular genetics in novel model systems, multi-

plexed imaging, and computational modeling with techniques and expertise from chemistry, physics, and

computer science disciplines.
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