
Computational methods for single
cell RNA and genome assembly

resolution using genetic variation.

Haynes Heaton

Wellcome Trust Sanger Institute
University of Cambridge

This dissertation is submitted for the degree of
Doctor of Philosophy

August 2021



for E2 & E3



Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university.
This dissertation is my own work and contains nothing which is the outcome of work
done in collaboration with others, except as specified in the text and Acknowledgements.
This dissertation contains fewer than 65,000 words including appendices, bibliography,
footnotes, tables and equations and has fewer than 150 figures.

Haynes Heaton
August 2021



Acknowledgements

It is often by luck or some of the other random vicissitudes of life through which the most
opportunity and learning arise. In this, I would like to thank someone whose name I do
not know for taking a semester off from Brown and opening up a single dorm room in
technology house my sophomore year. And I would like to thank Jimmy Kaplowitz and
Mike Katzourin for making that connection without which I would be a very different
person today.

There I found my first unofficial mentors including Sean Smith, Lincoln Quirk, and
Lucia Ballard from whom I learned intensely through both work and play. Through pair
programming sessions with them, I learned more in hours than in months on my own.

The Brown Computer Science teacher assistant program was where I learned to teach
and lead. It is also where I learned that a topic you cannot coherently teach is a topic you
do not, yourself, understand. So I would first like to thank the founder of this program,
Andy van Dam, who has been the driving force of not only this program, but the entire
culture of the Brown University Computer Science department since its inception. Andy
is an intense guy, but he also has a flair for the absurd. The undergraduate TA program
brings a sense of ownership, membership, and community to the students who contribute
to it. There I met my first official advisor, Sorin Istrail, who saw much more potential
in me than I saw in myself. I also met another mentor, Franco Preparata, who I went
on to work with for years to come even after graduating. His creativity and infectious
excitement for the work we did was perhaps what made me decide that science and
computational biology was for me. I also met more friends and my first mentee who
later really became another mentor for me. Dan Heller, or just “Heller”, first came into
my life as a student then as an applicant for a TA position under me in which he stated
that “CS4 changed my life”. At the time this seemed absurd, but in retrospect, it was
absolutely true, and accepting his application changed my life as well. Heller’s work ethic
combined with his rare ability to balance practicality with rigor is an inspiration to me
to this day.



v

Another influence in my life was joining a company called Nabsys, which, despite not
succeeding in its goal, succeeded in bringing together a number of talented people from
whom I continued my intellectual journey. Peter Goldstein taught me much of statistics
as I now understand it. At Nabsys I also met the most talented Biochemist I know,
Brendan Galvin, who remains one of my closest friends and mentors. Brendan thinks of
biochemical assays in a similar way to how I think of designing algorithms. Brendan is
something of a stealth super contributor to the genomics and transcriptomics world. He
is not particularly well known, but the field would be dramatically worse off without him.
We went on to work together at 10x Genomics and hopefully some day we will have the
opportunity to work together again. Our distinct yet semi-overlapping expertises allowed
us to understand both the possibilities and limitations of each other’s fields. This cross
disciplinary understanding and communication was responsible for some of the most
productive collaborations of my life thus far.

Through another one of life’s serendipitous moments, I took what I thought was a
throw away interview at a stealth genomics company. I decided to walk to the interview
two miles away which turned out to be four miles away and so was late, but so was
the hiring manager, Michael Schnall-Levin, who didn’t balk at this and picked me up
on his way in and brought me to the interview. After giving my job talk, I signed the
non disclosure agreements and they told me about the technology they were building.
It wasn’t until later that evening that the implications and possibilities started to sink
in, and I became very excited. I took the job at 10x Genomics and still to this day I
have never been in such a concentrated group of intellectual firepower. Patrick Marks
is both one of the most talented computational biologists I have met and also the best
manager I have had. The computational biology team as a whole is excellent because
people follow truly talented and compassionate people like Pat. David Jaffe is one such
person who became a friend and mentor to me. I miss his laugh, which is so absurd and
loud that you are assured of its authenticity. The rest of the company is also excellent
and I would like to thank Alex Wong for running a great software team, Chris Hindson
for never failing to deliver the secret sauce—the gel beads and oil for the microfluidic
system—and Serge Saxonov and Ben Hindson for leading such a great company. It was
a pleasure and honor to work with such amazing people and create products that are
still changing the face of biology today.

10x Genomics also contributed significantly to my opportunities going forward. With-
out the reputation of 10x Genomics as an innovative biotech company, and the papers
and patents I was able to contribute to while working there, I almost certainly would



vi

not have been considered for a PhD at some of the schools I was. I chose the Sanger
Institute and Cambridge primarily because of Richard Durbin. The way he thinks comes
through in his work and many of his papers have not only been great contributions to
the field, but mind expanding to me personally.

There is a wise saying that you should never meet your heroes, and I have often felt
the truth of this adage. However, Richard Durbin, or “The Durbinator” as I sometimes
refer to him, consistently exceeds his already tremendous reputation. His algorithmic
intuition is bar none. And while I would not be presumptuous enough to claim that
we think alike, I would at least like to think that we have a similar algorithmic style.
That is only part of what makes working with him incredible. He has the ability to see a
global, decades-long plan for genomics and biology as well as the ability to work directly
with the minute details of any of the diverse projects his group is working on.

Mara Lawniczak took me under her wing when I was struggling and gave me a home
lab in which I could thrive. She has also been a true mentor to me in academia and life.
I’d also like to thank her talented lab members including Ginny Howick, Arthur Talman,
Juli Cudini, and others for their help and friendship. I’d also like to thank Sangjin Lee for
his encouragement, support, and collaboration during the Covid19 pandemic. Without
our pair programming sessions I would have been far less productive and less happy than
I have been. During this past year, these sessions are often my only human contact in a
given day.

Obviously I owe my family everything. They instilled in me a love of science, culture,
literature, the arts, and have supported me in all of my endeavors. Thanks especially
to my mother who has always been my biggest fan, supporter, editor, interior designer,
cooking (and eating) collaborator, and overall life advisor. I think she is both correct
and completely unbiased in her opinions of me. I remember I was hiking in the Big Basin
redwood forest in the summer of 2015 when I received a phone call from her. She said if
I wanted to get a PhD, I should probably start planning. I said "I was just thinking of
that myself." And fast forward to now, here I am. Also thanks to my father, who, at
74 years old, has continued treating patients in the hospital as a cardiologist through
the pandemic. He is the single most dedicated and hardest working person I know and
has always been an inspiration to me. Growing up, I constantly felt the impact of his
work because, without exception, he invariably treated and potentially saved the life of a
family member of the person I was interacting with.

Finally I’d like to thank my cat, Kasparov, for being a very cute kitty. But also
thanks to my mother for secretly getting me a cat during the pandemic.



Abstract

Genetic variation and natural selection have driven the evolutionary history on this
planet and are responsible for creating us and all other life as we know it. Over the past
several decades, the genomic revolution has allowed us to assess population variation
across humans and other species and use that to link genotypes with phenotypes and
infer evolutionary histories. In this thesis, I explore computational methods for using
genetic variation to demultiplex and disambiguate complex data.

In single cell RNAseq, problems of batch effects, doublets, and ambient RNA are each
sources of noise that impede our ability to infer the functional states of cells and compare
them between experiments. One new popular new experimental design promising to solve
each of these while also reducing experimental costs is mixturing multiple individuals’
cells into a single experiment. In chapter 2, I present a method for clustering cells by
genotype, calling doublets, and using the cross-genotype signal in singletons to estimate
and remove ambient RNA. I compare this methods to other existing methods including
one that requires a priori information about the genotypes, and two which do not. I
find that my method outperforms each of these methods across a wide range of data
parameters and sample types.

In genome assembly, the recent higher throughput and lower cost of long read
sequencing has revolutionized our ability to create reference quality genomes and has
revitalized the assembly community. Now, massive efforts are taking place in the Darwin
Tree of Life project and the Earth Biogenome project to create reference genomes for all
multicelular eukaryotic life. This will create a scientific resource for the next generation
of biological science, will serve as a conservation of data that could otherwise be lost in
this time of mass extinction, and will allow for a much more broad understanding of
evolution and the evolutionary history of life on Earth. While much progress has been
made in data quality and assembly algorithms, some problems still exist. Until recently,
the DNA input requirements for long read sequencing technologies made it impossible to
sequence single individuals of these species with long reads. Also, high heterozygosity
makes assembly more difficult due to the inherent ambiguity between heterozygous
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sequence versus paralogous sequence when confronted with inexact homology. One
solution to the DNA input requirements would be to pool individuals, but this only
increases the heterozygosity of the sample and reduces assembly quality. In chapter
3, we present the first high quality assembly of a single mosquito using new library
preparation methods with reduced DNA requirements. This reduces the number of
haplotypes to two, improving the assembly quality. In chapter 4, we further address the
problems brought on by heterozygosity in assembly. I present a suite of tools that use the
phasing consistency of multiple heterozygous sequences as a signal for physical linkage,
thus using genetic variation to our advantage rather than as a challenge to overcome.
This tool creates phased, linked assemblies and phasing aware scaffolding. Further, I
provide a tool for phasing aware scaffolding on existing assemblies. This includes a novel
haplotype phasing algorithm with some unique beneficial properties. It is robust to
non-heterozygous variants as input and can detect and correct those genotypes. And it
naturally extends to polyploid genomes.
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Chapter 1

Introduction

1.1 Genetic variation

Even before Gregor Mendel discovered the rules of genetic inheritance[229], the discovery
that DNA was the molecule responsible for this[18], or its structure was known[331],
humans have wondered at the variation among each other and all organisms. These
discoveries have since made way for a rapid expansion in our ability to measure ge-
netic variation from capillary sequencing[205] and single nucleotide polymophism (SNP)
chips[203] to modern high throughput short read[24] and long read DNA sequencing[337].
We have sequenced thousands of individual humans and other organisms and ex-
plored the genetic variation of the human species [3][17][222][38][143] and used the
genetic variation in population samples to impute population structure and evolutionary
history[152][176][300][250][65][33]. In this thesis, I explore computational methods for
using genetic variation to resolve mixtures of haplotypes in single cell RNA sequenc-
ing(scRNAseq), genome assembly, and scaffolding.

1.2 Introductiion

In single cell RNAseq (scRNAseq), the goal is not only to measure the transcriptome of
many cells at a time, but also to compare the transcriptome of cells of different individuals
or under different conditions such as disease state, pharmaceutical intervention, or a wide
range of environmental differences. One problem with these comparisons is that there
can be technical artifacts, or batch effects, between different experiments that bias the
comparative results possibly even dwarfing the actual biological differences one is trying
to measure. Additionally, scRNAseq has several sources of noise or errors (discussed in
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more detail in section 1.3.6). One is when two or more cells are erroneously partitioned
into the same compartment and the data for what is supposed to be one cell is actually
two cells (doublets). And another source of noise is when RNA from previously lysed
cells that are in solution with the cell suspension is sequenced along with the RNA from
an intact cell and those reads are given the same cellular barcode (ambient RNA). One
solution to all of these problems is to pool the cells from different individuals into a
single experiment. In Chapter 2 of this thesis, I present a method for demultiplexing cells
from mixtures of individuals into their individual of origin using the genetic variation
measured in the scRNAseq reads without requiring prior knowledge of the genotypes. In
addition, I show how these mixtures can improve doublet detection and ambient RNA
estimation and removal.

Fig. 1.1: Outline of single cell clustering by genotype

a b c

a) I find the variants in the reads from each cell barcode, b) cluster cells by their allele content
and identify doublets, and c) use the bias in allele fraction from expected values to estimate
and remove ambient RNA.

In genome assembly, the goal is to use the overlapping read sequence similarity to infer
that those reads came from the same locus in the genome and build contiguous sequences
(contigs) that represent (in part or whole) the organism’s chromosomes. The inference
that these reads originated from the same genomic locus is complicated by repeats,
heterozygosity, and sequencing errors. With inexact homology, one must disambiguate
whether the differences arose from errors, paralogous repeat sequences, or from the
alternate haplotype. If one cannot make this distinction and no reads span this region
into unique sequence, the contig must be broken, resulting in a fragmented assembly.
If the contig is not broken, one risks a chimeric misassembly of sequences that are
distant to one another being assembled together. In chapter 3 I discuss the first high
quality assembly of a single mosquito. Prior to this, DNA requirements for long read
sequencing (discussed in section 1.4.2) were too high to extract enough high molecular
weight (HMW) DNA from many small organisms including mosquitos. This required
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pooling multiple individuals together in order to meet the DNA requirements for these
sequencing technologies. Pooling individuals increases the number of haplotypes in the
extracted DNA and makes distinguishing repeat from heterozygosity harder. Through
recent advances in library preparation, the DNA requirements for long reads has been
greatly reduced. By sequencing a single mosquito with long reads, we reduce the number
of haplotypes from many down to two thus decreasing the potential ambiguities that arise
from heterozygosity. I then compare this genome assembly to the current gold standard
assembly of Anopheles gambiae that was created using bacterial artificial chromosome
(BAC) Sanger sequencing (discussed in section 1.4.1.1), a dramatically higher cost method
of creating high quality genome assemblies. We show many improvements in our assembly
over the previous gold standard as well as highlight several issues that remain with the
(then) current assembly state of the art.

I continue to address the problem of heterozygosity in chapter 4 by showing several
ways in which haplotype phasing consistency can be used as a signal for physical linkage.
Given two or more proximate heterozygous loci, sequencing reads containing them
should segregate into distinct groups according to which alleles they contain. But how
do we know that a site is heterozygous? Initially we do not. We can find sequences
which have inexact homology each being read roughly half (assuming diploid) of the
times homozygous sequences occur. These could be due to heterozygosity or paralogous
sequences (if both loci are under sampled by random chance). In both cases, reads
containing multiple of these alleles should segregate into two (assuming copy number
of the repeat is two) groups. But when comparing a true heterozygous site with an
inexact homologous sequence caused by paralogous sequence, the reads with both alleles
of the heterozygous site will contain one of the presumed alleles caused by the repeat
sequence. We can use this property to avoid misassemblies, create phased assemblies,
and scaffold contigs in a phasing aware fashion. In chapter 4, I outline how we identify
de novo candidate heterozygous sequences, define the phasing consistency criteria, build
a phased assembly graph, and perform phasing aware scaffolding of contigs. If we wish
to phasing aware scaffold an existing assembly, we must first phase its haplotypes. For
this reason, I also provide an algorithm for haplotype phasing. This tool has the added
benefit of being robust to being given non heterozygous sequences as input and can use
the phasing inconsistency to correct those genotypes. I demonstrate these techniques on
data from the butterfly Vanessa atalanta.

The remainder of this chapter contains the background and context for the work
briefly described above. I first cover the history of single cell sequencing and analysis. I
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Fig. 1.2: Phasing consistency as a de novo signal for physical linkage

a b c

a) We use the kmer count spectra to determine candidate heterozygous kmer pairs which we
can then b) assess for phasing consistency based on the alleles on reads that contain one of
each, and c) build a phased assembly graph.

then outline the biases and errors that occur in single cell sequencing and the various
solutions and their downsides which motivates chapter 2. I then cover a short history of
DNA sequencing methods as well as assembly and scaffolding algorithms. I discuss the
inherent ambiguities that can occur and the errors that can arise and their causes, which
motivates chapters 3 and 4.

1.3 Single Cell RNAseq

The etymology of the word cell comes from the latin cella meaning storeroom or chamber.
These entities separate the physical space into compartments which interact selectively
with their environments. This partitioning the cell provides is necessary for life due
to the second law of thermodynamics and the nature of life. In Erwin Schrodinger’s
classic lecture series and book titled “What is Life”[290], he noted that while closed
physical systems will always tend toward increased entropy (stated by the 2nd law of
thermodynamics[41][153][221]), life must maintain (on average) a neutral or negative
entropy1 in the portion of the system in which it resides[347][126][235]. In order to do
so, this requires the expenditure of energy. Biological evolution found an economical
way of solving this problem with the bilipid membrane with various embedded molecules
giving it the property of semipermeability—allowing some molecules in and not out or
vice versa in a dynamic fashion. These cells proved, over time, to be so successful as to
become the primary unit and building block of biological life on this planet.

1Incidentally, Erwin Schrodinger, as the father of quantum mechanics, along with Josiah Gibbs,
as the father of statistical mechanics, will appear again later in this thesis as some of the algorithms
described take ideas inspired by these fields for search strategies in optimization problems.
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When studying the state of a cell and its current function, we could try to measure
many different properties such as the proteome, transcriptome, genome, chromatin
accessability, environmental conditions (such as hormone content, pH, etc), cell surface
proteins, etc. But we are somewhat limited by the tools available, and when addressing
function, we first turn to the central dogma of molecular biology[58] that states that
information in general passes from DNA to RNA and then to proteins. If we could easily
inspect the protein content of many cells in a high throughput fashion, that would be
desirable, but protein detection and sequencing methods are often only limited to one or
a few proteins at a time and/or are not high throughput[55][302][315][36][107][14][192][7].
But we do have a very high throughput detector for DNA and thus RNA by converting
it to complementary DNA (cDNA) via reverse transcription.

1.3.1 Bulk RNAseq

Scientists have been sequencing cDNA libraries of RNA isolated from many cells mixed
together since the advent of next generation DNA sequencing technologies (discussed in
section 1.4.1.2) became available[20][236]. Because these use extractions from pools of
cells, they are denoted as ‘bulk’ RNAseq. These experiments have driven many biological
discoveries, but for some applications their usefulness is limited because they represent
the average transcriptome across a population of potentially diverse cells. This blurs
the data and makes inference on minority cell types difficult if not impossible. The
amount of RNA in a human single cell is roughly 10-30pg[46] that until recently was not
enough to create a complex cDNA library even with amplification. Some researchers have
isolated specific cell types using Fluorescence Activated Cell Sorting (FACS)[56][93] prior
to RNAseq with some success[277], but due to FACS cell stress and it only accessing one
cell type at a time it was of limited utility.

1.3.2 Single cell RNA sequencing

In the past decade, technical advances in methods for the preparation of samples
containing minuscule amounts of nucleic acids have made it possible to study the
transcriptome of single cells[310]. This has changed the way biologists could access the
functional state of individual cells within a complex and diverse population of cells in
tissues across different states of organisms, shedding light on the cellular response to
diseases, drugs, development, and more.
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There are many types of RNA in the cell including messenger RNA (mRNA), transfer
RNA (tRNA), ribosomal RNA (rRNA), micro RNA, and small nucleolar RNA, and non
coding RNA. mRNA makes up only 3-7% of the cell’s total RNA by mass[252], but it
is what is translated by ribosomes into proteins, that conduct a large amount of the
function of the cell. scRNAseq targeting other types of RNA have also been developed
for alternative types of RNA for specific purposes[90], but in this thesis, scRNAseq is
referring to a system that enriches for mRNA by using the 3’ polyadenylation most
mRNAs have (with some exceptions[345]).

1.3.3 Technologies

mRNA from a single cell was first isolated and amplified to measurable levels with
polymerase chain reaction (PCR)[239][238] in the early 1990s[29] before the sequencing
revolution. Without a high throughput detector, and due to the exponential nature of
PCR causing abundant mRNA to dominate the sample, very few genes were detected.
Detection improved with linear amplification achieved by multiple cycles of transcription
of antisense RNA from the initial cDNA using T7 RNA polymerase[322] and the advent
of oligonucleotide microarrays[203] allowing for RNA microarray studies detecting over a
thousand genes[180][87]. However, the number of genes measured were still a fraction of
the total genes expressed. The first sequencing of single cell cDNA sequencing increased
the number of genes detected by 75%[310] and provided a hypothesis free measurement
of the transcriptome a single cell. Since then, scRNAseq has grown greatly in the number
of cells processed per experiment, the number of genes detected per cell, and its uptake
by the scientific community[309].

Current scRNAseq protocols convert RNA to cDNA using a reverse transcriptase
primed off of the poly-A tail of the mRNA. In this process, a cellular barcode oligo as
well as template switching oligo (for subsequent PCR) are added to the construct. Often,
a unique molecular identifier (UMI) is also added. This is used to determine which cDNA
molecules were amplified from the same RNA source molecule to avoid counting PCR
duplicates multiple times[169][145].

To deliver a barcode oligo to all of the reads originating from one cell and different
barcodes to different cells, physical separation of one form or another is generally
used. The separation could be in different tubes, plate wells, nanowells[106][27][89], or
more recently with microfluidic systems creating reverse emulsion droplets[211][170][355].
These methods vary in several parameters including the scalability of number of cells per
experiment, the mRNA capture rate, and the technical variation between experiments
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among others[308][141][356]. Which method is best to use ultimately depends on the
biological question. For experiments where sampling the whole population of cells is
important, droplet and nanowell methods are better whereas if capture rate and amount
of data per cell is paramount, plate based systems might be more appropriate.

1.3.3.1 10x Genomics

In this thesis, all of the single cell data presented was generated using the 10x Genomics
Chromium platform, a reverse emulsion droplet based system. Figure 1.3 outlines how
this system works. It uses a microfluidic system to deliver gel beads, reagents, and
cells into reverse emulsion droplets where the reverse transcription occurs. The gel
bead contains a construct with the cell barcode oligo, a UMI, and adapters for Illumina
sequencing[355]2.

1.3.4 Analysis of scRNAseq data

This construct is then sequenced on a next generation Illumina sequencer [24][110]
(discussed in detail in section 1.4.1.2) giving paired-end reads with one read containing
the cell barcode and UMI and the other read containing the cDNA of the mRNA
transcript. Other sequencing platforms have been used, notably long read sequencing
platforms, to get the whole transcript read to investigate alternative isoforms, but will
not be discussed further here[115][155][299]. The most common software package used
to produce cell by genes expression counts matrix and initial cell type clustering is
cellranger[255] and while alternatives exist[247], they do largely the same steps.

1.3.4.1 Genome alignment

First, the template switch oligo and polyadenylation are trimmed from the 5’ and 3’ ends
of read two respectively. Then the read two is mapped to the given reference genome
using the STAR splicing aware RNA aligner[75]. Other aligners exist for this purpose
such as HISAT2 [163] and TopHat2 [162]. Also there are psuedo-aligners (Kallisto[30]
and Salmon[253]) which are much faster and robust to sequencing errors but do not
provide base level alignments[342]. The reads are then marked as exonic or intronic using
the given transcript annotation gene transfer format (GTF) file and confident or not

2I was fortunate to have worked at 10x Genomics between 2014 and 2017. While I did not work
much directly on the single cell technology (I primarily worked on the company’s first product, linked
reads), I gained much insight into the data by being present for its creation.
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Fig. 1.3: 10x Genomics single cell RNAseq

a

b

Diagram outlining 10x Genomics single cell sequencing technology (image credit: 10x Genomics
website[4]).
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based on if the read overlaps an exon for >50% of its length and if the mapping quality
(mapq) is 255 which indicates that the read aligned uniquely. Confident exonic reads are
carried forward to the UMI counting step[218].

1.3.4.2 Barcode correction

Before counting UMIs, cellranger attempts to do barcode correction on the cell barcodes.
10x Genomics uses a designed barcode set of either 737k or 3m barcodes each with a
hamming distance[117] of at least two to any other barcode in the set. The barcodes that
make up this designed set are the barcodes we expect to see and this set is termed the
whitelist. In order to error correct barcodes, first the frequency of each barcode in the
whitelist is counted. Then for every barcode that is not in the whitelist, each barcode
that is one hamming distance from this sequence and is on the whitelist is found. A
posterior probability is computed with the priors set by the frequency of that whitelist
barcode and the base quality of the changed base used to determine likelihood of that
error. For a barcode correction to then take place, the posterior probability of that
whitelist barcode must be over 97.5%[217].

1.3.4.3 UMI counting

PCR duplicates are then removed. If any reads have cell barcode, gene, and UMI, all are
removed except one. The remaining reads will be counted to create the cell barcode by
gene count matrix.

1.3.4.4 Cell-barcode detection

Note that not each cell barcode contains a cell. Due to ambient RNA in solution from
cells lysed before reverse emulsion partitioning, droplets without an intact cell will have
some reads. We next need to determine which cell barcodes have cells and which do
not. Initially, droplets containing cells were called using the second derivative of the
log-log UMI counts by barcodes plot (see figure 1.4). More recently, a method using the
RNA content of the confidently empty droplets called EmptyDrops[207] was developed
to compare that RNA content (which is generally an average of the RNA content of all
cells assuming each cell type lyses with equal probability) with the RNA content of the
cells to determine an appropriate cutoff where the transcription profile from the average
is dramatically different. This particularly helps in situations where the sample contains
some cells with a large amount of transcripts and another cell type with many fewer
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transcripts. Both of these cell types will likely still have a very different transcriptional
profile than the empty droplets. This algorithm has now been implemented in cellranger.
The raw cell barcode by genes UMI counts matrix is then filtered to retain only cell
containing cell barcodes.

Fig. 1.4: Cell barcode detection knee plot old vs new algorithm

a b

Log-log barcode by UMI count knee plots showing which barcodes were determined to contain
cells under the a) old method using 2nd derivative and the b) new EmptyDrops method (image
credit: 10x genomics website[4]).

1.3.4.5 Quality control

Many of the following steps are done in software packages downstream from cellranger
that aim to implement many types of analyses for scRNAseq data. The most popular of
these software packages is Seurat[286][119] and while alternatives such as Monocle[269]
exist, a comparison is out of the scope of this thesis.

In the process of cell dissociation, liquid handling, and partitioning, some cells may
be damaged. For this reason, many researchers use different criteria to remove these
poor quality cells. Some also use different criteria for different cell types and so a less
stringent global filter may be applied prior to cell type detection and further filtering.
These criteria include the number of genes per cell, percent mapped reads, percent reads
that map to spike in controls, percent mitochondrial reads, and percent of reads that are
PCR duplicates. While these are reasonable markers for dead or dying cells[251][142], it
is my personal opinion that this type of quality control should be limited and determined
at the experimental design stage to prevent unintentional bias in the results due to how
these thresholds are chosen. Of course, there will always be a trade-off between unbiased
data and clean data for downstream analysis and each application may require differing
levels of quality control.
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1.3.4.6 Normalization

As previously discussed, individual cells have extremely small amounts of mRNA and
require methods to amplify this material in order to be made into a cDNA library and
sequenced. These methods, along with the innate difficulties of measuring such a small
amount of starting material inevitably result in some technical artifacts. Genes that are
expressed to a lesser degree than other genes may show zero counts or lower than true
counts in the experiment for several reasons[31]. Capture rate of mRNA in the reverse
transcription step will never have complete yield and may vary from cell to cell and gene
to gene. Additionally, genes that are expressed might be made into cDNA and amplified,
but not sampled in the sequencing step as transcripts that begin with a higher copy
number get amplified more in the exponential PCR step. Differences in cell size, and thus
mRNA content, may result in sampling of genes in one cell type not sampled in other cell
types even if both express them. To address this, many normalization methods have been
developed[327][209]. Spike in controls can be used to improve this normalization[319] but
takes up valuable sequencing. Another solution is imputation[131], but this can introduce
unwanted false positives[12]. In comparison papers, differential expression analysis has
been shown to be the downstream application most sensitive to these methods[210], with
scran[206] performing the best of those tested.

1.3.4.7 Visualization

In order to visualize this high dimensionality data, we must project it into two or three
dimensions in a way that preserves the biologically interesting structure at multiple
scales. First, a principal component analysis (PCA) of the filtered cell by gene counts
is done to find the most meaningful features and reduce the dimensionality from cells
by genes to cells by M where M is a user settable value[19]. For most experiments,
the complexity of the transcriptional profile cannot be easily gleaned by looking at
the first two-three principal components visually, so the next step is to use non-linear
dimensionality reduction techniques to bring the data into a visually informative two or
three dimensional space. The two most popular methods for this are the t-Stochastic
Neighbor embedding (t-SNE)[320][321][127] and the Uniform Manifold Approximation
and Projection (UMAP)[227]. Both of these methods aim to preserve pairwise distances
in the final projections, but are parametric and non-deterministic (without a fixed
psuedorandom number generator seed). There is an inherent trade-off between how
well distances should be preserved at different scales, which the parameters can help
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guide. However, due to the randomness and parametric nature of these algorithms, it
can lead some researchers to use them to bias the results toward the expected outcome
of their hypothesis. Nonetheless, these are powerful techniques to understand highly
dimensional data such as single cell RNAseq. Recently, UMAP has grown in popularity
over t-SNE because it has been shown to better preserve pairwise distance due to
the improved initialization strategy employed in the primary implementation and is
more computationally efficient than t-SNE[23][171]. These projections are often fed
into downstream analysis such as clustering and lineage reconstruction. It is not clear
that clustering in this space is better than clustering on the raw data, PCA, random
projection[151], or other dimensionality reduction space, but they are likely to look more
visually correct in the UMAP or t-SNE space when both the clustering and visualization
is in the same projection. An analysis of this observation is out of the scope of this
thesis.

1.3.4.8 Cell type clustering and annotation

It is useful to group similar cells together for the purposes of cell type annotation and
cell state detection. Because individual cells may not have enough UMIs sequenced,
these analyses may not be possible on an individual cell basis whereas grouping similar
cells together will pool enough data to conclusively do so. Clustering is typically done
on the dimensionality reduced data (either PCA or UMAP/t-SNE) and many methods
have been used including K-means, hierarchical clustering, graph based methods and
meta-heuristics have been applied including consensus clustering, cluster trees among
others[13][35][167][349]. These methods are reviewed in [13] and otherwise a comparison
of these methods is out of the scope of this thesis.

Once cells have been clustered into similar groups, we can try to understand what
each of these groups of cells represent. Marker genes have been studied for many decades
to identify and differentiate different cell types. One can visually display the expression
values of these marker genes versus the cell clusters to find the cell types of interest.
Increasingly more popular are automatic methods which use annotated cell atlases to
match cell types. These include scMatch[130], cellHarmony[69], Garnet[261], scPred[9]
with some using prior knowledge of marker genes and some not. A comparison of
these methods found that they work fairly similarly with scPred performing the best
overall. Interestingly, they find that prior knowledge of marker genes does not improve
performance. Other methods allow you to project cells from one dataset onto another[168].
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For systems which have robust prior annotated datasets, these are powerful and accurate
tools for automatic annotation.

1.3.5 Downstream analysis

Many further analyses on single cell experiments are possible and a comprehensive review
of these is out of the scope of this thesis. Pseudotime analysis can order cells along
some cell state change such as differentiation or cell cycle[280][102]. Gene regulatory
networks may be inferred using the correlation of genes indicating they may be under
similar regulatory control[6]. Somatic mutations in the mitochondrial genes can be
used to discover cell lineages[72]. And many more analyses are possible especially if
the experimental design is non-standard such as multi-Omic single cell sequencing or
CRSPR-Cas9 screening[73] is added to the mix.

1.3.6 scRNAseq error modes

1.3.6.1 Batch effects

Due to the manner in which scRNAseq data is created, it naturally has certain noise
and error characteristics. In section 1.3.4.6, we discussed intra-dataset technical artifacts.
Naturally, inter-dataset technical artifacts are larger in magnitude and more diverse.
If any of the laboratory protocols were changed, or the experiment was done by a
different person, on a different day, at a different temperature, it may introduce inter-
dataset differences that may be even larger than the biological differences we wish to
measure. There are a multitude of computational methods to correct these batch effects
such as scanorama[125], mnnCorrect[116], BBKNN[262], Harmony[177], Seurat[306],
and LIGER[336]. Each of these either finds matching cell populations or overall data
correlations to then create a projection to bring the datasets into a common space. A
comparison study tested 14 of these methods and evaluate the adjusted rand index of cell
type clustering, average silhouette width of cell type clustering, and two other metrics
and found that Seurat, LIGER, and Harmony performed best. While these are powerful
tools for correcting these technical variations, it is possible that in trying to correct
for variation due to batch effects that some biological differences will also be erased or
biased.
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1.3.6.2 Doublets

In 10x Genomics scRNAseq, the loading of droplets with cells is a random process
that follows a Poisson sampling distribution. The experiments are designed with a
cell suspension concentration to produce a poisson distribution with a mean much less
than one. This results in an experiment in which most droplets sample zero cells and
some sample one cell. But in order to collect enough cells, that mean still must not be
vanishingly small. So some droplets will sample more than one cell. These cell barcodes
associated with more than one cell are generally called doublets though multiplets might
be more appropriate as some may have more than two cells. Another way that these
arise is if the tissue dissociation of cells was not complete or if there is any cell adhesion
causing cells to travel together in suspension. Again, a number of computational tools
have been developed to find and remove these doublet cell barcodes from further analysis.
These include doubletCells[208], DoubletFinder[225], Scrublet[341], DoubletDecon[70],
scDblFinder[231], and Solo[26] among others. Many of these use simulated doublets
by combining in silico the UMI counts of putative singleton cells to identify what the
transcriptional profile of a doublet would look like. Validating these methods is somewhat
problematic as in real datasets, the doublets are not known, and simulated doublets may
not exactly match what data would look like from true doublets. In a recent benchmark
of these methods, many of these performed similarly with scDblFinder scoring the highest
overall[343]. Once again, these are powerful methods, but do not work flawlessly and in
particular may remove cells in an intermediate state transition between two more distinct
cell types in the sample so may remove cells of potential interest.

1.3.6.3 Ambient RNA

Another aspect of scRNAseq data that biases our view of the transcriptional landscape
is ambient RNA. Before the cells are partitioned, some cells may have lysed, or there
may be other cell free RNA in solution. This RNA will be delivered to all droplets
including droplets that contain a cell and that RNA will be sequenced with the same cell
barcode as the reads that truly came from the cell. This is alternately called ambient
RNA or the ‘soup’. Ambient RNA can be analyzed by looking at the reads from non-cell
barcodes and is generally an average of all of the RNA in the experiment, but this is
not always true such as when some cell types are more prone to lysing than others or
samples such as necrotic tumor. The amount of ambient RNA in the system is generally
small, but may be increased in some samples such as tissues that requires harsh detergent
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agents to dissociate the cells into a cell suspension. SoupX was developed in order to
estimate the amount of ambient RNA and remove it[348], but requires prior knowledge
of gene expression in different cell types as it uses measurement of genes known to not
be expressed in certain cell types to measure the ambient RNA.

1.3.6.4 Mixtures

One experimental design that promises to solve all three of these error modes in scRNAseq
are mixture experiments. If cells from multiple samples are mixed together, you limit the
number of technical artifacts between them to differences in how the cells were treated
prior to being mixed. If you can distinguish which cells came from which samples, you
can use that same signal to determine which cell barcodes represent cross-sample doublets.
And depending on the sample features, this may also aid in measuring ambient RNA.
Several experimental methods have been developed to tag cells by sample prior to mixing.
Cell hashing uses oligonucleotide tagged antibodies attached to cell surface proteins as a
sample signal[304][100]. MULTI-seq uses lipid and cholesterol modified oligonucleotides
which incorporate into any lipid membrane to generate a sample read-out[226]. CellTag
uses heritable genetic material as a sample index for tracking cells through passages
after mixing to better study sample interactions[113]. These are powerful methods for
reducing batch effects, detecting doublets, and reducing costs through both multiplexing
and giving more scope for overloading the number of cells per experiment. As the number
of cells per experiment is increased, the number of doublets grows as well. If one has a
robust method of identifying and removing doublets, one can load more cells and recover
more singletons even after removing the doublets. However, there is a limit to this. 10x
Genomics reports that the number of doublets is roughly 1% per thousand cells recovered.
This is of course an oversimplification. If the cell suspension is fully dissociated, the cell
loading is a Poisson process. In the range of two to ten thousand cells, this generates
roughly 1% doublets per thousand cells. Outside of this range, this rule falls apart. One
can, however, fit a Poisson to a number of different experiments with differing number of
cells for a better model. Over some number, the marginal increase in singletons recovered
as more cells are added decreases and at some point actually diminishes. This is also
worsened by the fact that the doublets and multiplets take up valuable sequencing only to
be discarded. Additionally, doublet detection methods are not perfect and the remaining
doublets will bias your experimental results.

But these methods require additional experimental work and are not always possible.
Some mixture samples are naturally occurring such as at the maternal/fetal boundary,
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transplant patient tissue, or complex infections. If the mixed samples have distinct
genotypes, one can use the genetic variation between samples to demultiplex them.
Demuxlet was first developed for this purpose, but requires prior knowledge of the
genotypes of each sample and its rigid model based system can make errors especially as
the amount of ambient RNA in the system increases[291][154]. In chapter 2, I present
souporcell, a method for clustering cells by genotype without prior knowledge of each
sample, cross sample doublet detection, and ambient RNA measurement. We compare
our system against Demuxlet and two other methods, scSplit and vireo[344][138], across
a wide range of challenging datasets. Since then, freemuxlet was developed as another
such method, but is not compared to as it came out later and is unpublished outside of a
thesis[352].

1.4 Genome assembly and scaffolding

Since Mendel’s discovery of the laws of heritability[229], it has been a goal to link the
micro to the macro to explain evolution in a quantitative fashion[140]. The discovery that
DNA encoded the hereditary information of organisms[18] and subsequent discovery of its
chemical structure[331] made clear the nature of information storage in a linear polymer
and mechanism for stable replication. Even before the discovery of mRNA[32][111],
Francis Crick hypothesized that nucleic acids direct the synthesis of proteins[59] and
later elucidated what is now known as the central dogma of molecular biology[57]. In
brief, this states that the information flow of an organism is through the DNA being
transcribed into RNA and the RNA translated into proteins which perform most of the
functions of the cell. With the information source being the DNA, this made clear the
importance of reading the sequence. And for several decades, our ability to read DNA
sequence has dramatically increased in both amount and accuracy.

1.4.1 DNA sequencing

The history of DNA sequencing is generally thought of as having three waves—Sanger
sequencing, next generation sequencing, and third generation sequencing. Sanger se-
quencing is highly accurate and produces relatively long reads at 500bp to 1kb but is not
highly scalable. Next generation sequencing produces high accuracy short reads (initially
35bp, but now can be up to 250bp) and is massively scalable. At the same time, many
other sequencing technologies came along without much success. In the third wave, the
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ability to sequence long reads of single molecules without amplification has transformed
genome assembly. PacBio and Oxford Nanopore Technologies (ONT) developed single
molecule long read sequencers that produced low accuracy (85% and ≈90% respectively)
long reads limited mostly by the input DNA length and stability. More recently, PacBio
utilizes circular consensus sequencing (CCS) to produce reads in the 5-25kb range with
high accuracy. Due to the vast differences in application performance long accurate reads
bring, it could be argued that this represents the fourth generation of DNA sequencing.

1.4.1.1 Sanger sequencing

The ability to sequence proteins and certain RNA molecules came before the ability to
sequence DNA due to proteins being made of more diverse monomers and RNA not being
complicated by a complementary strand[282][122]. In 1965, Robert Holly and Frederick
Sanger developed two related methods for sequencing RNA[128][283]. These were labor
intensive and Sanger’s method employed dangerous radioactive material. This method
was then extended to DNA in 1973 and used to sequence 50 bases of the phage f1[284].
Eventually, the use of polyacrylamide gel electrophoresis, chain termination chemistry
with dideoxynucleotides, the use of flourescence instead of radiolabeling, and automation
brought us to what is know known as Sanger sequencing[285]. This technology was
automated and became the most popular method of sequencing for many years[139].
These sequences are highly accurate as each base signal is the result of the termination
of a many molecules and have read lengths from 500bp to 1000bp which is limited by
reaction efficiency requiring a fraction of chain terminations at every base of the sequence.
This method requires clonal DNA and thus laboratory methods were developed for
creating libraries for sequencing. BACs and YACs [233] were developed and each end
could be sequenced creating a mate pair read spanning hundred of kilobases giving long
genetic distance linking information.

1.4.1.2 Short reads

In the poorly named “next generation” phase of DNA sequencing, there were many
technologies created, but ultimately one became the dominant one and discussing each in
detail is out of the scope of this thesis. In the late 90s, Solexa (later acquired by Illumina)
created the Genome Analyzer in which DNA attaches to a primer on a flow cell surface
and is amplified into clonal arrays of single stranded DNA[314]. This is achieved by what
is known as bridge amplification. The DNA has two different primers attached during
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library preparation that correspond to two oligos on the flow cell. Initially, a polymerase
creates the reverse strand and the double stranded DNA is denatured and the forward
strand is washed way. The reverse strand then bends over (aka bridges) to attach to both
oligos and the forward strand is synthesized. This bridge is then denatured resulting
in forward and reverse single strands attached to the flow cell. This is then repeated
multiple times and in the end one of the oligos on the flow cell is cleaved and those strands
are washed away leaving many copies of only one strand of the DNA[24]. Fluorescently
labeled dNTP are added and each DNA colony is then imaged. The terminator group is
then removed[40] and the process is repeated for each base. Because this method uses
the synthesis of the second strand as the mechanism for sequencing, it is often referred
to as ‘sequencing by synthesis’.

Initially the read length was limited to 35bp but over the years this has increased to
150bp on the high throughput sequencers and 250bp on the lower throughput MiSeq.
The read length is limited by reagent stability as well as phase problems. If not every
molecule gets extended at every step, eventually the signal will degrade until eventually
it is impossible to tell which base is the correct one. Despite the short read length,
paired-end reads are made possible by having a longer DNA insert than the read length
and after reading one end, bridging the DNA on the flowcell and sequencing the other
end. This technology produces highly accurate reads at roughly 0.1% error rate. While
many other sequencing technologies emerged in the same time frame, Illumina’s was
much higher throughput and was highly accurate and has few context specific errors
when compared with the others[8]. Illumina sequencing has made up the vast majority
of DNA sequencing to this day, but other third generation technologies are increasing in
utilization.

Several methods build on next generation sequencing to add further information.
Moleculo[223], contiguity preserving sequencing (cpt-seq)[11], long fragment read (LFR)[224],
10x Genomics linked reads[354], and more recently haplotagging[228] use various meth-
ods for making short reads from long molecules and tagging each short read with a
barcode specific to the HMW DNA molecule of origin. Strand-seq uses bromodeoxyuri-
dine labeled DNA to degrade one strand of DNA which can be useful for haplotype
phasing[88][265][101][263]. In chapter 4, I use 10x Genomics linked reads which I outline
in detail in section 1.4.1.4.
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1.4.1.3 High throughput chromatin conformation capture (Hi-C)

Hi-C crosslinks cells’ DNA with formaldehyde, breaks the DNA with a restriction
enzyme, and blunt end ligation is used in conditions which prefer joining cross-linked
DNA[64][201][271][74]. This produces read pairs which were spatially close in the nucleus
but may be far apart in the genome. Because of the 3D structure of the tightly wrapped
genome in the nucleus, this means that most links are intra-chromosomal and thus
is useful in assembly scaffolding[104]. Hi-C data is used extensively in chapter 4 for
haplotype phasing and phasing aware scaffolding.

1.4.1.4 Linked reads

The 10x platform for linked reads uses the same microfluidic system as in scRNAseq.
Instead of delivering cells to the droplets, the linked read system delivers HMW DNA
from which short reads are created. Whereas the barcode oligo acted as a cellular barcode
in scRNAseq, it acts as a long molecule barcode in the linked read system. It starts with
high molecular weight DNA input into a microfluidic system that partitions those long
DNA molecules into GEMs (Gel bead in EMulsion) with oil surrounding an aqueous
solution containing the DNA and reagents with a gel bead housing millions of copies of an
oligo containing random primers, Illumina adapters, and the same barcode DNA sequence.
Each different gel bead has a different barcode DNA sequence with high probability. Each
GEM is Poisson loaded with HMW DNA and on average gets roughly ten long molecules
in the standard workflow. Short sequences are then amplified from these long molecules
with random priming, creating a construct with the Illumina P5 and P7 adapters, the
barcode oligo, and the DNA insert. This is then sequenced using standard short read
Illumina sequencing. All of the reads with the same barcode sequence come from the
same GEM and thus from a handful of long molecules. When the reads are mapped to a
reference genome, the reads from each barcode cluster into a few small regions of the
genome associated with their molecule of origin. This long range information can then
be used to map into repeat regions of the genome, phase haplotypes, and call structural
variation[354]3.

3From 2014 to 2017 I worked at 10x Genomics and was the main developer on Lariat, the software
used to confidently map into repeat regions of the genome, and had a role in the phasing algorithm
including its ability to correct genotypes as well as on the development of the technology as a whole. I
am grateful to have been a part of such a talented group of people and to have had the opportunity to
learn from them.
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Fig. 1.5: 10x Genomics linked reads

a

b

c

a) outlines the microfluidic system to create the Gel bead in reverse emulsion. b) shows the gel
bead oligo setup and c) diagrams the final construct. (image credits to 10xgenomics website)
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While 10x Genomics Linked reads are used in Chapter 4 for phasing and phased
assembly, the technology is no longer offered by the company. More recently, bead based
systems have been developed that do not require a microfluidic system. In solution with
microbeads, long DNA molecules tend to wrap around a single bead[353][224]. Separately,
Tn5 transposase has been used to insert adapter and barcode sequences at high frequency
into genomic DNA[11]. With these ideas combined, Frank Chan’s group has developed a
technique called Haplotagging that uses microbeads bound to Tn5 transposase with one
of 85 million molecular barcodes and Illumina sequencing adapters creating linked read
libraries for a fraction of the price in a single tube[228].

1.4.2 Third generation sequencing: long reads

1.4.2.1 PacBio

Pacific Biosciences (PacBio) uses microscopic wells known as zero-mode waveguides
(ZMWs) along with single molecules of DNA and DNA polymerase, and optically measures
fluorescent tagged nucleotides as they are incorporated by the polymerase. This is known
as single molecule real-time sequencing (SMRT sequencing). The DNA template is ligated
with hairpin adapter sequences known as the SMRTbell adapters to create a topologically
circular template. This allows for multiple passes of the same DNA molecule. Initially,
polymerase nucleotide incorporation and optical measurement speed were limited. That
combined with the rate at which DNA polymerase dissociates from the molecule limited
the number of times long molecules could be sequenced to once or just a few times.
This results in long, but noisy reads with roughly 15% error rate[85][42][49] known
as continuous long reads (CLR). The PacBio data used in Chapter 3 is CLR data.
More recently, advances in the speed of polymerase nucleotide incorporation and optical
measurements have allowed for many passes of the same long molecules. This allows for
circular consensus sequence calling across these multiple passes creating High Fidelity
(HiFi) reads with much higher accuracy (<<1% error rate on average) while maintaining
true single molecule sequencing[337]. Over the past few years, PacBio data—both CLR
and CCS—has revolutionized genome assembly and is now used routinely for generating
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high quality reference genome assemblies4. In chapter 4, I use PacBio HiFi data for
phased assembly.

Fig. 1.6: Circular consensus sequencing

Diagram outlining circular consensus sequencing (image credit: PacBio website[332]).

1.4.2.2 Nanopore sequencing

The idea of reading single molecules of DNA by the current changes as a molecule
translocates through a protein nanopore in a bilipid membrane by electrophoresis goes
back to the 1980s[156] but took twenty-five years of work before Oxford Nanopore brought
the technology to market[61][268]. Because more than one base is inside the nanopore at
each timepoint and the past current fluctuations affect the current signal, complex models
must be used to interpret these data[60][28]. With these models and improvements in the
protein nanopore, sequence accuracy has been reported as high as 92%, but is sequence
context dependent. Read lengths for this technology are limited to the input DNA size
and reads have been reported as long as 2.3Mb[10][148]. ONT data is not used in this
thesis, but is an important aspect of the third generation of DNA sequencing and has
been used successfully in the telomere to telomere project[249].

4While I would take no credit for HiFi technology, it is poorly known the contribution that my good
friend Brendan Galvin had on it. I don’t know the full history, but when Brendan was working for
PacBio in late 2017, he called me and offered three options for possible improvements to long read
sequencing. Among these was longer read CCS data—he estimated the possibility of 10kb CCS reads.
He asked me among his three options, which one would have the biggest impact on genome assembly. I
responded that 10kb accurate reads would revolutionize the world of assembly. Within a year and a
half of that conversation, this became a reality. Of course this was not entirely Brendan’s doing either,
but between his technical contributions and internal advocation for the technology, I am convinced he
played a large role. This is just one of several major contributions to the field he has had.
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1.4.3 Reference Genomes

Despite their limitations, reference genomes enable a host of downstream analyses. They
provide a common coordinate system by which to say certain genetic variants in one
genome are the “same” or different from one another[289]. This allows one to compare
multiple genomes and associate certain genetic variants with phenotypes.

1.4.3.1 Resequencing

Reference genomes also allow much more inference to be made from the cheap and
high throughput next generation sequencing technology. Instead of generating the
entire sequence of each new individual de novo, one can create short or long reads and
map them onto a reference genome with the assumption that the reference is similar
enough to the genome of interest that the mapping is globally correct. Aligning a small
sequence with a very large sequence would be computationally expensive with traditional
alignment algorithms[301][246]. Many algorithms and data structures have focused on
the ability to quickly find all locations in one large reference or database or sequences a
new query sequence will match well such as the suffix tree and suffix array, FM-index,
Burrows Wheeler index, and minimizers. A full review of these is out of the scope of
this thesis[333][213][91][92][198][159]. One of the more recent of these is relevant to this
thesis which is the minimizer. In a sliding window of sequence of size W , the minimum
(lexicographically or by hash value) sequence of length K is stored for each window[274].
Because adjacent windows often have the same minimum kmer, these can be stored
efficiently. And it guarantees a representative kmer at least every W -K bases. These
have been used in genome assembly, read mapping, among others[25][197][147]. In a
somewhat related idea, if one wants a subset of kmers and does not require the locality
guarantee, one can take the kmer hash or two-bit encoding value modulo some number
and use only kmers where the resulting value meets some criteria (eg. kmer-hash % 2
== 0 retains half of the kmers)[82]. These are used in chapter 4 in phased assembly and
scaffolding to sparsely sample homozygous kmers to cover areas of the genome with large
homozygous stretches.

Once one has determined the location to map a read to in the genome, a full Smith-
Waterman alignment of the sequence to that region of the genome is done[301]. One can
then inspect the differences between the genome of interest and the reference genome to
call genetic variants. When one parental chromosome contains one allele and the other
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parental chromosome contains a different allele, this site is said to be heterozygous and
results in roughly half of the reads that are sampled containing each allele.[99][71].

1.4.4 Haplotype phasing

The genetic variants for these individual(s) are generally called in a localized fashion.
Some haplotype information may be used, but due to the read lengths of next generation
sequencing, they usually are fairly isolated from one another. Determining which alleles
occur on the same chromosome and which occur on the alternate parental chromosome was
historically termed haplotype assembly but today is called haplotype phasing. Methods
for haplotype phasing generally fall into two categories—population level haplotype
estimation and individual genome haplotype phasing.

1.4.4.1 Statistical

Because chromosomal recombination is relatively rare, alleles close to one another in the
genome will generally cooccur across individuals in the population. Given the genotypes of
many individuals, it is possible to statistically determine the most likely set of haplotypes
in the population[65] and use this for genotype inference of other variants not sampled
in a sparsely sequenced dataset.

1.4.4.2 Direct / Read based

Haplotype phasing across large regions of the genome requires long range genetic in-
formation not present in next generation sequencing. If one considers the graph where
heterozygous variants are nodes and reads containing two heterozygous variants create
an edge between those nodes, it is only possible to phase variants with respect to one
another in connected components in that graph. With contiguous reads such as those
generated by PacBio or ONT, the potential sizes of regions that can be phased are limited
by the length of homozygous regions. Evolution can naturally create large regions of
homozygosity through harsh selective pressures sweeping the haplotype landscape in
particular regions[165]. This limits the ability of contiguous or localized technologies to
generate chromosome scale haplotype phasing. By this reasoning, longer reads generate
longer phase-blocks, linked reads generate longer phase blocks due to their longer molecule
length, and chromosome scale data such as Hi-C has the ability to infer chromosome
scale haplotypes[178]. Many algorithms have been developed for haplotype phasing for
different data types or combinations of data types and employ search methods, dynamic
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programming optimization, graph theoretical approaches, and more. These include
HapCut2[84], Whatshap[254], Longranger[354], and many more. In chapter 4 I use
haplotype phasing and the phasing consistency of molecules across multiple heterozygous
variants as evidence that those variant loci are physically linked in both haplotypes in
the genome.

One can also phase individuals based on pedigree information. With the genotypes
from the mother, father, and child (or larger pedigree datasets), one can phase variants
in the child in all cases except when all three are heterozygous[34]. One can also combine
read based phasing with pedigree information[95].

1.4.5 Creating reference genomes

Physical and technical limitations make reading whole chromosomes a practical impossi-
bility. Therefore, to recover the sequence of the genome often requires sampling reads
from the genome randomly until one has with high probability covered the genome more
than once in almost all regions[184] in a method known as ‘shotgun’ sequencing. Using
the sequence similarity of multiple reads, one can build a consensus sequence of the
underlying genome. This process is known as ‘assembly’.

1.4.5.1 The old way

Before next generation or third generation sequencing was available, there were several
massive efforts to sequence genomes, but they were limited to human, important crops,
and model organisms due to their cost and time[185][54][288]. In these projects, BACs
and other vectors were used to clonally amplify large sections of the genome. Shorter
sequences from these would then be subcloned and Sanger sequencing was used to produce
reads from each end of these, and each BAC would be assembled separately. At the end,
all BAC sequences would be assembled together, often with the aid of a physical map.
While costly, this method had several benefits over the whole genome shotgun method
used in the privately funded human genome effort and over the later next generation
shotgun assemblies. The ability to deal with 150-200kb at a time means that many
repeats that would make the assembly process difficult are absent as they may occur
in a separate BAC clone. The clonal nature of this strategy also means that only one
haplotype is sampled in a given BAC and the heterozygosity that may make assembly
difficult is also not present. And the Sanger sequencing read lengths also spanned small
repeat structures that the later next generation sequencing did not. These projects, while



1.4 Genome assembly and scaffolding 36

costly, produced high quality reference genomes for the most important organisms to the
human species and are still being used today.

1.4.5.2 The dark times

In the age of next-gen sequencing, genome assembly was initially popular. The low cost
of sequencing promised personal genomes and the ability for every lab to sequence and
assemble the genome of their organism of interest. Despite a massive amount of research
going into assembly algorithms, de novo genomes produced with short read technology
were never even close to as high quality as the ones produced by the BAC+Sanger
sequencing methods of the previous generation[287][281]. Over time, interest in genome
assembly waned both from the perspective of assembly algorithm development as well
from people wanting to assemble new genomes as the results were so fragmented and
error prone as to be of limited downstream use[83].

1.4.5.3 A new hope

Long single molecule read technologies have been around and commercialized since
2010, but due to cost, scaling, and the computational difficulties of dealing with reads
with high error rates took some time for widespread adoption for genome assembly[50].
But as throughput scaled up, costs came down, and tools for assembling these data
improved[52][278][173], long read technology rapidly became the de facto for de novo
genome assembly. Initially this was usually paired with a next-gen short read dataset
used to polish the assembly and/or reads prior to assembly, but eventually partial order
alignment based multiple sequence alignment[190] was used for polishing by the noisy long
reads themselves[323]. More recently, PacBio’s improvements to the DNA polymerase
processivity along with their circular consensus technology has allowed for many passes
of a long single molecule which can then self polish with these same algorithms. This
produces high accuracy long reads, which have even further revolutionized genome
assembly[337]. This, combined with Hi-C scaffolding now routinely produces reference
quality genomes in full chromosome scaffolds. However, some problems still exist for
certain genomes. Until recently, long read technologies required more DNA input than
could be extracted from single small organisms. But due to recent advances in library
preparation, DNA requirements have come down substantially, and in Chapter 3 I
describe the first high quality assembly of a single mosquito. Also, many organisms are
highly heterozygous and this creates difficulties in the assembly process. In Chapter 4, I
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describe methods for turning the problem of heterozygosity into an advantage by using
phasing consistency between multiple heterozygous sites as a signal for physical linkage
in phased assembly and phased scaffolding.

1.4.6 Assembly algorithms

Outside of some enzymatic reaction modeling I did in high school, the problem of genome
assembly was the first problem in computational biology that I was introduced to and
arguably one of the most important problems to the field. While the problem naturally
lends itself to the pure computer scientists and mathematicians, the peculiarities of how
genomes evolve tend to defy most basic assumptions. Not only is genomic sequence not
random, but many structures seem designed to make the problem harder. Transposable
elements and large segmental duplications, viral insertions and trinucleotide expansions,
low GC content and homopolymers, centromeric repeats and telomeric repeats are just a
few of the challenges the genome poses to the problem of assembly. At its most basic, the
problem is simple. Find similar overlapping sequences through pairwise read alignments.
Infer that those sequences most likely originated from the same locus in the genome.
Create a larger contiguous sequence representing the underlying genome and repeat. The
problems arise when this inference is false. These algorithms have evolved over time and
with the data types available, cheapest, or most promising at the time.

1.4.6.1 Overlap, Layout, Consensus

The first assembly algorithms were known as “overlap, layout, consensus” algorithms due
to their three primary steps. They first do an all vs all alignment of the reads. While this
seems computationally costly, due to exact match hashing of smaller subsequences as a
filter, only reads very likely to arise from the same genome locus well will be aligned[136].
These overlaps can then be used to create an ordering, or layout, of these reads. This
layout was then used to generate a consensus either through multiple sequence alignment
or heuristics[157]. This method was used for many years including on large sequencing
efforts such as the Human Genome Project[185]. Implementations of this strategy include
PHRAP[1], TIGR[307], GigAssembler[158] (used in the human genome project), and the
Celera assembler[240]. The Celera assembler was developed for and used in the privately
funded human genome project[325] and many other genome projects of this era. In the
modern era, HGAP and Canu are overlap, layout, consensus algorithms build for long



1.4 Genome assembly and scaffolding 38

noisy reads[50][173] and HiCanu for long accurate reads[248] and have generated many
high quality genome assemblies[164].

1.4.6.2 de Bruijn graphs

One of the earliest formalizations of assembly as a graph theoretical problem was in
the late 1980s in the context of sequencing by hybridization (SBH)[76]. In sequencing
by hybridization, one would expose many copies of single stranded DNA of interest to
an array of microwells with different oligonucleotides. The unbound DNA would then
be washed away and a reporter system was used to determine which wells the DNA
bound to. This indirectly created the later microarray SNP-chip technology. While this
technology never proved feasibly scalable for both laboratory and information theoretical
reasons[267]5, it did motivate Pavel Pevzner to pose assembly as an Eulerian path on
a de Bruijn graph of the sequences. In SBH, the oligos used were short due to the
maximum number of microwells possible and the total number of possible oligos of a
given length (4k where k is the length of the oligo). A graph was constructed such
that kmers (at the time, these were referred to as I-tuples, but I will use the modern
terminology) with overlapping k-1 sequences would have edges between them. A Eulerian
path on this graph represents a linear assembly of the sequence. Later, with next-gen
short reads, this idea was given new life with Pevzner and Waterman[257] creating an
assembly algorithm Euler based on this idea. With reads as opposed to short oligo
microarray hits, one uses all subsequences of length k and constructs the same type of
graph as with SBH[350][298][144]. The obvious downside of these techniques is the loss of
information by breaking the read into shorter sequences. However, this can be mitigated
by reconsidering the reads and read pair information to further resolve the graph[37][334].
Although Jue Ruan and Heng Li used a fuzzy de Bruijn graph approach for noisy long
reads, these methods are generally only applicable to data types with relatively high
accuracy reads as the length of a kmer of any length in PacBio CLR or ONT reads would
not be a true kmer with high probability.

5From 2011-2013 I worked at Nabsys, a company that was attempting initially to create a positional
sequencing by hybridization[118] technology where DNA would be tagged with oligos and translocated
by electrophoresis through a nanopore and the oligo locations would be read. If this was done for all of
the oligos of a certain length, the positional information would potentially solve the information content
problem for longer sequences. This failed horribly due to several limitations. The company continued on
to create a digital ordered restriction map technology[108] creating similar data to that produced by
bionanogenomics but less successful. While the technology was ultimately a failure, my time there was
an incredible learning experience.
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1.4.6.3 String graphs

The string graph is a data structure representing the idealized assembly graph and was
described by Gene Myers in 2005[242]. It uses the full read lengths and overlaps between
reads are collapsed into a single sequence. Thus, if there are repeats longer than the read
length, these will be collapsed and unique sequence will create loops between repeats.
Jared Simpson and Richard Durbin created a compressed version of this dataset and an
assembly algorithm based on it using the FM-index[92][91][297]. This allowed for the use
of the full length of the reads without complex and costly read pair threading algorithms
on the de Bruijn graph and the compression reduced the memory requirements to the
point that mammalian genomes could be assembled on commodity hardware of the time.
Falcon[52] is a string graph assembly algorithm written for long noisy reads, and HifiAsm
represents a phased string graph built on PacBio HiFi accurate long read data[48] and
produces some of the highest quality assemblies today.

1.4.6.4 Repeats, Heterozygosity, and Errors

While tremendous progress has been made in genome assembly through improvements in
both the data and algorithms, problems still exist. In the process of creating overlaps,
one will encounter inexact homology due to either inexact repeats, heterozygosity, or
sequencing errors. In the graph methods that only collapse exact matching sequence, these
inexact homologous sequences arising from these create complex graph structures that
either need to be resolved or the final sequence assembly will be fragmented[43]. Many
organisms are much more heterozygous than humans, who went through a population
bottleneck in recent evolutionary history[120]. While much of the exact repeat problem
has been solved due to long accurate reads spanning such repeats, inexact but highly
homologous repeats exist on the scale of megabases[66]. In haploid assembly, any inexact
homology is either due to errors or repeats. In diploid and polyploid assembly, inexact
homology can come from paralogous sequences, heterozygosity, or sequencing errors.
Incorrectly inferring one as another can create misassemblies or retained haplotypes
assembled separately which are generally intended to be collapsed in a reference genome
for the downstream application of resequencing. Several methods have been created to
combat these problems.
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1.4.6.5 Trio assembly and trio binning

One way to reduce the problem of heterozygosity versus repeats is to add haplotype
phasing information to the process. In section 1.4.4, I discussed haplotype phasing via
pedigree genotypes. With this information, one can more easily distinguish between
heterozygosity and paralogous sequences. In the age of next-gen sequencing, Malinsky,
Simpson, and Durbin, created Trio-SGA, an algorithm utilizing parental and child
information in the string graph based algorithm to deliver higher quality assemblies[212].
More recently, with the reduced costs of long read sequencing technologies, instead
of embedding the knowledge of the pedigree information into an assembly algorithm,
trio-binning[174] separates the long reads by haplotype prior to haploid assembly of
each haplotype. Because long reads generally span multiple heterozygous variant sites,
trio-binning uses the kmer difference between the paternal dataset and maternal dataset
to categorize reads as maternal, paternal, or uncategorized. Each bin of haplotype reads,
along with the uncategorized reads, are then assembled independently producing highly
contiguous and accurate genome assemblies. However, this requires pedigree data which
is not feasible for many species in a large project such as the Darwin tree of life and the
Earth biogenome project.

1.4.6.6 Haploid assembly: Hytaditiform moles, seeds

In cases where it is possible to assemble haploid data, it is clearly advantageous. The
telomere to telomere (T2T) consortium has used multiple technologies to sequence a
human cell line derived from the haploid complete hytaditiform mole (CHM) 13[249].
While this does not represent a viable human genome, it is likely the most complete and
accurate sequence of a human genome to date. In some other areas, tissues are clonally
haploid with enough material to create a sequencing library. In many conifer species,
the seeds within pine cones are haploid and can be used as source material for genome
assembly where other material may be polyploid[39].

1.4.6.7 Phased assembly

Another option for combatting the heterozygosity vs paralogous sequence problem is
building haplotype phasing into the assembly algorithm and explicitly assembling both
haplotypes. Many algorithms have attempted this in the past including Falcon[52] and
trio-sga[212], but until recent data improvements, this has proven difficult. One approach
used in DipAsm, was to create an initial assembly, haplotype phase that assembly, and
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then use that phasing to split haplotypes prior to haploid assembly—a process akin to
trio-binning but without the pedigree information[97]. Another method is to create a
de Bruijn graph or string graph via short reads and align long reads onto that graph
to both phase the graph and assemble both haplotypes[96]. And yet another approach
employed in HiFiAsm is to create a phased string graph directly from the long accurate
HiFi reads[48]. In chapter 4, I present a method using haplotype phasing consistency to
create phased assemblies and phased scaffolds.

1.4.7 Post assembly manipulations

1.4.7.1 Polishing

Especially when assembling with long noisy reads, and sometimes with other technologies,
a post assembly step of polishing can improve base quality. With long noisy reads such
as PacBio CLR or ONT, one can polish with the reads themselves[51][204] or one can
use a short read dataset to polish the final assembly[329].

1.4.7.2 Haplotig purging

Because one of the primary downstream applications of reference genomes is resequencing,
and it is undesirable for the two haplotypes to compete for read mapping, we generally
want to produce an assembly with only one haplotype. If the haplotypes are different
enough, assemblers may assemble portions of haplotypes as separate contigs rather than
collapsing them. Several tools have been made to remove these alternate haplotype
contigs (haplotigs) or “haplotypic” sequence using both sequence similarity as well as
coverage of reads mapped to the pre-purged contigs[135][273][112].

1.4.7.3 Scaffolding

In most cases, contigs resulting from the assembly process are not chromosome length,
and if further information is available, we would like to order and orient them with or
without gaps in their chromosomal context. Paired end reads, long reads, linked reads,
Optical maps, and Hi-C have been used for this purpose over the years[272][121][104].
The longer range the data is, generally the better it is for scaffolding to span whatever
gaps may exist between contigs. So in the modern era, Hi-C is the preferred data type
for scaffolding. In chapter 4, I present a method for phasing and phasing aware assembly
scaffolding.
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1.4.7.4 Gap filling

Gaps may exist either due to contigs being scaffolded together with a gap between them
or through the assembly process itself. These can sometimes be filled by aligning reads
across the ends of each contig on either side and creating a consensus sequence for the
gap[86]. More recently, ultralong ONT reads have been used to fill gaps in projects like
the T2T project[149][148].

1.4.8 Assembly validation and curation

While the modern assembly process is much more automated than it used to be, some
validation and curation is still necessary for the highest quality genomes. Today, curators
use semi-automated tools to assess haplotig retention, contamination, find and bread
misassemblies and order and orientation errors in scaffolding[133]. Assembly completeness
and haplotig retention is assessed by orothology of genes to known sets of genes using
Benchmarking Universal Single-Copy Orthologs (BUSCO)[330]. Kmer methods such as
KAT plots[214] can be used to assess heterozygosity, error rate, and haplotig retention.
Hi-C data is visualized on a heatmap and used to correct scaffolding errors, create new
scaffolding joins, and find potential misassemblies[80][160][79]. Coverage of reads aligned
to the assembly along with G/C content and database searches of sequences are used to
find contamination of other organisms in your sample and assembly[183][44].

In the following chapters I will present several methods for using genetic variation to
demultiplex single cell RNAseq mixtures and improve genome assembly and scaffolding.
I will generally use the word “I” when I have done the work alone and “we” when it was
done in collaboration with others.



Chapter 2

Clustering single cell RNAseq by
genotypes in mixed samples.

2.1 Background

Cells are the natural discrete building block of biology. And tissues are almost always
complex arrangements of multiple different cell types. Bulk RNAseq is a blunt instrument
measuring the average RNA content of many cells in a tissue. Advances in methods for
the preparation of samples containing minuscule amounts of nucleic acids have made
it possible to study the transcriptional state of single cells[310]. Single cell RNAseq
(scRNAseq) is a high precision instrument measuring the transcriptional profile of each
cell individually usually by physically separating cells into and delivering distinct barcode
sequences to templates generated from the mRNA of each cell[259]. Further advances
in nanodroplet and nanowell technologies have made it possible to apply scRNAseq to
thousands of cells simultaneously[211][355][106] instead of the plate based strategies that
usually were limited to hundreds of cells at a time[259].

Some samples contain cells of mixed genotypes including those of single celled or-
ganisms such as malaria infections, the gut microbiome, and environmental samples as
well as intrinsically mixed samples such as maternal/fetal, transplant patient, or tumor
samples. Additionally, mixing cells from multiple individuals into a single experiment
has become a popular experimental design because it makes the data more comparable
between individuals, reduces costs, and can improve doublet detection. In order to prop-
erly analyze them, one must first assign each cell to its genotype of origin. Some tools
and methods exist for this purpose[154][304][344] but each of them has some downside.
Demuxlet requires prior knowledge of the genotypes in the mixture. Vireo and scSplit
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use clustering initialization and optimization strategies that fall apart when individuals
in the mixture are related. And none of these model the ambient RNA in the system,
leading to multiple errors including over calling doublet cell barcodes. Ambient RNA in
single-cell RNAseq (colloquially ‘soup’) is a phenomenon in which RNA molecules from
cells that have lysed before cell partitioning are included in partitions with cells from
which they did not originate[348]. This adds noise to both the transcriptional profiles of
the scRNAseq experiment, but also the genotype analysis and demultiplexing of mixed
genotype samples. Cell hashing and lipid tagging require additional experimental steps
and are not applicable to innate mixtures because the samples must be separate at the
time of tagging.

In this chapter, I present souporcell, a tool containing a collection of algorithms
to support mixed genotype scRNAseq experiments[123]. To use the genetic variants
measured in the RNAseq reads to assign cells to their donor of origin, first I must describe
a strategy for calling reliable variants in scRNAseq data (figure 2.1a,b) and assigning
allele counts to cell barcodes (see figure 2.1c). I then describe the core algorithm of
souporcell, that of clustering cells by their genetic variants in the face of the sparse
measurements of expressed alleles by each cell (figure 2.1d). Next I describe the algorithm
used for determining which barcodes represent multiple cells instead of a single cell (figure
2.1e). And finally I describe a statistical model and coinference of the cluster genotypes
and amount of ambient RNA there is in the experiment (figure 2.1f).

I then demonstrate and benchmark souporcell against a dataset which was mixed
in silico and thus we retain full knowledge of the ground truth of which barcodes came
from which individual, which barcodes represent cross-genotype doublets, and how much
ambient RNA was simulated(see figure 2.6). To show that this dataset is a realistic
example, I then show the same results on an experimental mixture of cells from those
same individuals(shown in figure 2.7).

I compare this method to demuxlet, the previous gold standard method that requires
genotype information a priori, as well as two new tools that, like souporcell, do not require
prior genetic information[138][344] on the in silico mixture with various parameters of
the data (doublet rate, ambient RNA amount, minority cluster size) swept across a range
of values and evaluate clustering, doublet detection, and ambient RNA detection across
a wide range of data charactaristics. We sought to test souporcell on more challenging
cases and so chose tissue from highly related individuals (maternal-fetal placental and
decidual experiments). We also test on mixtures of the malaria parasite, Plasmodium
falciparum, which is challenging due to the cells having much lower expression levels



2.1 Background 45

Fig. 2.1: souporcell overview

a) First, the reads are remapped using minimap2, retaining the cell and UMI barcode for
downstream use. b),c) Then candidate variants are called using freebayes b and count the
allele support for each cell using vartrix c. d) Using the cell allele support counts, we cluster
the cells with sparse mixture model clustering(Methods). e,f) Given the cluster allele counts,
we categorize cells as doublets (e) or singletons and, excluding doublets, the amount of ambient
RNA is inferred along with the cluster genotypes(f ; see example for one cluster). Alt, alternate
allele; ref, reference allele.

than the human cells previously tested and without upfront knowledge of the number of
genotypes present in the sample.

I show that souporcell not only outperforms the competing methods, but also surpasses
the previous gold standard, demuxlet, on both cell assignment and doublet accuracy.
Furthermore, souporcell explicitly models and estimates the amount of ambient RNA
in the experiment, which is a major confounder of scRNAseq analysis with regard to
both expression and genotype. Souporcell is freely available under the MIT open source
license at https://github.com/wheaton5/souporcell.

https://github.com/wheaton5/souporcell
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2.2 Methods

2.2.1 Variant calling on scRNAseq data

In order to use the genetic variants in the scRNAseq reads to assign cells to individuals,
one must first call the variants accurately and assign which alleles were expressed by which
cells. Little work has been done on identifying genetic variants in bulk RNAseq[260][346]
let alone scRNAseq[94][137].

2.2.1.1 Remapping

Currently, the most popular software for the initial analysis of droplet based scRNAseq
data to generate the mRNA expression matrix is cellranger[355]. In the cellranger pipeline,
the reads are first mapped to a reference genome. RNA mapping and DNA mapping
software differ due to the intended downstream uses. With DNA mapping, accurate
variant calling is one of the primary applications and thus much work has been put
into providing accurate mapping quality scores and base level alignments making single
nucleotide polymorphisms (SNPs) and short insertions and deletions (indels) easy to
call accurately versus the reference genome used[198][197][187][99][71]. The mapping and
alignment operations are relatively computationally costly if accurate variant calling is
not one of the desired downstream uses. RNA mapping applications are usually primarily
concerned with just counts of reads per gene and sometimes differential RNA splicing.
Thus, the RNA community has developed software packages, some of which are faster but
do not provide base level alignments[30][253] and others that allow for gapped alignments
caused by the introns being spliced out[188][75][163][316]. But in optimizing for the
downstream applications of transcript counting and differential splicing, genetic variant
calling accuracy can suffer. In cellranger, the mapping component is done with the STAR
aligner[75] which, while sufficient for the purpose of counting gene expression, produces
artifacts in the alignments that produce many false positive variants.

One such source of false positives is the soft clipping penalty which is not a parameter
exposed to the user in the STAR software. It is often the case in WGS and even more so
in RNAseq that the starts and ends of reads can be less reliable than the rest of the read.
In addition to this, base level alignments toward the ends of reads can be error prone
because there is not a sufficient amount of sequence remaining for the “correct” alignment
to be the optimal alignment according to the alignment score. For example, an alignment
may prefer to take several single base mismatch penalties rather than a single true indel
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penalty. This tradeoff is more likely to happen towards the end of the read when there
are fewer bases remaining to align (see figure 2.2b). Because of this, mappers built for
variant calling such as BWA[198] and minimap2[197] have a relatively small one-time
penalty for soft clipping any number of bases from the end of an alignment[195]. The
STAR alignment soft clipping penalty is such that, in comparison with other aligners,
it can create many false positive variant calls produced entirely by bases at the ends
of reads (see figure 2.2b). Another source of small variant errors caused by the STAR
alignments is that the default indel penalty relative to the mismatch penalty is much
higher than that of variant calling ready aligners. These penalties will, for example,
prefer inducing 10 single base mismatches rather than a single 12 base indel. Further, it
will make the same error for reads spanning the indel but not make the error for reads not
spanning the indel causing those mismatches to potentially appear to be heterozygous
genetic variants.

Fig. 2.2: Star alignments’ indel and soft clipping problems

a

b

a) Reads that span more bases find a six base indel (upper right), but ones that span fewer
bases incur many erroneous single base mismatches without soft clipping. Minimap2 finds this
indel in all of the shown reads and soft clips some others with even later start positions. b)
In the second example, the reads have an adenosine homopolymer and partially match this
section of the reference. Minimap2 softclips these reads.

The indel penalty is exposed as a parameter to the user, but with the default
parameters (and thus with the output of cellranger) these errors exist. And finally, the
last source of errors these alignments induce are due to the leniency of spliced alignments
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that STAR has. With its default parameters including a max intron length of 200kb,
STAR will often include erroneous and statistically spurious spliced alignments of reads
that otherwise don’t align well. This creates alignments which match for some statistically
significant portion in one location and then are spliced to other loci often for as low
as an eight base segment that should, with high probability, occur by random chance
alone. Due to the nature of mapping qualities being assigned to the whole alignment
and not each segment of the alignment, these sections are often denoted as having a high
mapping quality when in fact the matches should occur by chance. If there is actually
an alternative allele in one of these regions to which some reads have spurious matches,
those reads, and thus those cells, appear to support the reference allele. These alignments
provide one further technical issue, which is that they dramatically slow down the pileup
and fetch commands in samtools[199] that are necessary for variant calling.

In order to show that the variant calls from STAR are error prone, we compared
the variants obtained with STAR and minimap2 bams versus a single cell experiment
done on cells from the Genome in a Bottle (GIAB) consortium cell line NA12878. In the
GIAB high confidence regions with a depth of at least 10 and a quality score of over 30,
44,036 variants were called from the STAR bam of which only 15,544 were in the GIAB
ground truth data leaving 28,492 likely false positives. In comparison, 25,743 variants
were called from the minimap2 aligned bam of which 12,055 were in the GIAB ground
truth and 13,688 false positives. Remapping with minimap reduces sensitivity some, but
drastically reduces false positives.

For these reasons first the reads are remapped with either BWA, minimap2, or hisat2.
I have found good results when remapping with minimap2 with a combination of long
read splice parameters and short read parameters. Specifically, the parameters for which
all analysis is done in this thesis are the following: minimap2 -ax splice -t 8 -G50k -k
21 -w 11 –sr -A2 -B8 -O12,32 -E2,1 -r200 -p.5 -N20 -f1000,5000 -n2 -m20 -s40 -g2000
-2K50m –secondary=no. Then, PCR duplicates are removed by identifying reads with
the same unique molecular identifier (UMI) barcode, cell barcode, and have the same
start and stop position.

2.2.1.2 Variant Candidate Calling

Once the reads are accurately mapped and aligned, one must then proceed to variant
calling. I assessed two strategies for calling variants on scRNAseq and assigning alleles to
cell barcodes. I first treated the sample as a population of cells and called variants with
freebayes in population variant calling mode[99][71][199]. Freebayes is a variant calling
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tool which looks at the differences between the reads and the reference genome to call
genetic variants. In its standard mode, it makes a diploid assumption and attempts to
build haplotypes to give more power. In population variant calling mode, each read is
labeled with a read group denoting an individual of origin. With this approach I assigned
each cell barcode to its own read group in the input bam and the variant caller produces
a population VCF with genotype calls for each cell for each locus. I also assessed treating
the sample as an unknown mixture of haplotypes. In this mode in freebayes, reads may
come from any individual, and variants are called without ploidy or labeled individual
assumptions. The output is simply the variants without labeling which cells have which
alleles. I then decide whether each cell has which alleles using the tool vartrix[94]. Our
analysis suggests these two strategies perform very similarly. Because the latter strategy
is much more computationally efficient, all further analysis is done with freebayes with
parameters –pooled-continuous -iXu -C 2 -q 20 -n 3 -E 1 -m 30 –min-coverage 6 and
vartrix with parameters –umi –mapq 30 –scoring-method coverage which will return a
sparse matrix market format indicating how many of the reference allele or alternative
allele each cell barcode expressed for each variant locus.

2.2.1.3 Cell allele assignment

Vartrix works by aligning each read to the reference sequence as well as the variant
sequence to determine which one it supports. Doing this rather than simply inspecting
the base level alignment improves reference bias and alignment end effects. For example,
when assessing if a read supports an insertion of an A in a homopolymer of adenosines
and the read does not extend past that homopolymer, the read will align without
the insertion even if it came from the haplotype with the insertion. Aligning to both
underlying sequences will produce the same alignment score and it is ambiguous which
allele the read represents.

2.2.1.4 Validation: Genome in a Bottle

We validated our variant calling accuracy by obtaining from 10x Genomics an scRNAseq
dataset run on cells from the Genome in a Bottle consortium individual NA12878 cell
line for which there are high quality ground truth variant calls available[358]. As the
scRNAseq data will only cover a subset of genes and because this dataset was relatively
low coverage, I will primarily focus on false positive rate and not sensitivity. Much of
this analysis was done by Yichen Wang as part of a rotation project in our lab. Initially
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we found a false positive rate of 35.6%, dramatically higher than the 1-2% you would
have with reasonable coverage whole genome DNA sequencing.

2.2.1.5 RNA editing

We sought to determine the causes of the remaining false positives so identified the
false positive SNPs called on the NA12878 scRNAseq data in high confidence regions
as defined by the GiaB resource and found that most (80.8%) of them are purine-to-
purine or pyrimidine-to-pyrimidine transitions when we considered the reference and
observations. A-to-G and T-to-C transitions happened in much higher frequency than
the remaining, making up 59.5% of total false positive sites (see table 2.1). Calling
variants from bulk RNA sequencing data also displayed a similar pattern, but using whole
exome sequencing data did not, linking the excessive purine-to-purine and pyrimidine-
to-pyrimidine transition specifically to RNA seq. We hypothesized that this could be
due to RNA editing. The most common RNA editing event is the deamination of
adenosine to inosine on pre-mRNA[357]. Inosine is then read as guanosine by reverse
transcriptase, resulting in a T-to-C event in the cDNA, which can explain A-to-G and
T-to-C SNPs in variant calling. Visualization in the Integrative Genomics Viewer[275]
validated the existence both reads with the false positive allele and reference allele in
SNP loci. Moreover, we observed that the reads that had the same UMI contained the
same allele, but not the reads that had the same cell barcode. This further supported
the hypothesis of RNA editing, because the the reverse transcriptase reading inosine
as guanine would be consistent for PCR duplicates of the cDNA, but not necessary for
all reads in one cell. And if these were due to sequencing errors, they would not be
consistent across all PCR duplicates. To test the hypothesis of RNA editing, we found
an RNA editing database (REDIportal[258]: http://srv00.recas.ba.infn.it/atlas/) and
removed the known A-to-I editing sites in our vcf files. Filtering out RNA editing sites
considerably reduced the amount of false positive variants (from 2884 to 1937) and kept
most true positive variants (from 8093 to 8073), leading to a reduction in false positive
rate from 35.6% to 24.0%. We also discovered that remapping with hisat2 could further
reduce false positive rate and improve sensitivity (9540 true positive loci, 1065 false
positive loci, false positive rate 11.1%). This is due to hisat2 using similar alignment
penalty parameters and soft clipping thresholds to the DNA aligners made for variant
calling while also being splice aware. However, this work was done after the souporcell
paper was published, so the results in this thesis are done with the minimap2 alignments
as previously stated.



2.2 Methods 51

Despite these results, the extent of RNA editing has been in debate in the literature
for some time[200][45]. Many potential causes for these discrepancies have been proposed
such as alignment edge effects and systematic sequencing artifacts. I assessed these
alignments for alignment edge effects and find that this is not a significant source of
these base differences. In our data, variants called from the STAR aligned bam have
significantly more of these than variants called by the minimap2 aligned bam. When
inspecting these, we find that minimap2 correctly gives these reads low mapping qualities
because there is a competing alternate mapping location. When assessing these found
in the minimap2 aligned bam, there is no alternative mapping location according to
minimap2, blat, or BWA. It could be the case that there is an alternative mapping
either not found by any of these tools or the alternative sequence is simply absent
from the reference genome. Another potential is that these come from errors in reverse
transcription. Potapov et al. used PacBio sequencing to compare errors in first strand vs
second strand synthesis to assess errors in transcription versus reverse transcription and
found RT errors also have a strong A->G bias[266]. Further research may be done on
this via Oxford nanopore direct RNA sequencing vs cDNA sequencing. The fact that
these are largely filtered when using the RNA editing database may simply be because
false RNA editing sites exist in the database. In any case, whether these are RNA editing
sites, mapping errors, RT errors, or from some other etiology, they are likely not germline
variants and our system will benefit from filtering them out.

Table 2.1: RNA editing as a source of false positive variant calls

a H
HHH

HHref
obs A T C G

A 0 54 69 867
T 55 0 849 80
C 77 289 0 75
G 326 68 70 0

b H
HHH

HHref
obs A T C G

A 0 54 69 395
T 55 0 376 80
C 77 289 0 75
G 326 68 70 0

a) False positives are primarily purine to purine and pyrimidine to pyrimidine with a notable
increase in A->G and T->C caused by the RNA editing adenosine to inosine. The inosine base
is then read as a guanine by the reverse transcriptase. b) shows the false positive profile after
filtering known RNA editing sites.
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2.2.2 Sparse mixture model clustering

In order to introduce this method, I must first motivate it with a description of the
data type and its particular difficulties with respect to clustering by genotypes. Each
cell barcode has reads from its transcription profile sampled very sparsely. In table 2.2
I show some basic statistics about two datasets — one with a mixture of six strains
of the malaria parasite Plasmodium falciparum which is a unicellular haploid parasitic
organism and the sample contains cells coming from all cell types found in the life cycle
in the human blood stage. And the other data set is a mixture of five human individuals
from the human induced pluripotent stem cell project. A filter is used requiring at least
four cells supporting each allele otherwise the variant is unlikely to be of almost any
use in discriminating between different genotypes in this mixture. As you can see, the
number of cells expressing any given locus is far fewer than the total number of cells and
the number of variants with a given number of cells expressing that variant drops off
dramatically as cells expressing a given locus increases. It is also evident that while the
human data contains more discriminating variants per cell, they are spread over many
more total variants thus making the overlap between any two cells very low.

Table 2.2: Single cell data statistics

malaria human replicate 1
number of cells 2608 4925
median UMI per cell 995 25155
total variants 39487 194079
median cells per variant 24 18
median variants per cell 667 2642
total discriminating variants 16783 77878
median discriminating variant per cell 512 2147
median cells per discriminating variants 55 38
median genes per cell 571 4812

To describe the souporcell clustering algorithm, I will start by making some definitions.

Definitions:

• K: number of genotype clusters to be fixed at the outset. Lower case k will be
used for indexing and referring to a specific cluster.
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Fig. 2.3: Single cell sparsity
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a) Shows the distribution of number of cells that have each variant and b) shows the distribution
of the number of variants expressed by each cell. Both of these are subset to only consider
variants that are used for discrimination. A variant is used for discrimination if it has at least
four cells expressing the reference allele and four cells expressing the alternative allele.

• C: number of cells. Lower case c will be used for indexing and referring to a specific
cell barcode. This barcode could have 0, 1, or more cells. It is important for some
assumptions in this model that the majority of barcodes contain a single cell.

• L: number of variant loci. Lower case l will be used to index and refer to a specific
locus. Only biallelic variants are used. Lc will be a list of loci with observed data
in cell c.

• A: Allele counts. Al,c is a vector of size 2 with the first number representing the
number of reference alleles and the second representing the number of alt alleles
seen at locus l in cell c.
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• ϕk,l: cluster center value representing allele fractions of cluster k at locus l. This is
a real number representing the fraction of ref alleles in this cluster at this locus.
The expected values should be near 1.0 (homozygous reference), 0.5 (heterozygous),
or 0.0 (homozygous alt) but will be skewed from these values by noise, doublets,
and ambient RNA.

• T : temperature parameter for deterministic annealing process which is described
later.

2.2.2.1 Model

A maximum likelihood strategy is used by maximizing L(data) under a given model.

argmax
ϕ

L(data, ϕ) (2.1)

The likelihood of the data, treating cells independently and marginalizing each cell
across the clusters it could belong to, is defined in equation 2.2. At each locus the
alternate allele count is modeled by a binomial with n as the reference + alternative
allele counts for that cell at that locus and ϕk,l as the cluster center value representing
the allele fraction for cluster k at locus l. Each locus is assumed to be a germline genetic
variant, but these may also represent false positive variant calls or somatic mutations. In
practice, this rarely matters as false positives should be independent between loci across
cells thus giving no clustering signal. And somatic mutation would need to represent
more genetic variation from the germline than the genetic differences between individuals
in order to cause incorrect clusterings.

Cluster model Likelihood function

L(A) =
∏
c∈C

∑
k∈K

1
K

∏
l∈Lc

(
Al,c,0 + Al,c,1

Al,c,1

)
ϕ

Al,c,1
k,l (1 − ϕk,l)Al,c,0 (2.2)

This model deals with sparsity naturally because if a cell has zero reference alleles and
zero alternate alleles, a binomial with any probability, zero observations, and zero trials
has a probability of one. Instead of uselessly multiplying many ones together, sites for
which a cell has no alleles can be ignored. One could then maximize this likelihood with
random initialization of cluster centers ϕ ∈ (0, 1) followed by expectation maximization
(EM), but there are some problems one can run into.
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2.2.3 Deterministic Annealing

This method, as is the case with many clustering algorithms, may suffer from local
optima in instances of poor initialization of the cluster centers ϕ. This problem increases
dramatically as the number of clusters increase. A standard solution to this problem is
to have multiple restarts with random cluster center initializations, but as the number of
clusters grows, the number of random restarts necessary to obtain the optimal clustering
with high probability is unsustainable[324][16]. In addition to this, the sparse nature
of the data increases the potential for local optima in the EM process. The two local
optima clustering may produce is when one individual is split across multiple clusters
and when multiple individuals are assigned to the same cluster. Some cells will express
certain loci and other cells will express other loci. This means that given a random
initialization of cluster centers, some cells from individual 1 may initially be more similar
to one cluster center and other cells from the same individual may be more similar to a
different cluster center because they happened to express different loci and the random
initialization happened to fall a particular way. This may lead two cluster centers to be
optimized for one individual.

Another approach to overcoming local optima in clustering is to initialize the cluster
centers intelligently. The most simple initialization strategy is to initialize cluster centers
to the values of individual data points (a particular cell in this case) as opposed to
randomly in the space, but due to the sparse nature of the data, this would only assign a
small minority of the dimensions, the rest of which would need to be random. Other
smart cluster center initializations such as kmeans++ are also not particularly applicable
to sparse datasets[15]. Not having access to these cluster center initialization strategies
is limiting and makes it more likely that at initialization, multiple individuals’ cells will
match a single cluster.

Without intelligent cluster center initialization as a straight forward option, I turned
to methods which are better able to find their way out of local optima. Expectation
maximization is known to be less susceptible to local optima as compared to kmeans
clustering due to the logsumexp formula which is a smooth maximum (often called
softmax) that falls out of marginalizing each data point across all clusters in log space[351].
Another clustering algorithm—K harmonic means—uses a similar technique choosing the
harmonic mean of the distances from a datapoint to all clusters rather than K means’
distance to the closest cluster center (the min function) as a loss function to be optimized.
The harmonic mean can be thought of as a smooth minimum function. Both of these
strategies allow a datapoint to partially affect cluster centers that are not their current
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best cluster center. Over time, this can lead a cluster center that is not currently the best
cluster for many data points to drift towards the ones that are closest to it. As it does
so, it may reduce the impact those data points have on another cluster. The combination
of these effects tends to improve both of the primary error modes of clustering—splitting
a true cluster across two cluster centers and assigning data points from multiple true
clusters to a single cluster center. These soft maximum and soft minimum functions can
be thought of as a continuous spectrum of how soft, or smooth, they are—from min or
max to uniform. The shape of these functions between these extremes also matter, but
the degree of smoothness tends to matter more. A comparison of these functions can be
seen in figure 2.4.

Fig. 2.4: A comparison of smooth minimum and maximum functions

Harmonic mean is smoother than logsumexp, but applying an annealing temperature to
logsumexp can make it arbitrarily smooth.



2.2 Methods 57

There is another method, deterministic annealing1, which allows the degree of how
smooth the function is across the optimization process[318][276] (see figure 2.4). Deter-
ministic annealing, similar to the older and more widely known simulated annealing[166],
takes its namesake from a process in metallurgy in which a metal object is heated to
a high temperature and then cooled slowly in a controlled fashion that improves the
molecular crystal structures and alters certain properties of the resulting product. They
take their mathematical inspiration from statistical mechanics by treating the negative
log likelihood as the energy of the system and in an attempt to find the minimum free
energy, apply a temperature which begins high and is slowly reduced over time. The
temperature dictates the degree of trade-off between exploration of a search space and
exploitation of local gradients in the likelihood landscape.

Because the problem lends itself to a simple statistical model and deterministic
annealing allows us to vary this tradeoff throughout the optimization process, I chose the
deterministic annealing variant of expectation maximization for our clustering algorithm.
The annealing process requires us to choose a meta-heuristic which is the temperature
schedule. In deterministic annealing, the starting temperature is more important than
in simulated annealing. With simulated annealing, a high temperature simply means a
uniform search over the space regardless of the likelihood landscape. In deterministic
annealing applied to clustering, if the temperature starts too high, it makes the data
point’s posteriors for each cluster uniform. After a few iterations of expectation max-
imization, the cluster centers may all be nearly identical making the gradients going
forward vanishingly small leading to a symmetry breaking local optima. How smooth the
soft max function needs to be is a function of the magnitude of the log-likelihoods of each
data point, which, in this application, is largely dictated by how many alleles each cell
expresses. Through empirical experimentation, I chose to initialize our temperature to
one tenth the average number of alleles expressed by each cell. At each temperature step
expecation maximization is run until the change in total log likelihood between steps is

1Rather than knowing or finding this method, I rediscovered it. I initially used the binomial loss
function and had poor results. I implemented a sum of squared differences loss function and had much
better results. I moved on and attempted to publish the work. Reviewer 2 asked why I didn’t use the
binomial loss function. I considered telling him that I tried it and the sum of squares loss function
worked better. But this was unsatisfying. So I dug into why this was the case and the reason was that
initially the likelihoods from the binomial loss preferred one cluster over another so much from the first
step of random initialization, that they might never change to another cluster. This made me think
of simulated annealing with the softening of the likelihood search space. I formulated the equivalent
mathematical adaptation that that stochastic process took to this deterministic process which ended up
being the same as this method published 22 years earlier. Satisfying, but perhaps I should have just
done a more thorough literature search at the outset.
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minimal (<0.1) which is used as the criteria of convergence. At each new temperature
step, the temperature is halved until it is less than one at which point a final step is run
at a temperature of one which reduces to the original likelihood function in equation 2.2.
Cluster centers are randomly initialized and the optimization is run 50 times by default
and the solution with the maximum total likelihood is chosen as the best solution. At
each temperature step, a temperature modified posterior for each cell belonging to each
cluster is defined as follows.

pT (c ∈ k) = e
log(L(Ac,k))

T∑
i∈K e

log(L(Ac,i))
T

(2.3)

Which gives our maximization step according to the following equation.

ϕ′
k,l =

∑
c∈C Al,c,1pT (c ∈ k)∑

c∈C(Al,c,1 + Al,c,0)pT (c ∈ k) (2.4)

In figure 2.5 you can see that deterministic annealing is better able to find the global
optimum likelihood than expectation maximization and that even when it seems to be
stuck in a local optimum, as is seen in the log likelihood plateaus in the graph, it is
much more likely to find its way out. This becomes much more extreme as the number
of individuals, or clusters, there are. And interestingly it also becomes more extreme as
the amount of data per cell increases. This may be counter intuitive as you would think
the amount of data per cell would make it easier to find the optimal clustering. But
instead, the additional data makes the posterior probability for each cell to a cluster be
closer and closer to zero or one even at a given random initialization of cluster centers.
As the amount of data increases, the log likelihoods are of higher magnitude and the
smoothness of the logsumexp function at higher magnitudes is less. The result of this
is that it is very common for a given cluster center to be highly preferred over other
clusters potentially for multiple individuals’ cells and their effect on other clusters to be
vanishingly small. This is why it is important both to use deterministic annealing as well
as to use the amount of data per cell as a guide for the starting temperature.

2.2.4 Combinatorial experimental design for individual to clus-
ter matching

There has been some concern in the community that it will be difficult to know which
cluster corresponds to which individual after deconvolution with multiplexed scRNAseq
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Fig. 2.5: EM vs Deterministic Annealing on four and eight individuals

Deterministic annealing finds the optimal clustering (and thus highest likelihood) in all cases
whereas EM fails in one random restart with four individuals. With eight individuals, EM fails
in several random restarts while Deterministic annealing still finds the optimal clustering every
time. This difference becomes much more dramatic with more individuals / clusters.

experiments when genotypes are not known a priori. To address this, I propose an
experimental design involving m overlapping mixtures for 2m − 1 multiplexed individuals
outlined in table 2.3. Each individual is assigned a binary number 1..2m, where each bit
corresponds to the inclusion (1) or exclusion (0) from each of the mixtures. This gives
each individual a unique signature of inclusion/exclusion across the mixtures. Although
each sample is in a different number of mixtures, the number of cells per experiment can
be adjusted according to the number of mixtures that contain that sample. Souporcell
provides a tool to match clusters from two experiments with shared samples.
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Table 2.3: Experimental design for matching individuals to clusters

a Mixture 1 2 3
Individual a 0 0 1
Individual b 0 1 0
Individual c 0 1 1
Individual d 1 0 0
Individual e 1 0 1
Individual f 1 1 0
Individual g 1 1 1

b Mixture 1 d e f g
Mixture 2 b c f g
Mixture 3 a c e g

This table outlines an experimental design of seven individuals with three overlapping mixtures
to allow for clusters to be assigned to individuals. a) Shows the mapping of individuals to
binary numbers where each digit of the binary number represents inclusion/exclusion from a
mixture. b) shows the resulting mixtures.

2.2.5 Doublet cell barcode detection

One of the major aims of this work is to detect the barcodes that contain multiple cells
with different genotypes. I do not, however, attempt to detect barcodes that contain
multiple cells with the same genotype. I make the assumption that the generation of
doublet cell barcodes is a random Poisson process and that the rate of this Poisson
process is low enough that the chance of droplets with more than two cells are exceedingly
unlikely. This is true for the standard experimental design, but is not in the case of
super loading cells into the system. As discussed in chapter 1, I advise against this for
several reasons. I view this problem as an urn problem in which each cluster is an urn
containing alleles expressed by all of the cells assigned to that cluster. Then each cell is
inspected to determine if its alleles were more likely to be drawn from the single best
cluster or the allele counts of the combination of the top two clusters for this cell.

Definitions:

Ak,l Allele counts at locus l for all cells in cluster k according to the maximum probability
cluster assignment from our clustering. This is a vector of size two with the ref
and alt allele counts.

Allele counts of each cell at each locus are treated random variables drawn from a
beta-binomial distribution from either a single cluster or a pair of clusters. The beta-
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binomial is used to model our uncertainty in the binomial parameter p. For a single
cluster the parameters are alpha = 1+alt counts and beta = 1+ref counts. For the
singleton case, the likelihood of the data is as follows.

L(c ∈ Ki) =
∏

l∈Lc

(
Al,c,0 + Al,c,1

Al,c,1

)
β(Al,c,0 + 1 + Ai,l,0, Al,c,1 + 1 + Ai,l,1)

β(1 + Ai,l,0 + Ai,l,1)
(2.5)

Where β is the beta function and cluster i is the best fitting cluster for cell c.
The expected allele fractions of a doublet coming from cluster i, and cluster j is the
average of the allele fractions of the two clusters. To obtain the pseudocounts needed
to parameterize the beta-binomial, the counts of alleles from the cluster with the fewer
alleles at this locus are used. That is,

alphal,i,j = 1 +
Ai,l,0

Ai,l,0+Ai,l,1
+ Aj,l,0

Aj,l,0+Aj,l,1

2 min(Ai,l,0 + Ai,l,1, Aj,l,0 + Aj,l,1) (2.6)

betal,i,j = 1 +
Ai,l,1

Ai,l,0+Ai,l,1
+ Aj,l,1

Aj,l,0+Aj,l,1

2 min(Ai,l,0 + Ai,l,1, Aj,l,0 + Aj,l,1) (2.7)

The doublet likelihood given those conservative parameters becomes

L(c ∈ Ki ∪ Kj) =
∏

l∈Lc

(
Al,c,0 + Al,c,1

Al,c,1

)
β(Al,c,0 + alphal,i,j, Al,c,1 + betal,i,j)

β(alphal,i,j + betal,i,j)
(2.8)

The posterior for each cell being a doublet is then given by

p(doubletc|c) = p(c ∈ Ki ∪ Kj)p(doublet)
p(c ∈ Ki ∪ Kj)p(doublet) + p(c ∈ Ki)(1 − p(doublet)) (2.9)

Where cluster i is the best fitting cluster for cell c and cluster j is the second best fitting
cluster for cell c. The prior can be set by the user but have used an uninformed prior of
0.5 for all of our analysis.

The above process is run iteratively removing doublets found until no new doublets
are found.
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2.2.6 Ambient RNA detection and Cluster genotype coinfer-
ence

One major goal of clustering scRNAseq by genotypes is calling the genotypes for each
individual/cluster. But as previously discussed, there can be lysed cells in solution
prior to cell partitioning which contribute a background noise to both genotypes and
transcriptional profiles. This ambient RNA gives a fuzzy picture of the transcriptional
profile and makes cluster genotypes which are in truth homozygous appear heterozygous.
Luckily with genotype mixtures, the prior knowledge of ploidy of the organisms can be
used along with our genotype cluster assignments to make a co-inference of both the
genotypes and level of ambient RNA in the experiment.

2.2.6.1 Mixture model of ambient RNA and cell RNA

Definitions:

• ρ: probability any given allele is arising from ambient RNA as opposed to from the
cell associated with that barcode. This will be learned.

• P : ploidy. Currently, only ploidy of one or two is supported.

• Al: total allele expression at locus l. This is again a vector of length 2 denoting
the reference and alternative allele counts.

• g: used to denote the number of copies of the reference allele. The expected
reference allele rate without ambient RNA is g and g is an integer value [0..P ].
Note that for biallelic variants and ploidy 1 or 2, g is sufficient to uniquely determine
the genotype.

• p(true): prior for variant being a true variant vs a false positive. The default is 0.9
which was the value used for all analyses.

Once again, a maximum likelihood approach is taken.

argmax
ρ

L(data, ϕ) (2.10)

Here, the proportion of ambient RNA in the system, ρ, is the only free parameter and
is optimized using maximum likelihood. The model treats each locus in each cluster as
coming from one of three genotypes for diploid (0/0, 0/1, 1/1, here denoted by g = 0, 1,
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or 2) and two genotypes from haploid (0, 1). Each cluster is treated as independent and
each locus as independent, before marginalizing across the possible genotypes. The model
also considers the possibility of the variant being a false positive. In this case, the variant
will not segregate into distinct allele frequencies between different clusters and it will most
likely not attain a value close to the standard allele frequencies expected from the diploid
or haploid genotypes. Thus, the allele counts in each cluster are modeled as having come
from a mixture of ambient RNA (an average allele fraction in the experiment) and from
the cells in that cluster. The observed allele fractions are assumed to have been drawn
from a binomial distribution with a probability that was skewed away from p = g/P by
the level of ambient RNA ρ. Thus, the probability of the binomial from which the allele
counts are drawn for true positive variants is the following.

ptp = (1 − ρ) g

P
+ ρ

Al,0

Al,0 + Al,1
(2.11)

For a false positive the parameter is

pfp = Al,0

Al,0 + Al,1
(2.12)

Thus, the full model is

p(data|ρ) =
∏
l∈L

[
p(true)

∏
k∈K

P∑
g=0

1
P

(
Ak,l,0 + Ak,l,1

Ak,l,0

)
p

Ak,l,0
tp (1 − ptp)Ak,l,1

+ (1 − p(true))
∏

k∈K

(
Ak,l,0 + Ak,l,1

Ak,l,0

)
p

Ak,l,0
fp (1 − pfp)Ak,l,1

] (2.13)

2.2.6.2 Inference

We solve for ρ with gradient descent using the statistical modeling domain specific
language STAN. Next, the posterior of the variant being a true variant is calculated for
each of the three (or two in the haploid case) genotypes versus it being a false positive.
The prior on variants being true positives can be set by the user, but defaults to 0.9
which is the value used in our analyses.
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2.3 Results

2.3.1 Benchmarking: Synthetic human cell mixture

Currently, there are no good generative models available for batch effects, allele-specific
expression, ambient RNA, and doublets in scRNAseq that can be used to generate in
silico data for testing methods that cluster by genotype. To generate realistic data with
known ground truth we sequenced five lines of induced pluripotent stem cells (iPSCs)
from the Human iPSC initiative[305] with the 10x Chromium single cell system, both
individually and in a mixture of all five lines (with three replicates of the mixture). Each
mixture contained 5-7,000 cells and 25,000 UMIs per cell. We first synthetically mixed
20% of the cells from the 5 individual samples while retaining their sample of origin.
To make the synthetic mixture as close to real data as possible, I also simulated 6%
doublets by switching all of the reads’ barcodes from one cell to that of another cell
and 5% ambient RNA by randomly switching cell barcodes for 5% of the reads. A low
dimensional representation of the expression matrix reveals relatively little variation, as
expected, because there is only one cell type present (2.6a). Indeed, the most significant
driver of expression appears to be the donor of origin, but the donor cells overlap in
expression patterns and it is not possible to assign a donor to each cell based solely on
expression patterns.

Fig. 2.6: Synthetic human mixture

a) Expression PCA of a synthetic mixture cells from five HipSci cells lines (n=7073 cells) with 5%
ambient RNA and 6% doublets colored by known genotypes. Because these samples only contain one
cell type, the largest remaining source of variation in the expression profile comes from the genotype,
although the signal is not sufficient for accurate genotype clustering. b) Elbow plot of the number of
clusters versus the total log likelihood showing a clear preference for the correct number of clusters
(k=5). c and d) PCA of the normalized cell-by-cluster log likelihood matrix from souporcell (n=7073
cells). As this is a synthetic mixture in which the ground truth is known, the genotype clusters are
colored and errors are highlighted in orange (false positive doublets) and pink (false negative doublets).
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2.3.2 Benchmarking: Real human cell mixture

Next I compare to a true mixture of human cells in which the ground truth is not known.
The results (shown in 2.7) are strikingly similar to those in 2.6 which suggest that our
synthetic mixture is realistic.

Fig. 2.7: Experimental human mixture

a) Expression PCA of a single replicate of the experimental mixtures (n=4925 cells) colored by
genotype clusters from souporcell. b) Elbow plot of the total log likelihood versus different
numbers of clusters showing a clear preference for the correct number of clusters. c and d)
PCA showing the first four PCs of the normalized cell-by-cluster log likelihood matrix colored
by cluster (n=4925 cells).

2.3.3 Benchmarking: demuxlet paper dataset

In order to demonstrate souporcell on an external and widely used benchmark dataset,
I downloaded the three overlapping mixtures from the demuxlet paper[154] . Sample
A contains a mixture of four donors’ PBMCs, Sample B contains a mixture of four
different donors? PBMCs, and Sample C contains a mixture of all 8 donors’ PBMCs.
I synthetically combined this data into a single dataset and clustered with souporcell.
Figure 2.8a shows that the resulting clusters either contain cells from Sample A or Sample
B, but not both as is expected from this experimental setup. I also show that the first
cluster of the doublet assignments are also largely consistent with this experimental
design (figure 2.8b).

2.3.3.1 Deconvolution of overlapping mixtures

To enable identification of which cluster is which individual using the overlapping mixture
experimental design outlined in Table 1, I provide a tool shared_samples.py that takes
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Fig. 2.8: Demuxlet data

a) souporcell cluster assignments of singletons for combined dataset showing that Sample A
and Sample B are non-overlapping and Sample C contains all 8 samples. b) shows the first
cluster of the doublet assignment for doublets showing largely non-overlapping assignments
between Samples A and B.
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as input two souporcell output directories and the number of samples which are shared.
It compares the sum of squared differences of the allele fraction of confident (>95%
confident genotype call in all clusters) shared variant calls between clusters in the two
experiments and outputs the best matches for the number of shared samples. I tested this
using multiple synthetic mixtures of 5 HipSci cell lines with 6% doublets and 5% ambient
RNA and gave both as input to the shared_samples.py tool and it correctly assigned the
clusters in one run to the clusters in the second experiment which corresponded to the
same samples. I also ran souporcell on the three demuxlet datasets separately and ran
the shared_samples.py tool on Sample A vs Sample C and Sample B vs Sample C and it
confidently identified the non-overlapping clusters in Sample C which correspond to A
and B.

2.3.3.2 Validation and comparison to other methods

I compare souporcell to demuxlet, vireo, and scSplit. Demuxlet uses the prior knowledge
of the individuals’ genotypes along with a statistical model to assign cells to genotypes
and call doublets. It does not model ambient RNA, and due to the rigid model may
interpret ambient RNA and other sources of noise as signal that this cell is more likely
a doublet than a single genotype. Souporcell, Vireo, and ScSplit all cluster cells by
genotype without requiring genotypes a priori and also all use cluster center based
clustering methods. Vireo uses variational inference EM. The self regularizing nature of
variational inference has a similar effect to souporcell’s deterministic annealing by having
less confidence in the cluster assignments until the clusters much better match the data.
Vireo also over clusters initially by adding additional cluster centers. Then once the
variation inference has converged, vireo picks the overclustering clusters that are the
smallest and tries to identify which larger cluster these cells could belong to. While this
can help with local maxima, this can run into problems when the some true clusters have
a very small number of individuals. After some dialogue with the author of Vireo, the
later versions pick the clusters which are most different than other clusters as the final
clusters rather than throwing out the small clusters. scSplit uses an iterative process to
find the most informative SNPs, using them to cluster, and using that clustering to find
the most informative SNPs for further iterations. In the clustering process, they use EM
and only use multiple random restarts to get around local maximum which will begin
to fail when the number of clusters is high. In addition to this, there appears to be a
math error in the scSplit paper in which the binomial loss function excludes the binomial
coefficient. It is not clear to me what affect this will have on the clustering process,



2.3 Results 68

but will weight loci improperly. As discussed previously, souporcell uses a cluster center
based approach which is robust to ambient RNA and false positive variants and uses a
determinisic annealing approach to overcoming local maxima in the clustering process.
These combined produce reliable clustering across many sample types and error modes.

To compare souporcell to vireo and scSplit, the two other tools that do not require prior
genetic information, I first ran variant calling and cell allele counting as recommended
for each tool. Using souporcell, I clustered cells by their genotypes, and evaluated the
correct number of clusters through an elbow plot comparing the total log probability
versus a varying number of clusters (2.6b). The clustering output can be viewed as a
matrix with cells as rows and clusters as columns with the values being the log likelihood
of that cell versus the corresponding cluster. To visualize the five clusters identified by
genotype I carried out a PCA of the normalized log likelihood matrix, which reveals a
clear separation of the clusters, with interspersed doublets (2.6c and d). For these data
souporcell assigned 6612/6622 singletons and 415/451 doublets correctly; four singletons
were falsely labeled as a doublet, 35 doublets were misidentified as singletons, and one
doublet and four singletons were unassigned. I carried out the same analysis for the three
replicates of the experiment mixtures and show results for one (2.7). The expression
PCA (Fig. 2e) and normalized cell-cluster loss PCA (2.7c,d) of the experimental mixture
were similar to the synthetic mixture indicating that the synthetic mixtures were an
accurate approximation of real mixtures. To compare doublet detection between methods,
I calculated a receiver-operator characteristic (ROC) curve of the doublet calls (2.9i) on
a synthetic mixture with 6% doublets and 10% ambient RNA that showed the area under
the curve values of 0.98 and 0.91 for souporcell and vireo, respectively. I also show point
estimates for the doublet threshold chosen. Demuxlet’s posterior doublet probability
output did not have enough significant digits and is 1.0 until it starts varying with 27%
false positives. The default doublet probability threshold for demuxlet gives nearly 40%
false positive doublets.

Each of the five human iPSC lines has existing WGS data generated as part of the
HipSci Project[161]. Therefore, for the experimentally mixed replicates, I compared each
tool’s clustering to sample assignments obtained from demuxlet using genotypes available
from the WGS. Demuxlet significantly overestimates doublets versus expectations based
on the number of cells loaded[355] especially as ambient RNA increases (2.9b). Because
I could not trust the doublet calls of demuxlet, I allowed scSplit, vireo, and souporcell
to exclude their called doublets and then compared the remaining cells to demuxlet’s
best single genotype assignment. The Adjusted Rand Index (ARI) of the remaining cell
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assignments versus demuxlet were 1.0 (fully concordant) for souporcell and vireo across
the three replicates and an average of 0.97 for scSplit.

To evaluate the robustness of each tool across a range of parameters, I created
synthetic mixtures of the five individual human iPSC scRNAseq experiments to test both
the sensitivity to the ambient RNA level (2.9b,c) and the ability to accurately assign
cells to a cluster if it is much smaller than other clusters (2.9d). For the ambient RNA
experiment, I synthetically combined 20% of the cells from each of the five individual
samples and simulated 6% intergenotypic doublets and a range of ambient RNA from
2.5%-50% representing realistic ranges previously reported[348]. I found that souporcell
and vireo retain high accuracy with souporcell being more robust at accurately calling
doublets in high ambient RNA cases (figure 2.9c). The ARI of scSplit and demuxlet
suffered due to poor doublet detection. With these data I also show that souporcell
is able to accurately estimate the amount of ambient RNA in the experiment (figure
2.9c). To test robustness to sample skew, e.g., one donor’s cells are underrepresented, I
created a set of synthetic mixtures with 1,000 cells from each of four individual samples
and 25-800 cells for the minority cluster including 8% ambient RNA and 6% doublets
(2.9d). I found that all tools performed well down to the minority cell cluster comprising
only 1.2% (50 cells) of total cells (Fig. 2m), but only souporcell and vireo were able to
correctly identify all minority sample singletons as their own cluster down to 0.6% of all
cells. Again, demuxlet’s poor ARI was due primarily to extremely high levels of false
positive doublets (figure 2.9a).

I then compared souporcell’s genotype and ambient RNA co-inference to vireo and
scSplit versus the variants called from whole genome sequencing data. In scRNAseq data
most variants have very low coverage per cluster compared to what would be generated
from WGS data, thus the genotype accuracy is significantly lower than one would attain
with genome sequencing. Nevertheless, souporcell surpasses both vireo and scSplit in
genotype accuracy on a synthetically mixed sample with 6% doublets and 10% ambient
RNA. The most common error mode for vireo and scSplit is calling homozygous reference
loci as heterozygous variants, which is expected when ambient RNA is not accounted for,
as it is not in these two tools.

2.3.4 Maternal-Fetal data

Next, we considered more challenging scenarios involving multiple cell types, widely
varying numbers of cells per sample, and closely related genotypes. The decidua-placental
interface plays an important role in pregnancy and birth, and is of importance to several
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Fig. 2.9: Comparison to competing methods

a) ROC curve of the doublet calls made by souporcell and vireo and a point estimate for scSplit
(blue dot) for a synthetic mixture with 6% doublets 451/7073 and 10% ambient RNA. I show
both the curves and the threshold chosen (points) for each tool. scSplit did not give a score so
I simply show the point estimate. Demuxlet’s doublet probabilities were all 1.0 until the solid
line starts, so I show a theoretical dotted line up to that point. b) Doublet call percentages for
all tools on synthetic mixtures for varying amounts of ambient RNA versus the actual doublet
rate (dotted line). c) Adjusted Rand Index (ARI) versus the known ground truth of synthetic
mixtures with 6% doublets and a varying amount of ambient RNA. For levels >=10% ambient
RNA, scSplit identified one of the singleton clusters as the doublet cluster, which means that
the ARI was not clearly interpretable. Right y-axis vs points shows the estimated ambient
RNA percent by souporcell versus the simulated ambient RNA percent. d) ARI of each tool on
a synthetic mixture with 8% ambient RNA and 6% doublet rate with 1,000 cells per cluster for
the first four clusters and a variable number of cells in the minority cluster (25-800 cells in the
minority cluster).
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diseases, including pre-eclampsia[326]. Recently, more than 70,000 cells were profiled by
scRNAseq[232] to explore the transcriptional landscape at this interface. The decidua
is primarily composed of maternal cells with some invading fetal trophoblasts, while
the placenta is largely composed of cells of fetal origin with the exception of maternal
macrophages. In the study exploring this interface[326], WGS from blood and placenta
was used to genotype both mother and fetus, and demuxlet was used to assign cells to
each individual. Here, I applied souporcell, vireo, and scSplit to two placental samples
and one decidual sample from a single mother to determine if cellular origins could
be established without reference genotypes. I show the expression t-SNE of a single
placental sample labeled by cell type annotation[326] and colored by genotype cluster
as assigned by each method (2.10). While souporcell clusters agree with demuxlet and
segregate with the expected cell type clusters, vireo and scSplit have major discordances
with demuxlet. This is similar for the other samples tested. Comparing souporcell to
demuxlet, there are 21 cells that demuxlet labels as maternal or fetal but which appear
in the other individual’s cell type clusters. Based on the position of these cells in the
expression t-SNE plot, it is most likely that these are errors in the demuxlet assignments
that are not made by souporcell.

2.3.5 Plasmodium

I also tested souporcell on a non-human sample, the single-celled malaria parasite
Plasmodium falciparum, for which single cell approaches are now used to explore natural
infections[134]. Malaria infections often contain parasites from multiple different genetic
backgrounds, and it is not possible to separate the strains prior to sequencing. These
samples differ from human samples in a variety of ways; they are haploid when infecting
humans, the genome is > 80% A/T, and the transcriptome is only ∼ 12 megabases
(genome is ∼ 23 Mb). We generated three datasets containing six genetically distinct
strains of P. falciparum sampling 1893-2608 cells with median UMIs of 1000. Analysis of
the expression profile of one of these reveals that the genotypes are distributed across the
Plasmodium intra-erythrocytic cycle (2.11a) while being well separated in normalized loss
cluster space(figure 2.11b,c). The ARI for each method on the three Plasmodium data
sets show superior performance for souporcell across the board, with scSplit suffering on
all datasets and vireo performing poorly on one, which had an ARI versus demuxlet of
0.24. This sample was more difficult due to sample skew caused by a clonal expansion of
one of the six strains.
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Fig. 2.10: Maternal/fetal data

Cell expression t-SNE plots of n=3,835 cells colored by each tool’s genotype assignments or
clusters for a placental sample. Cell phenotype clusters and cell genotype clusters co-segregate,
with the majority of cell types being of fetal origin with the exception of maternal macrophages
and *maternal decidual stromal cells, the latter of which (found only in one donor) were
considered to be a non-placental artefact arising from the surgical procedure and were removed
during data quality control in the original study[326]. Concordance is high between souporcell
and demuxlet (ARI 0.96) whereas vireo and scSplit have large discordances with ARI of 0 and
0.03 respectively.
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Fig. 2.11: Plasmodium data

b) Expression PCA colored by genotype clusters for Plasmodium sample 1 (n=2608 cells)
showing an even spread of genotypes throughout the asexual lifecycle. b and c) PCAs of first
four PCs of souporcell’s normalized cell-by-cluster loss matrix showing good separation of each
genotypic cluster (n=2608 cells).

We did three Plasmodium falciparum mixture experiments. In the one shown above
(Plasmodium1), the cells were mixed and immediately prepared for single cell sequencing.
In the Plasmodium2 sample, the cells were mixed and then fixed in methanol before
being prepared for scRNAseq. In the Plasmodium3 sample, cells were mixed and then
grown in culture for seven days prior to single cell sequencing. Because the initial mixture
was not very equal, the majority strain out grew the other strains dramatically. This
caused the number of cells from some of the other strains to contain very few cells and
be more difficult to cluster. Figure 2.12 shows the results of the 2nd and 3rd mixtures.
The Plasmodium3 sample which was cultured for seven days prior to being sequenced
did not cluster into six clusters well. The elbow plot seemed to support a K of 3 more
than the true number of strains mixed. This shows some of the limitations of souporcell
and clustering in general with highly skewed number of cells per sample.

2.3.6 Twenty one individual mixture demonstration

I demonstrate that souporcell is capable of demultiplexing many donors by creating a
synthetic mixture of 21 different individuals, which given the current recommendations
from 10x on cells per run would be a high-end number of donors to multiplex. To generate
this 21-donor mix, I used the 5 HipSci samples described in figure 2.6 and added to them
16 PBMC samples obtained from the Human Cell Atlas Census of Immune Cells. From
each dataset I randomly selected 1000 cells with at least 4000 UMIs and simulated 10%
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Fig. 2.12: Plasmodium data replicates

a) Distribution of number of variants observed per cell used for clustering (with at least 4 cells
required to support each allele) and the total number of variants used for clustering on the
Plasmodium1 sample. b) Distribution of counts of the number of cells expressing each allele
used for clustering as well as the total number of cells in the Plasmodium1 sample. c) Elbow
plots for each Plasmodium data set show relatively strong support for the correct number
of clusters (6) for Plasmodium1, but less clear results for Plasmodium2, which suffered from
higher amounts of ambient RNA, and for Plasmodium3 due to bias towards three genotypes
rather than a relatively even mixture. For this reason, I analyzed Plasmodium3 with k=3.
d) Expression PCA of the Plasmodium2 sample (1893 cells) colored by genotype clusters as
called by souporcell. e) Confusion matrix heatmap of the demuxlet best single strain (Y axis)
versus souporcell, vireo, and scSplit. For souporcell one cluster per strain is seen as expected.
Both vireo and scSplit have the majority strain, 3D7, split across two clusters and two other
strains combined into a single cluster. f) Expression PCA of the Plasmodium3 sample (2293
cells) colored by genotype clusters as called by souporcell. g) Confusion matrix heatmap of the
demuxlet best single strain (Y axis) versus souporcell, vireo, and scSplit genotype clusters with
k=3. Souporcell clusters out the 3D7 and 7G8 strains correctly and puts all other cells into the
final cluster while both vireo and scSplit put 3D7 into two clusters and all other cells into the
remaining cluster.
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doublets and 2.5% ambient RNA by altering the cell barcodes, as described above. I
clustered these with souporcell and the software correctly identifies 1690 of the 2100
synthetic doublets. A further 69 cells were unassigned, and in total has an ARI of 0.95.
Excluding all doublets the ARI is 0.98. I found that a total of 134/16800 singletons
misassigned where 129 of them are CB8 cells assigned to the CB3 cluster. I show later
that this is likely because the CB8 sample is contaminated by another (non CB3) donor.
2.13 shows the UMAP projection of the normalized cluster log likelihood matrix. It is
clear that souporcell is able to handle at least 21 distinct donors and accurately assign
cluster identities to the majority of cells.

Because the misassignment of CB8 cells accounted for >95% of singleton errors, we
suspected this may be due to contamination. I repeated this experiment with several of
the replicates of the CB8 donor and found consistent results. I then made a synthetic
mixture of CB3 and CB8 in order to determine if this was due to the large number of
donors and it was not. I still found that roughly 20% of CB8 cells would cluster with
CB3, but if given 3 clusters, all of those cells formed their own cluster. This made us
suspect that the CB8 sample was contaminated with cells from a different (non CB3)
donor.

2.3.6.1 Contamination revealed

To further test whether the CB8+CB3 “misassignment” was an error or true signal, I
created a synthetic mixture of all cells from both the CB8 sample and the CB3 sample.
I ran souporcell with a range of K from 1 to 5 and plotted the elbow curve shown in
figure 2.14a and the PCA of the cell cluster likelihoods for the clearly optimal number
of clusters which was three. This PCA has good separation and gives good evidence
that the CB8 sample was contaminated with cells from another donor that were most
likely more closely related to the CB3 sample than the CB8 sample. I followed up with
the creators of the census of immune cells data resource and they said that they were
already aware of a contamination in the CB8 sample. This corroborated discovery was
not picked up by the vireo team, which used the same data with which they reported
high concordance. This shows further the power of souporcell for detection of unexpected
events such as sample contamination.
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Fig. 2.13: 21 donor example

UMAP of the normalized log likelihood cluster matrix for the singletons of a mixture of the 5
HipSci samples and the 16 PBMC samples from the Human Cell Atlas project. The main error
is the assignment of 129 CB8 cells to the CB3 dominant cluster indicated by the arrow. I show
that this is likely due to contamination (see figure figure:contamination).
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Fig. 2.14: Contamination revealed

a) Elbow plot of CB8+CB3 synthetic mixture with 3% doublets shows a clear preference for
three clusters rather than the expected two. b) Shows the PCA of the normalized cell by
cluster log likelihood matrix (n=2716 cells) showing three distinct genotypes.

Fig. 2.15: Performance on low UMI counts

a) The synthetic mixture of 5 HipSci cell lines with 6% doublets and 5% ambient RNA with
UMIs downsampled shows predominantly good clustering, but performance drops below 800
UMIs/cell. b) The clustering is consistently good with downsampled cells down to an average
cell per cluster of 40. The cluster with the fewest cells in the 40 average cells per cluster had 20
cells.
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2.3.6.2 Downsampling experiments for cells and UMIs

In order to explore the regime for which it is still possible to accurately demultiplex
mixed samples, I used our synthetically mixed 5 HipSci samples and downsampled UMIs
(figure 2.15a) and cell (figure 2.15 b) and report the ARI versus the ground truth. I
found that while overall clustering remains good, cell assignment accuracy decreases
below 800 median UMI per cell and that accuracy remains high down to an average of
40 cells per cluster (see figure 2.15b).

2.4 Discussion

Here I have presented souporcell, a method for clustering scRNAseq cells by genotype using
sparse mixture model clustering with explicit ambient RNA modeling. Our benchmarks
show that souporcell can outperform all other currently available methods, including
those that require genotypes a priori. Using more realistic and challenging test cases
than previous studies, I show that souporcell is robust across a large range of parameters,
and more so than any other currently available method. Moreover, souporcell is highly
accurate for challenging datasets involving closely related maternal/fetal samples, and
varying mixtures of Plasmodium falciparum strains. Limitations of souporcell include low
signal to noise due to decreased UMI per cell and high numbers of donors causing increased
local maxima. Due to the advantages that mixtures give to scRNAseq experiments in
ameliorating batch effects, improving doublet detection, and allowing for ambient RNA
estimation, souporcell enables donor multiplexing designs to be used more easily than was
previously possible, including in situations when no WGS or genotyping data are available.
In addition to reducing cost and allowing for more complex and robust experimental
designs, souporcell also enables valuable genotype information to be extracted and
ambient RNA estimation at no additional cost.

I believe that mixing individuals will become a more and more popular experimental
design due to the advantages it brings. When using genetic variation as the signal for
demultiplexing and doublet calling, some general guidelines should be followed. While
we have made great advances in the ability to demultiplex mixtures with a large number
of individuals, it remains the case that clustering and doublet calling difficulty increases
with the number of individuals especially in low coverage datasets. In addition to this, as
the number of individuals increases, the number of cells per individual decreases assuming
total cell loading remains constant. If a small enough number of cells is sampled from an
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individual, minority cell types of interest may not be sampled. Increasing the cell loading
(superloading) is not recommended much beyond 10k cells recovered as the increase to
multiplets it creates makes clustering and doublet detection more difficult and the errors
it introduces may corrupt downstream analysis. For this reason, a reasonable guideline
might be to limit the number of individuals mixed to around 10 thus sampling 1000
cells on average from each individual with 10k cells recovered resulting in a 10% doublet
rate. It should also be noted that sequencing the sample more deeply improves the
performance of these methods as long as more UMIs are being sampled. Due to cost,
many single cell experiments sample relatively few UMI (<4k, <2k sometimes) per cell.
I recommend to sample at least 4k UMI/cell and performance continues to increase as
more UMI are sampled. The more individuals per experiment, the more data it will take
to accurately cluster and call doublets.

Further research should be done to evaluate demultiplexing and doublet calling on
heterogeneous cell types. This should include evaluation of co-expression between cell
types and samples with non-overlapping cell types. The maternal/fetal data contained
different cell types for different individuals, but an evaluation of co-expression was not
done. In the extreme case of non-overlapping expression patterns and non-overlapping
cell types between individuals, clustering by genotype will not be possible. In practice,
there are so called house keeping genes which are widely expressed by most cell types
making this problem moot, but more analysis should be done to quantify this potential
problem and its likelihood in various datasets.



Chapter 3

High quality assembly of a single
Mosquito

3.1 Background

Exciting efforts to sequence the diversity of life are building momentum[193] but one
of many challenges that these efforts face is the small size of most organisms. For
example, arthropods, which comprise the most diverse animal phylum, are typically
small. Advances in long read sequencing over the past decade have revolutionized genome
assembly and reference genome creation[85][109], but until recently the DNA requirements
for these technologies were relatively high. This made long read sequencing of single
individuals impossible for many small species due to the amount of DNA that can be
extracted even when consuming the whole specimen. In the standard assembly process,
when considering sequences which have inexact homology, one must decide whether the
differences arose from errors, haplotype differences, or paralogous sequences. If it is
determined that the differences are due to heterozygosity, an assembler would collapse the
sequence. However, if the assembler decides the sequences are repeats and thus represent
different locations (close or distal) in the genome, they should be assembled separately
(see figure 3.1). As the haplotype differences increase, it reduces the assembler’s ability to
distinguish paralogous sequences from haplotype differences for higher divergent repeats.
When one cannot distinguish these processes and no reads span the repeat (and if it
is due to haplotype differences, no reads will span as the homology is highly likely to
continue), the contig must end to avoid chimeric misassemblies. This results in fractious
and error prone genome assemblies. One could, of course, pool multiple individuals
together to meet the DNA requirements, but this has serious downsides. Using a pool
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of individuals increases the number of haplotypes being sequenced and increases the
expected haplotype differences which reduces one’s ability to distinguish paralogous
sequences from haplotype variation. Moreover, the structural variation in the pool of
haplotypes can cause further problems in assembly. These problems are accentuated in
these small species that require pooled long read sequencing, because, while levels of
heterozygosity within species vary widely across taxa, intraspecific genetic variation is
often highest in small organisms[191].

Fig. 3.1: Assembly of inexact homologous sequences: heterozygosity vs paralogous
sequences

a

b

Inexact homologous sequences and how they would be assembled if the differences are due to
a) paralogous sequences or b) heterozygous differences.

To address these problems, over the past two decades, reference genomes for many
small organisms have been built through considerable efforts of inbreeding organisms to
reduce their heterozygosity levels such that many individuals can be pooled together for
DNA extractions with more similar haplotypes. This approach has varied in its success,
for example working well for organisms that are easy to inbreed (e.g., many Drosophila
species[77]), but less well for species that are difficult or impossible to inbreed (e.g.,
Anopheles[244]). Therefore, many efforts to sequence genomes of small organisms have
relied primarily on short-read approaches due to the large amounts of DNA required for
long read sequencing. For example, the recent release of 28 arthropod genomes as part of
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the i5K initiative used four different insert size Illumina libraries, resulting in an average
contig N50 of 15 kb and scaffold N50 of 1 Mb[312].

Another way to overcome DNA input requirements, while also reducing the number
of haplotypes present in a DNA pool, is to limit the number of haplotypes in the pool of
individuals by using offspring from a single cross. This is easier than multiple generations
of inbreeding, and can be successful. For example, a recent PacBio Aedes aegypti assembly
used DNA extracted from the offspring of a single cross, thus reducing the maximum
number of haplotypes for any given locus to four, thereby improving the assembly process
and achieving a contig N50 of 1.3 Mb[219]. These four haplotypes will have recombined
with each other in the cross, but recombinations are fairly rare and do not greatly increase
the haplotype differences problems in assembly. Even this may run into problems though.
For example, in species that mate multiple times and store sperm in a spermatheca as is
the case in many diptera[62][124] it may be difficult to create a pure single cross from a
wild caught individual.

However, for an initiative like the Earth BioGenome Project[193] that aims to build
high-quality reference genomes for more than a million described species over the next
decade, generating broods to reach sufficient levels of high molecular weight DNA for
long-read sequencing will be infeasible for the vast majority of organisms. Therefore, new
methods that overcome the need to pool organisms are needed to support the creation of
reference-quality genomes from wild-caught individuals to increase the diversity of life
for which reference genomes can be assembled. Here, we present the first high-quality
genome assembled with unamplified DNA from a single individual insect using a new
workflow that greatly reduces input DNA requirements. Until recent advances in long
read library preparation1[164], it was not possible to obtain enough DNA from a single
individual of small organisms such as mosquitos to create a long read sequencing library
from one individual. But for many other smaller species, this still remains the case. And
it also remains the case for nanopore sequencing. Whether it is possible to decrease the
input requirements for nanopore sequencing and to what extent are currently unknown.

In this chapter we discuss the process of making the first high quality assembly of a
single mosquito and assess its quality and completeness. We first discuss the methods
used for high molecular weight (HMW) DNA extraction and resulting length profiles. The
extraction was done at the Sanger Institute, but the sequencing was done in California.
A DNA fragment size profile is included to show the DNA length degradation from

1My friend and former coworker, Brendan Galvin, was the person at PacBio who made these library
preparation improvements.
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transit. We then discuss the new low input library prep and the sequencing used. We
outline briefly the curation steps taken that resulted in changes to the assembly before
going through each analysis in detail. Assembly quality is then assessed first through
comparison of contiguity of the assembly and curated assembly against the current gold
standard reference genome (Agam4 PEST). Next completeness and assembly duplication
are inspected via comparing to known orthologous gene sets with BUSCO (Benchmarking
Universal Single-Copy Orthologs). Finally, I do a series of genome comparisons to the
PEST reference. In this, I am able to identify and correct a misassembly and uncover
significant remaining duplicated haplotype assembly sequence and its cause. In this
analysis, I am also able to find many improvements our assembly makes over the PEST
assembly including placing of previously unplaced genes in their chromosomal context.
We also dramatically reduce the number of assembly gaps. I found significant evidence of
collapsed complex repeats in PEST that have been accurately expanded in our assembly.
I then found an order-and-orientation error in the PEST reference. Finally, I show the
contig coverages of the PEST reference aligned to the PacBio assembly and how much of
the UNKN contigs are likely haplotigs and visually show the placement of other UNKN
sequence.

This work was done over two years ago now, and the field is rapidly evolving. Many
of the procedures described in this chapter have become common practice and have been
further improved with the advent of the HiFi data type from PacBio. Today, even higher
quality genomes are being produced on a regular basis. This work represents the first,
but not the last or best genome assembly of a small organism.

The genome we use for comparison was built using bacterial artificial chromosomes
(BACs) and Sanger sequencing, the same basic technology initially used to create the
human reference genome, which is highly accurate but extremely labor intensive and
expensive. Our assembly allows for the use of a single individual, is relatively cheap,
and is more accurate and complete than the previous gold standard Anopheles genome.
With some additional data, or by scaffolding against the PEST reference as shown in
this chapter, it would also be more contiguous with fewer gaps.

3.2 DNA Isolation

The DNA isolation was carried out by Juliana Cudini, a fellow PhD student.
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High molecular weight (HMW) DNA was isolated from a single Anopheles coluzzii
female from the Ngousso colony. This colony was created in 2006 from the broods of
approximately 100 wild-caught pure Anopheles coluzzii females in Cameroon (pers. comm.
Anna Cohuet). Although the colony has been typically held at >100 breeding individuals,
given the long time since colonization, there is undoubtedly inbreeding. A single female
was ground in 200 µl PBS using a pestle with several up and down strokes (i.e., no
twisting), and DNA extraction was carried out using a Qiagen MagAttract HMW kit
(PN-67653) following the manufacturer’s instructions, with the following modifications:
200 µl 1X PBS was used in lieu of Buffer ATL; PBS was mixed simultaneously with
RNAse A, Proteinase K, and Buffer AL prior to tissue homogenization and incubation;
incubation time was shortened to 2 h; solutions were mixed by gently flicking the tube
rather than pipetting to reduce shearing and maximize extracted DNA length; and
subsequent wash steps were performed for one minute. Any time DNA was transferred,
wide-bore tips were used. These modifications were in accordance with recommendations
from 10X Genomics HMW protocols that aim to achieve >50 kb molecules. The resulting
sample contained 250 ng of DNA, and we used the FEMTO Pulse to examine the
molecular weight of the resulting DNA. This revealed a relatively sharp band at 150
kb (figure 3.2). The DNA was shipped from the U.K. to California on cold packs, and
examined again by running 500 pg on the FEMTO Pulse. While a shift in the molecular
weight profile was observed as a result of transport, showing a broader DNA smear
with mode of 40 kb (figure 3.3), it was still suitable for library preparation (note that
this shifted profile is coincidentally similar to what is observed with the unmodified
MagAttract protocol). DNA concentration was determined with a Qubit fluorometer
and Qubit dsDNA HS assay kit, and 100 ng from the 250 ng total was used for library
preparation.

3.3 Library prep and Sequencing

Library prep and sequencing were performed by scientists at PacBio.

A SMRTbell library was constructed using an early access version of SMRTbell
Express Prep kit v2.0 from Pacific Biosciences (PacBio). Because the genomic DNA
was already fragmented with the majority of DNA fragments above 20 kb (figure 3.3),
the sequencing library preparation protocol was modified to exclude an initial shearing
step, which facilitated the use of lower input amounts, as shearing and clean up steps
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Fig. 3.2: Anopheles coluzzii single mosquito HMW DNA extraction

Femto Pulse evaluation of the Modified MagAttract DNA extraction prior to shipment to
California.

typically lead to loss of DNA material. After following the Express template preparation
protocol, the final clean up step was simplified to just two AMPure purification steps to
remove unligated adapters and very short DNA fragments. The size and concentration
of the final library (figure 3.3) were assessed using the FEMTO Pulse and the Qubit
Fluorometer and Qubit dsDNA HS reagents Assay kit, respectively. This resulted in a
final library with a size distribution peak around 15 kb (figure 3.3).

Sequencing primer v4 and Sequel DNA Polymerase 3.0 were annealed and bound,
respectively, to the SMRTbell library. The library was then sequenced on the Sequel
System with Sequel Sequencing Kit 3.0. 1200 minute movie with 120 minute pre-extension
and Software v6.0. A total of three SMRT cells were run generating on average 24.2 Gb
of data per SMRT Cell, with average insert lengths of 8.1 kb (insert length N50 ≈13
kb, table 3.1). This is double the standard exposure time allowing for more data out
of the same sample. However, extending exposure times has diminishing returns. The
overall library yield was 59%, which would have allowed for the sequencing of at least 8
SMRT Cells, thereby potentially allowing for genome sizes 2-3 times larger or organisms
that yield 2-3 times less DNA in extraction than studied here in conjunction with this
protocol.
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Fig. 3.3: Anopheles coluzzii input and resulting library DNA lengths

FEMTO Pulse traces and gel images (inset) of the genomic DNA input (black) and the final
library (blue) before sequencing.

Table 3.1: Run statistics for Sequel SMRT Cells.

Loading Gb/cell Mean N50 Mean N50
concentration Polymerase Polymerase Subread Subread

Read Read Length Length
Length Length

5 pM 24.1 40290 116615 8185 12978
5 pM 23.6 40077 114807 8254 13132
6 pM 25.0 47177 122898 8012 12751
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3.4 Assembly

The assembly was run by Sarah Kingan, Senior Scientist at PacBio. My main role was
in quality assessment and comparative genomics.

The genome was assembled using FALCON-Unzip, a diploid assembler that captures
haplotype variation in the sample[52]. A single subread per zero-mode waveguide (ZMW)
was used for a total of 12.8 Gb of sequence from three SMRT Cells, or 48-fold coverage
of the 266 Mb genome. Subreads longer than 4559 bp were designated as seed reads
and used as template sequences for preassembly/error correction. A total of 8.1 Gb of
preassembled reads was generated ( 30-fold coverage). After assembly and haplotype
separation by FALCON-Unzip, two rounds of polishing were performed to increase the
consensus sequence quality of the assembly, aligning the PacBio data to the contigs and
computing consensus using the Arrow consensus caller[51]. The first round of polishing
was part of the FALCON-Unzip workflow and used a single read per ZMW that was
assigned to a haplotype. The second round of polishing was performed in SMRT Link
v 6.0.0.43878, concatenating primary contigs and haplotigs into a single reference and
aligning all subreads longer than 1000 bp (including multiple subreads from a single
sequence read, mean coverage 184-fold) before performing genomic consensus calling.
The alignments (BAM files) produced during the two rounds of polishing were used
to assess confidence in the contig assembly in regions with rearrangements relative
to the AgamP4 PEST assembly for Anopheles gambiae (GenBank assembly accession
GCA_000005575.2)[129][294]. We referred to the first round of polishing as using unique
subreads and the second round as using all subreads.

We explored the performance as a function of the number of SMRT Cells used for the
assembly (table 3.2), and found that while a single SMRT Cell was insufficient to result in
high-quality assembly, data from two or three SMRT Cells generated a highly contiguous
assembly of the correct genome size. We proceeded with the three-cell assembly for all
subsequent analyses because it gave the most contiguous and complete assembly results.

3.5 Curation

The contigs were screened by the Sanger Institute and NCBI to identify contami-
nants and mitochondrial sequence[132]. Windowmasker was used to mask repeats
and the MegaBLAST algorithm was run (with parameter settings: -task megablast
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Table 3.2: Assembly quality vs the amount of data used.

1 SMRT cell 2 SMRT cells 3 SMRT cells
Total bases (Gb) 23.6 48.5 72.7

Total unique bases (Gb) 4.46 8.31 12.8
Unique coverage 17x 31x 45x

Assembly size (Mb) 150 265 271
Number of contigs 3,290 815 580
Contig N50 (Mb) 0.066 1.5 3.5

Statistics for Anopheles coluzzii de novo genome assemblies as a function of the number of
SMRT Cells used for the assembly. One cell failed to assembly the whole genome. Two and
three cells assembled the majority of the genome but quality improved with 3 cells.

-word_size 28 -best_hit_overhang 0.1 -best_hit_score_edge 0.1 -dust yes -evalue 0.0001
-min_raw_gapped_score 100 -penalty 5 -perc_identity 98.0 -soft_masking true -outfmt
7) on the masked genome versus all complete bacterial genomes to find hits with greater
than 98% homology[234][47]. One contig (#20) was identified as a complete 4.24 Mb
bacterial genome, closely related to Elizabethkingia anophelis, which is a common gut
microbe in Anopheles mosquitoes[179][44]. It was separated from the mosquito assembly
and submitted to NCBI separately. We also identified two contigs of mitochondrial origin
that each contained multiple copies of the circular chromosome. Full length copies of the
mitochondrial chromosome in the higher quality contig differed by only a single base and
the consensus sequence was reported as the mitochondrial genome. One of these copies
was discarded.

In addition, I screened the primary assembly for duplicate haplotypes using Purge
Haplotigs[273] with default parameters and coverage thresholds of 20, 150, and 700. While
FALCON-Unzip resolved haplotypes over 30% of the genome, 110 genes appeared as
duplicated copies in the BUSCO analysis, indicating that highly divergent haplotypes may
be assembled as distinct primary contigs as has been observed in other mosquito genome
assemblies[220][105]. The presence of duplicated haplotypes can result in erroneously low
mapping qualities in resequencing studies and cause problems in downstream scaffolding.
Using the Purge Haplotigs software[273], I identified 165 primary contigs totalling 10.6
Mb as likely alternate haplotypes, although there remains a possibility that some may
be repeats. These contigs were transferred to the alternate haplotig set.

In the process of comparing the assembly to the PEST reference (described later), I
found one large potential heterozygous interchromosomal rearrangement between 2L and
3R (see figure 3.5). Upon further exploration, this was not supported by any subreads
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mapping across the breakpoint (figure 3.5). The putative breakpoints were identified by
aligning the PacBio contigs to PEST with minimap2 (asm5 setting)[197], and the start
and end position of each aligned subread was determined using bedtools bamtobed[270].
This 4.9 Mb contig had no reads spanning the putative breakpoint when either unique or
all subread alignments were examined and thus I designated this a chimeric misassembly,
and split the contig into two.

3.6 Assembly quality assessment

Using the FALCON-Unzip assembler[52], the resulting primary de novo assembly consisted
of 372 contigs totaling 266 Mb in length, with half of the assembly in contigs (contig N50)
of 3.5 Mb or longer (table 3.3). FALCON-Unzip also generated 665 alternate haplotigs,
representing regions of sufficient heterozygosity to allow for the separation of the maternal
and paternal haplotypes. These additional phased haplotype sequences spanned a total
of 78.5 Mb (i.e., 29% of the total genome size was separated into haplotypes), with a
contig N50 of 223 kb (table 3.3).

Table 3.3: Assembly statistics

Initial Curated PEST
Assembly Assembly reference

Primary
Assembly

Size (Mb) 266 251 224
Number Contigs 372 206 27,063
Contig N50 (Mb) 3.52 3.47 0.025

Alternate
Haplotigs

Size (Mb) 78.5 89.2 unresolved
Number Contigs 665 830 N/A
Contig N50 (Mb) 0.22 0.199 N/A

3.6.1 BUSCO analysis: completeness and duplication/haplotig
retainment

To evaluate genome completeness and sequence accuracy of the currated assembly, we
performed alignment analyses to a set of conserved genes. Using the diptera set of the
BUSCO (Benchmarking Universal Single-Copy Orthologs) gene collection, we observed
98% of the 2800 genes were complete and >95% occurred as single copies (table 3.4). By
comparison, the previous assembly had 87.5% complete BUSCO alignments, indicating
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that a fraction of the genome was missing in that assembly. The percentage of duplicated
genes was reduced from 3.9% to 2.4% after curation. Additional analyses are required to
distinguish true gene duplication events from incomplete purging of duplicated haplotypes
(see discussion below and figure 3.6). In addition, we evaluated assembly completeness
against a curated set of genes (AgamP4.10 gene set) from the Anopheles gambiae PEST
reference, using a previously described script[175]. We aligned to the primary assembly a
closely related species gene set (the most recent Anopheles gambiae (AgamP4.10) gene
set), resulting in 14,972 alignments (99.5%) and an average alignment length of 96.6%,
and with >96% of alignments showing no frame shift-inducing indels.

Table 3.4: BUSCO analysis.

Gene count (%) Initial Curated PEST
Assembly Assembly Reference

Complete 2745 (98.0) 2747 (98.1) 2448 (87.5)
Complete Single Copy 2635 (94.1) 2680 (95.7) 2446 (87.4)
Complete Duplicated 110 (3.9) 67 (2.4) 3 (0.1)

Fragmented 25 (0.9) 25 (0.9) 190 (6.8)
Missing 29 (1.1) 28 (1.0) 160 (5.7)

Total 2799 (100) 2799 (100) 2799 (100)

Analysis of single copy conserved genes using BUSCO v3.0.2 and the diptera gene set. Initial
assembly: primary contigs from the 3-cell de novo FALCON-Unzip assembly. Curated assembly:
Primary contigs after removal of bacterial contaminants and duplicated haplotypes. Previous
reference from[129] GCA_000150765.1.

3.6.2 Comparison to Anopheles gambiae PEST reference

The Anopheles gambiae genome, published in 2002, was created using BACs and
Sanger sequencing[129]. Further work over the years to order and orient contigs im-
proved this reference[294][295] and to date, AgamP4 (https://vectorbase.org/organisms/
anopheles-gambiae/pest/agamp4) remains the highest quality Anopheles genome among
the 21 that have now been sequenced[245]. However, there are many problems with this
reference genome. AgamP4 PEST still has 6302 gaps of Ns in the primary chromosome
scaffolds ranging from 20 bases to 36 kb, including 55 gaps of 10 kb that the AGP (A
Golden Path) file on Vectorbase annotates as contig endings. The AgamP4 genome was
generated from a lab strain known as PEST (Pink Eye STandard) that is long deceased
and also was an accidental mixture of two incipient species, previously known as ‘M’ and
‘S’. To address this, the genomes of pure ‘M’ and ‘S’ from new colonies established in Mali

https://vectorbase.org/organisms/anopheles-gambiae/pest/agamp4
https://vectorbase.org/organisms/anopheles-gambiae/pest/agamp4
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were sequenced using only Sanger sequencing[189]. Since then, the ‘S’ form has retained
the name Anopheles gambiae sensu stricto, and the ‘M’ form has acquired species status
and a new name, Anopheles coluzzii[53]. It is important to note that while these species
show assortative mating, they can hybridize in nature and their hybrids are fully fertile
and viable[5]. Given this fact, and the fact that both pure species assemblies remain
highly fragmented, I compared our assembly to the best available Anopheles gambiae
genome (i.e., AgamP4 PEST) to evaluate contiguity and to help order and orient the
contigs.

To assess the quality of contig assembly and concordance with existing assemblies,
the curated primary contigs were aligned to the PEST Anopheles gambiae reference
genome [129][294] using minimap2 with the map-pb settings[197]. For the purpose of
comparison, contigs were ordered and oriented according to their median alignment
position and majority alignment orientation on the chromosome to which they had
the most aligned bases. A python script was used in conjunction with ggplot using
geom_segments to generate alignment plots. This software is an alternative to the
commonly used nucmer/mummer[181] and is available at https://github.com/wheaton5/
assembly_comparison_scripts. One important difference is that these only show the single
best alignment for a given span of contig sequence and is not a dotplot which would show
all similar sequences above some threshold.

The new PacBio assembly is highly concordant with the AgamP4 PEST reference over
the entire genome, allowing the placement of the long PacBio contigs into chromosomal
contexts (see figure 3.4). In addition, the high contiguity of the PacBio contigs allows for
the resolution of many gaps in the chromosomal PEST contigs. Note that the only gaps
in the PacBio assembly are at contig ends, whereas there are many gaps in PEST that
are not annotated as contig breaks so the percent Ns per megabase of PEST is overlaid
in the graphs in figure 3.4.

3.6.3 Identification and correction of misassembly

Large regions (>200 kb) of discordant alignment of the contigs to the PEST reference
were inspected further. Discordant alignments were categorized into one of three cases. 1.
Large portions of a single contig aligned discordantly (e.g., to multiple PEST reference
chromosomes). 2. Large regions in PEST where multiple assembly contigs aligned to the
same reference region. 3. Large region in PEST where assembly contigs did not align.

First, I considered discordant alignments where large portions of a single contig
aligned in very different locations of the PEST reference. Using the alignment plots

https://github.com/wheaton5/assembly_comparison_scripts
https://github.com/wheaton5/assembly_comparison_scripts
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Fig. 3.4: Comparison of the assembly with the PEST reference

Alignment of the curated PacBio contigs to the AgamP4 PEST reference. Alignments are
colored by the primary PEST reference chromosome to which they align but are placed in
the panel and Y offset to which the contig as a whole aligns best. Contig ends are denoted
by horizontal lines in the assembly and vertical lines in PEST. However, there are many Ns
in PEST not annotated as contig breaks so the percent Ns per megabase of PEST is overlaid
(scale on the right Y axis). There are no Ns in the PacBio assembly, but there may be gaps
between the PacBio assembly contigs.
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as described above, I colored each alignment by that contig’s primary chromosome.
Immediately one cross-chromosome contig alignment stuck out (see figure 3.5). I then
evaluated the evidence for the assembly join at this breakpoint by aligning the subreads
to the assembly and inspected the breakpoint region in IGV (figure 3.5). I found a repeat
sequence that reads from each end would align into, but found no reads that spanned
the repeat. This indicated to us that this was a chimeric misassembly, and I split the
contig into two.

I also noted many smaller cross-chromosome alignments between contigs which
primarily aligned to one of the five of PEST’s chromosom-arm scaffolds and the UNKN
(unknown) scaffold (not a true scaffold, just a collection of unplaced contigs). This is
discussed further in section 3.6.8 by using these alignments to place genes and other
genomic sequence in its proper chromosomal context which were previously unplaced.

3.6.4 Remaining haplotig sequence on ends of contigs

Next, large discordant regions where multiple contigs align to the same region in PEST
were identified and evaluated. I found these regions by running samtools depth on the
contig-PEST alignments, compressing to a bed file of contiguous regions of the same
coverage, and then plotting to visually see where large sections are discordant (see figure
3.6). Using this, I found several very large segments of coverage two. Further inspection
was done by zooming in to those regions specifically in the alignment plots. I observed
that ends of contigs were aligned to the same position in the PEST genome. I then
mapped the subreads to the assembly and assessed coverage in these regions. As expected
if these were haplotig regions, the coverage was roughly half in the overlapping alignment
regions. This clearly revealed that contigs were assembling the two haplotypes separately
and were not removed by purge haplotigs. This is because purge haplotigs looks for
contigs that are fully contained by another contig and it keeps the longer contig and
removes the shorter haplotig. This results in regions where the assembly has assembled
both haplotypes separately but one contig does not fully contain the other contig, the
haplotig sequence remains (see figure 3.6). This realization spawned another project
in our lab to improve haplotig purging by combining coverage of reads mapped to the
assembly with sequence similarity to identify and remove haplotig sequence even when
not fully contained by another contig[112] improving on the two previously available
methods[273][135].

And finally, I considered large discordant regions in which no assembly contigs align
to the PEST reference. In general this is rare in the chromosomal scaffolds. Most of the
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Fig. 3.5: Chimeric assembly

A chimeric contig between 2L and 3R. A. Alignment of PacBio contigs to PEST identifies
a candidate chromosomal rearrangement. B. IGV screenshot of breakpoint (orange arrow)
localized by alignment of contig to PEST. Red: alignment to 2L, turquoise: alignments to 3R,
navy blue: alignments to other chromosomes and unplaced contigs. C. IGV visualization of
mapped unique subreads at breakpoint shows 0 subreads mapping across the central repetitive
region into the unique flanking sequence on the left (2L) and right (3R) (stars). A count of
spanning reads was also determined with bedtools bamtobed utility. The 6.5kb central region
aligns to four loci in the PEST genome and has 370 bp of sequence similarity to the Tc1-like
transposase gene in Anopheles gambiae.
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Fig. 3.6: Evidence of remaining haplotig contig ends.

Alignment and coverage plot (top) of the PacBio assembly contigs relative to PEST, and
magnification of one area of excess coverage (bottom). In the top panel, the number of
alignments of PacBio contigs to PEST are represented by black bars, with most of the genome
showing a 1:1 correspondence to PEST. Red denotes Ns in the reference. Isolated areas of
higher number of contig alignments are visible, one of which (black box) is magnified in the
bottom panel. Here, the ends of neighboring contigs overlap, which is currently not resolved
with the Purge Haplotigs software since the overlap is only partial. The sequencing depth of
PacBio reads for the central (blue) contig (57F) corroborate this interpretation, exhibiting half
of the expected coverage in the greyed regions of contig overlap, and with the corresponding
ends of the red and green contigs complementing with the other half of coverage, respectively
(not shown for clarity).
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zero contig-coverage areas of the contig on PEST alignment file are location in which the
PEST contains Ns. And the large majority of zero contig coverage areas are in the UNKN
scaffold. I explored the largest of the zero contig coverage region in the chromosomal
PEST scaffolds (figure 3.7). I saw that this region is flanked by sections of Ns and that
very few PacBio subreads map to the non N regions between indicating that this sequence
may be low quality, possible derived from contamination, or be a biological difference
(large insertion in PEST) between the two species.

3.6.5 Expansion of previously collapsed repeat

The new PacBio assembly makes many improvements when compared to the PEST
assembly. For example, a single contig from the new PacBio assembly expanded a tandem
repeat region on chromosome 2L that in PEST was collapsed, while also filling in many
Ns (gaps) in PEST, and also spanning a break between PEST scaffolds set to 10,000 Ns
(see figure 3.8).

3.6.6 Corrected order and orientation vs PEST scaffolding

I also identified several potential rearrangements in the 20-22 Mb region of the X
chromosome (see figure 3.9). PEST has contig breaks at the putative breakpoints relative
to the assembly, however, given that a single PacBio contig spans the full region and
that potential breakpoints relative to PEST are supported by multiple reads, the most
likely explanation is an order and orientation issue in PEST, perhaps combined with a
potential inversion difference between Anopheles coluzzii and the PEST reference. In
addition, the contig contains a relatively large region ( 380 kb in total) of PacBio sequence
corresponding to several pieces in the UNKN section of PEST that can now be assigned
to the X chromosome.

3.6.7 Identification of some UNKN PEST sequence as hap-
lotigs

The PEST annotation also retains a large bin of unplaced contigs (27.3 Mb excluding Ns)
designated as the UNKN (unknown) chromosome. Previously, I mapped either assembly
contigs onto the PEST reference or subreads against the assembly. Now I show the
reverse of the former and map PEST contigs onto the assembly. If an UNKN contig
alignment overlaps a chromosomal contig alignment versus the assembly (both with
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Fig. 3.7: No contig coverage region

Top: outlines large region with zero coverage in chromosomal scaffold 3R on PEST reference.
Middle: Zoom in of alignment plot in that region with Ns track showing regions of Ns flanking
this sequence with another section of Ns in the middle. Bottom: shows subread depth when
aligned to the PEST reference showing decreased mapping in this region.
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Fig. 3.8: Example of expansion of previously collapsed repeat

Example of a compressed repeat in PEST that has been expanded by the PacBio assembly.
Dotted vertical lines represent a gap in the PEST assembly (10,000 Ns) between scaffolds, which
is now spanned by the single PacBio contig. Coverage plot of the PacBio subreads aligned to
PEST (bottom) highlights the region where excess coverage indicates a collapsed repeat in
PEST, in contrast the coverage of PacBio subreads aligned to the PacBio contig (left) is more
uniform.
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Fig. 3.9: Resolved order and orientation error in PEST scaffolding

Alignment of X pericentromeric contigs to PEST, highlighting likely order and orientation
issues in the PEST assembly that are resolved by a single PacBio contig.
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mapping quality (mapq) 60), it is likely to be a haplotig in the UNKN (see figure 3.10).
In total, I find that 7.27 Mb are haplotigs (i.e., also have high quality PEST chromosomal
alignments to the same location in the assembly).

Fig. 3.10: UNKN placement and haplotig identification

Contig coverages (ignoring multiple alignments for each chromosomal and UNKN sequence)
of PEST aligned to the curated assembly showing placement of previously unplaced sequence
(green on contigs that also have red (chromosomal) alignments). I also note the locations where
both UNKN and chromosomal sequence align to the same location in the curated assembly
which are likely haplotigs in the PEST UNKN scaffold.
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3.6.8 Placement of previously unplaced genes

In addition to the UNKN haplotig sequences, I found another 10.9 Mb of the alignments
are newly placed sequence that do not overlap with PEST chromosomal alignments
but are in contigs that have a large amount (>100kb) of chromosomal alignments
meaning these contigs are confidently ordered and oriented in their chromosomal contexts.
The UNKN bin also contains 737 annotated genes. Remarkably, our single-insect
assembly now places 667 (>90%) of these formerly unplaced genes into their appropriate
chromosomal contexts (2L:148 genes; 2R:162 genes; 3L: 126 genes; 3R:91 genes; X:140
genes; unplaced:70 genes[164]), which together with their flanking sequence comprise 8.9
Mb of sequence. Altogether, this means that 32.6% of the UNKN chromosome is now
placed in the genome and 26.6% is determined to be haplotigs, along with 90% of the
genes that were contained within it. Much of the remaining sequence do not have high
mapping quality subreads when aligning subreads to the PEST reference meaning they
are either repeats or junk sequence.

3.6.9 PEST contig coverage on PacBio curated assembly

In addition to looking for the two contig coverage areas and confirming that they
primarily come from haplotigs in the UNKN scaffold, other abnormalities such as zero
contig coverage regions are looked for. In figure 3.11 there is significant zero coverage
regions. However, most of these are intermittently zero and one likely just indicating
sequence divergence rather than an incomplete PEST reference. There are a few more
solidly zero coverage regions, but they are not dramatically long (<200Kb). Still, the
BUSCO 3.4 analysis shows that there are fewer complete genes and more fragmented
and missing genes in the PEST reference as compared to the PacBio assembly. These
regions likely account for some of that difference.

3.7 Discussion

Long-read PacBio sequencing has been utilized extensively to generate high-quality
eukaryote de novo genome assemblies, but because of the relatively large DNA input
requirements, it has not been used to its full potential for small organisms, requiring
time-consuming inbreeding or pooling strategies to generate enough DNA for library
preparation and sequencing. Here we present, to our knowledge, the first example
of a high-quality de novo assembly from a single insect. This assembly, using only
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Fig. 3.11: PEST contig coverage when aligned to PacBio curated assembly

Contig coverages of PEST aligned to the curated assembly. When comparing to figure 3.10,
most of the two-coverage areas likely come from haplotigs in the UNKN scaffold. But there is
some significant zero coverage areas as well.
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one individual and one sequencing technology, exhibits a higher level of contiguity,
completeness, accuracy, and degree of haplotype separation than any previous Anopheles
assembly, demonstrating the impact of long reads on assembly statistics. While the
assembly did not achieve independent full chromosomal scale assignment of contigs, its
mega-base scale contiguity without gaps immediately provides insights into gene structure
and larger-scale genomic architecture, such as promoters, enhancers, repeat elements,
large-scale structural variation relative to other species, resolution of tandem repeats
(figure 3.9), and many other aspects relative to functional and comparative genomics
questions.

About a third of the genome for this diploid individual is haplotype-resolved and
represented as two separate sequences for the two alleles, thereby providing additional
information about the extent and structure of heterozygosity that was not available in
previous assemblies, which have been constructed from many pooled individuals. In
contrast with approaches requiring multiple individuals, the ability to generate high-
quality genomes from single individuals greatly simplifies the assembly process and
interpretation, and will allow far clearer lineage and evolutionary conclusions from the
sequencing of members of different populations and species. Further, if parental samples
are available, the recently developed trio binning assembly approach [174] can be used to
further segregate alleles for a full haplotype-resolved assembly of both parental copies of
the diploid offspring organism.

The assembly presented here provides an excellent foundation towards generating
an improved chromosome-scale reference genome, using the previous PEST reference,
scaffolding information from genetic maps, technologies such as Hi-C (e.g., [178]), or
alignment of the contigs to closely related species’ references. These approaches can also
be used to highlight areas of potential improvements to the FALCON-Unzip assembler
and to Purge Haplotigs, or other packages used to identify haplotypic contigs. As one
example, we noticed in the context of the incomplete haplotype purging described above
that some neighboring contig ends exhibited overlaps relative to the PEST reference
(figure 3.6). The interpretation of such haplotype contig overlaps was corroborated by
the observed halving of average sequencing depth over the regions of overlap. These
methods could incorporate adjustments to try to account for haplotypic regions in the
ends of contigs rather than complete contigs being fully haplotypic.

We noted the importance of the initial DNA size distribution in conjunction with this
protocol. Since neither shearing prior to library construction nor size-selection thereafter
were employed, the starting high-molecular weight DNA should contain fragments at



3.7 Discussion 104

greater than 20 kb on average, and without the significant presence of short (smaller
than ≈5 kb) DNA fragments. Further research into suitable DNA extraction, storage
and transportation methodologies is needed to fulfill these requirements for a broader
spectrum of different species and environments, in order to allow for the preparation of
suitable DNA samples from wild-caught samples originating in sometimes remote areas
with limited sample preparation infrastructure.

The new workflow described here has now become standard procedure for creating
high quality reference genomes for small organisms. And the more recent advent of HiFi
data has made even higher quality genome assemblies of insects and other small organisms
routine. This represents an important prerequisite in view of large-scale initiatives such
as i5K and the Earth BioGenome Project [194][313]. In addition, other research areas
with typically low DNA input regimes can benefit from the described new workflow, e.g.,
metagenomic community characterizations of small biofilms, DNA isolated from needle
biopsy samples, minimization of amplification cycles for targeted or single-cell sequencing
applications, and others.



Chapter 4

Haplotype phasing consistency as a
signal for physical linkage in
scaffolding and assembly

4.1 Background

Reference genomes have enabled a range of genomic analyses by providing prior knowl-
edge of the sequence and a common coordinate system by which to compare multiple
genomes[2][289]. Assembling reference genomes is complicated by repetitive sequences,
heterozygosity, and sequencing errors. As discussed in Chapter 3, when an assembler
encounters inexact homologous sequences, it must determine from which of these cases
the sequences arose. If the assembler cannot distinguish between heterozygosity and
repeats and no reads span the homologous sequence into unique regions, the contig must
end to avoid assembling sequences from different regions together. Historically, reference
genomes were created by sequencing an overlapping set of large haploid bacterial artificial
chromosomes (BACs), yeast artificial chromosomes (YACs), and fosmid clone libraries
[186] (100-200kb, 100-1000kb, and 30-50kb respectively). These methods overcame much
of the problem of resolving repeats because their length allowed them to read through
all but the longest segmental duplications. However, because each of these BACs were
sequenced with Sanger sequencing and assembled, they were still subject to problems in
repeats longer than the Sanger reads (500bp-1kb) that were close enough to one another
to occur in the same BAC clone. They overcame the problem of heterozygosity because
the clone libraries were inherently haploid. But most importantly, these methods are far
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too costly to apply to many genomes. The human genome project took 13 years to com-
plete and cost approximately 3 billion dollars[185]. Despite the labor intensive and costly
process, the resulting reference genomes still had errors and were not complete[114].

More recently, the cost reductions and improved accuracy profiles[317][337] of long
read sequencing[85][109], as well as the emergence of other long range genetic information
technologies[354][202][150], have converged to make the production of high quality, cost
effective reference genomes relatively straight forward. Efforts have begun on the Earth
Biogenome Project (EBP)[194], a global project to sequence the entire diversity of
multicellular eukaryotic life. In the UK, the Sanger Institute and partners have started
to sequence 60,000 species from the British Isles in the Darwin Tree of Life (DToL)
project. These projects aim to provide a scientific resource for the next generation of
biological science, to serve as a store of data for environmental conservation, and to study
evolution at a much broader scale than ever before. For the human genome, we continue
to make progress through new technologies and computational methods[338][264][339].
The telomere to telomere project uses multiple technologies on a cell line derived from a
haploid genome from the CHM13 hydatidiform mole to create the most complete human
genome to date[249][230].

As discussed in Chapter 3, one of the primary remaining difficulties in assembling
reference quality genomes is high levels of heterozygosity such as found in many of the
non-model organisms included in the EBP and DToL projects. While Chapter 3 focused
on going from a pool of individuals—and thus many haplotypes—to a single individual
(and thus two haplotypes), this chapter focuses on the problems encountered with high
levels of heterozygosity within an individual and the improvements that can be made
computationally to alleviate these problems. For the newer technologies mentioned above,
there are now assembly algorithms that deal with each data type[52][335][296] as well as
combinations of multiple technologies[311][237][78][103]. These methods try to assemble
both haplotypes together arriving at a haploid consensus[279][173] or assemble both
haplotypes in a diploid assembly[178][335][48][97] and use one of these haplotypes as a
reference genome.

As mentioned in Chapter 3, one method for dealing with the problem of heterozygosity
is inbreeding organisms to a point of low heterozygosity[241], but this is not feasible
for most organisms. Trio-sga used pedigree information in the assembly algorithm[212]
but was built exclusively for short reads. Recently Koren et al. described trio binning
which uses the kmer differences in a mother-father-child trio to separate long reads into
their haplotype of origin prior to haploid assembly[174]. While this method is very
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effective, creating the necessary crosses would be practically infeasible and too costly for
the vast number of reference genomes these large projects intend to produce. Assembly
algorithms have also been developed to help overcome the problem of heterozygosity.
HiCanu uses accurate long reads and applies sequence context masking techniques such as
homopolymer compression to ignore regions that are more likely to contain errors. With
these potential errors masked, HiCanu can require nearly identical sequence similarity
to extend the assembly graph[248]. This results in the haplotypes being assembled
separately in all but long stretches of homozygosity in a genome. HiCanu then relies on
haplotig purging software purge dups[112] to remove one of the haplotype assemblies.
This has the downside of not matching the haplotypes to make comparisons, but that
could be done as an additional analysis step. This method does not explicitly phase
the haplotypes and may have long phase switch errors in the contigs especially across
long regions of homozygosity. In another method, DipAsm does a first pass assembly
followed by haplotype phasing and separation of the reads by haplotype prior to haploid
assembly[98]. And Hifiasm produces a diploid assembly with a diploid string graph
algorithm[48]. While these methods have made much progress, heterozygosity still injects
complexity over a haploid assembly process.

Despite the incredible advances made over the past several years in both sequencing
technologies and assembly methods, we still cannot assemble whole chromosomes or
chromosome arms with a single technology for most organisms. After assembly we are
left with some level of fragmentation of chromosomes into contigs that we wish to scaffold
together. While the PacBio HiFi technology has many beneficial properties including
continuous, highly accurate reads, it does not produce long enough reads (10-25kb) to
span all repeat or low sequence complexity regions in most genomes. 10x Genomics
linked read technology, however, will create barcode linked short reads across much
longer molecules (50kb+) with some molecules reaching well over 250kb[354]. Optical
map technology in which the DNA is linearized and flourescent markers are attached
to sequence specific loci via restriction digestion and optically inspected can give sparse
data for pieces of DNA about as long as can be isolated with modern high molecular
weight extraction methods[292]. And high-throughput chromatin conformation capture
sequencing (Hi-C) data creates links between sequences physically located close to one
another in the 3D nucleus. While there will be cross-chromosomal links, the large majority
of links are intra-chromosomal and can create links of almost any length[63][201]. Each
of these technologies have been used both to break misassemblies in contigs and scaffold
contigs[121][256][78][104][216][22].
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While high levels of heterozygosity make these problems harder for traditional methods,
haplotype phasing consistency (the consistent separation of heterozygous alleles into
distinct groups corresponding to the haplotype they belong to) can be used as a signal
of physical linkage in both assembly and scaffolding and as a method to differentiate
inexact repeats from haplotype differences. While the conventional thinking is that
heterozygosity makes assembly more difficult, we turn this around and use the phasing
consistent property of heterozygous sites as a powerful way to simplify and add statistical
power to the physical linkage of sequences. This is made possible by the advent of
long read and other long genetic range information technologies, as short reads do not
span enough distance to consistently link heterozygous sites. In this chapter I present
a toolkit for phasing, phasing aware assembly, and phasing aware scaffolding called
phasstools (Phasing and Assembly tools). The code is open source and available at
https://github.com/wheaton5/phasstools. The use cases of this package are de novo
phased assembly, phasing aware scaffolding of that assembly, phasing aware scaffolding
of an existing assembly, as well as direct read haplotype phasing.

First I outline phasing consistency using heterozygous single nucleotide polymorphism
(SNP) kmer pairs as a mechanism for de novo haplotype phasing. This concept is critical
for each of the methods I present. I then describe the phased assembly process. I first
create an assembly graph using pairwise phasing consistencies, but then show several error
modes that this process can encounter. This led me to need to use more than pairwise
phasing consistency to overcome these problems. To do this, I need to consider kmers in
a particular order. I show how the algorithm recruits each subsequent kmer pair, decides
whether to add it to the graph, and how it updates future potential kmer pair’s phasing
consistency counts. After the phased assembly graph is created, it is used to separate
HiFi reads into haplotype bins and haploid assemblies are created from each of those
read bins. I show this process on the butterfly dataset of Vanessa atalanta and compare
our assemblies to the HiCanu assembly of the same data. For diploid chromosomes, I
show high concordance with the HiCanu assembly but with lower contiguity. While some
problems remain, I believe this work shows the power of using phasing consistency as a
signal for physical linkage in diploid chromosomes.

Next, I consider phasing aware scaffolding. If scaffolding an existing, unphased
assembly, one first needs to phase it in order to take advantage of that information in the
scaffolding process. I introduce an algorithm for haplotype phasing using sparse Bernoulli
mixture model clustering—an algorithm very similar to the clustering algorithm used in
Chapter 2. This algorithm has several benefits including being robust to non-heterozygous

https://github.com/wheaton5/phasstools
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input variants and being able to correct those genotypes as well as naturally extending
to polyploid genomes. I show promising results for this phasing algorithm, but problems
remain if one does not have a large amount (300x) of Hi-C data. I have plans to address
this short coming, but in the mean time I created another phasing algorithm that could
be used for scaffolding immediately. I show results for both phasing algorithms on a
dataset from the DToL project from the butterfly Vanessa atalanta.

Next I consider haploid sex contig detection, because these contigs will need to be
treated differently in the steps going forward. I then discuss breaking contigs that are
incorrectly joined in a chimeric misassembly using Hi-C linkage information and the
phasing consistency of those links. Finally, I discuss phasing aware scaffolding and the
results on Vanessa atalanta HiCanu assembly versus Salsa, the most commonly used
scaffolder currently. The inputs required by the scaffolder are among the outputs of
both the phased assembly algorithm as well as the haplotype phasing algorithm, making
the system modular for scaffolding an existing assembly or a phased assembly from
phasstools.

4.1.1 Heterozygous kmer pairs and detection

In order to use phasing consistency, we must find paired heterozygous sequences. If using
an existing assembly, one could map the reads to the assembly and call variants to find
heterozygous sites as is the common workflow for resequencing efforts. In order to be
general to a de novo assembly process, I tackle the subject of identifying heterozygous
variants in a reference-free manner. I do this using a kmer approach, as many reference-
free methods do. Many people have focused on identifying kmers that occur at roughly
half counts in short read data[214] and various software exists to count kmers[215] and
to model the mixture of expected distributions (errors, haploid, diploid, duplication
kmers)[328]. Identifying heterozygous kmers in this way suffers from multiple problems.
1. Many of these identified as half counts will be either randomly high count error kmers
or randomly low count homozygous kmers due to the fact that the count distributions
are generally not fully separated. 2. It ends up with K − 1 overlapping kmers for a
given variant which is needlessly redundant information that will both slow down any
phasing algorithm and break key independence assumptions. And 3. while it identifies
heterozygous kmers, one doesn’t know which kmers are alternative alleles of each other.
This information is powerful and key to using my phasing consistency approach. I instead
identify pairs of kmers that vary only in the center position that are also both roughly at
half counts. These heterozgyous SNP kmers are much more robust and have the benefit
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of knowing that one is very likely to be the alternative allele of the other. The kmer
count spectrum is generated with a fast disk backed kmer counter KMC[67][68][172].
Figure 4.1 shows an example kmer count histogram. The kmer size chosen will determine
how unique these kmers are in the genome as well as how likely they are to be correct in
the reads. For CLR data, shorter kmers must be used because kmers of any reasonable
length (15+) are unlikely to be correct in the reads. But using kmers of this length mean
that many of the chosen kmers not be unique in the genome and many of the one-off
kmers will also exist in the genome. For this reason, I limit this project to HiFi data and
use a kmer size of 31 throughout.

Fig. 4.1: Kmer count spectra and heterozygous paired kmers

An example of kmer count spectrum showing error kmers on the left, heterozygous kmers in
the first peak and homozygous kmers in the next peak.

The heterozygous range of the kmer spectra is calculated with code from purge
dups[112]. The kmers are then dumped in alphabetical order and pairs of kmers that
vary in only the middle base and fall into the heterozygous counts range are identified. A
futher restriction is made that the counts of the kmers with the other two possible bases
in the middle are not high (in practice >5, although my reasoning would require hundreds
to cause the described phenomenon). This is because a very high repeat count kmer
may produce, through sequencing errors or mutations, two lower count kmers differing in
the middle base. It should also be noted that while I often refer to these kmer pairs as
heterozygous kmer pairs, they may also represent paralogous kmer pairs. The phasing
consistency of these kmer pairs with others is used to determine if they are more likely
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to be from heterozygous or paralogous sequences. Each produces a characteristic pattern
in the pairwise kmer consistency counts.

4.1.2 Read data kmer information

I use the kmers in the reads to determine if heterozygous paired kmers are phasing
consistent with other paired kmers. For each read of each technology (Hi-C, PacBio,
linked reads) the position and ID of each paired kmer is stored on disk in a custom
binary format for later use. Of note here is that the linked read technology may have
multiple molecules per barcode whereas in other technologies, reads represent single
physically linked molecules. Richard Durbin has developed a method to de novo assign
reads from barcodes to molecule groups using shared kmers across barcode sets to cluster
reads into their molecules of origin[81]. In this work, I chose not to use this as it is not
extensively tested. Instead, the distance in the assembly graph or contigs (if using an
existing assembly) is used to determine which reads came from which barcode. With the
recommended DNA input, high molecular weight (HMW) extraction sizes, and number
of partitions, the Poisson loading process results in an expected number of molecules
per barcode of roughly ten. Because the total amount of DNA per partition is a small
percentage of the total genome sizes we work with, the chances of a partition having
molecules that arose from nearby or overlapping locations is rare. Thus one can deduce
that reads from a barcode which map close to one another on a reference or assembly
arose from the same HMW molecule with high probability.

4.1.3 Phasing consistency

For each kmer pair, I refer to one as the reference allele and one as the alternate allele
arbitrarily without loss of generality. The read kmer data is used to create phasing
consistency counts between different paired kmers. If the read contains the reference
version of paired kmer k1 and reference version of paired kmer k2, the cis1 count gets
incremented. We can do this with any of the data types for different purposes, but we
do not combine counts across data types as the error modes are different. For example,
the Hi-C data will have some spurious connections across chromosomes due to the 3D
conformation of the chromosomes in a particular nucleus. For the linked reads, we may
also stipulate that a version of paired kmer k1 and paired kmer k2 be within some distance
of each other on the assembly graph or contig.
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4.1.3.1 Pairwise haplotype phasing consistency

The phasing consistency between pairs of kmer pairs is considered before moving on to
higher order phasing consistency. With pairwise phasing consistency, there are only four
potential combinations that a read can have of the two pairs (see figure 4.2). With more
than two kmer pairs, the number of potential combinations increases exponentially. In
order to deal with that, multiple kmers pairs will be phased with respect to one another
before considering their consistency with other kmer pairs or groups of phased kmer
pairs, always reducing the problem to four possibilities.

Fig. 4.2: Pairwise phasing consistency counts
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I denote one of each kmer pair as the reference or alternative arbitrarily. Molecules that have
the sequences of one of the kmers from each of two kmer pairs will fall into one of four cases
represented here by the four edges in this graph. The molecules falling into each of these
four categories are tabulated. Phasing consistent heterozygous kmer pairs will have counts
predominantly on both cis edges or both trans edges.

4.1.3.2 Phasing consistency and error modes

There are several distinctive signals from pairwise phasing consistency counts and further
insight can be gained when looking at those manifestations across the multiple paired
kmers to which a given paired kmer is linked.

Figure 4.3 shows the main phasing consistent and inconsistent phenotypes for pairs
of paired kmers. It is uncommon to get very mixed signals especially when working
with HiFi data. When working with Hi-C data, pairwise counts are not of much use
as it is rare for many Hi-C read pairs to link the same two heterozygous kmer pairs.
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Fig. 4.3: Pairwise phasing consistency counts
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Example of a phasing consistent pair of heterozygous paired kmers a) in cis and b) in trans. c)
shows an example of phasing inconsistency because the v2 kmer pair is not a heterozygous kmer
pair, but likely due to of paralogous sequence. The alternate version of v2 is likely homozygous
close to v1 and the reference version of the v2 pair probably exists elsewhere in the genome. If
this were due to a tandem repeat, we might expect all four edges to contain counts, perhaps
with two edges having fewer counts due to fewer reads reaching into the 2nd repeat. d) shows
a somewhat ambiguous case. From this, we do not know if v1 or v2 are heterozygous or not.
This could arise from both being homozygous or one of them being heterozygous, but its pair
not being the other haplotype.
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Due to ambiguous cases expected from data outlined in figure 4.3d), it is not always
possible to categorize kmer pairs as heterozygous or paralogous from phasing consistency
counts with one other kmer pair. The phasing consistency counts that a single kmer
pair has with all of the kmer pairs with which it shares enough counts can be used to
find some kmer pairs that are phasing consistent with some others and inconsistent with
another set due to those other kmer pairs arising from paralogous sequence. Another set
of kmer pairs are inconsistent with nearly all other kmer pairs because they were not
truly heterozygous.

4.2 Phasst a: phased assembly

In my first attempt at phased assembly, I used pairwise phasing consistency of kmer
pairs. I created a graph where kmer pairs are nodes and edges exist if the two kmer pairs
are phasing consistent. I made an edge between two kmer pairs if the phasing consistency
was >90%, minor edge of the major phasing was >15% (to avoid problems such as shown
in figure 4.3d), and there were at least 10 total counts. This creates megabase scale
graphs that are linear on a global level (but not on a local level as kmer pairs will be
phasing consistent with many nearby kmer pairs). Figure 4.4 shows examples of these
graphs visualized in Gephi with graph layout force atlas 2[21][146].

I applied this method to Vanessa atalanta, the Red Admiral butterfly, for which we
have ≈40x PacBio HiFi data and ≈90x 10x Genomics linked read data and ≈300x Hi-C
data for the same individual. The heterozygosity is roughly 1.1%, which is roughly an
order of magnitude higher than the average heterozygosity of humans, which is ≈ 0.1%.

The idea is to then use the connected components of these phasing consistency
graphs as psuedo contigs from which kmer pairs can be phased, and then bin reads into
haplotypes within those contigs and do haploid assembly of those reads.

Unfortunately, not all of these graphs were globally linear. This meant that some
edges were incorrect. Increasing the stringency of the phasing consistency thresholds did
not get rid of all of these spurious connections. If we proceeded with this plan, this could
lead to chimeric misassemblies. Figure 4.5 shows two examples of these misassembly
causing connections.
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Fig. 4.4: Example phasing consistency graph contigs for Vanessa atalanta

Graph of kmer pairs with edges between them if they are phasing consistent.

Fig. 4.5: Example of errors in phasing consistency graph for Vanessa atalanta

Errors in assembly graph. On the left there is an error in which a single kmer pair is phasing
consistent with another single kmer pair elsewhere in the genome. This type of error reduces as
the phasing consistency thresholds are made more strict, but the resulting graph becomes more
and more fractured. On the right, a single kmer pair consistent with many kmer pairs in two
locations. This is because this kmer pair is truly heterozygous in both locations in the genome
and randomly had low enough counts to pass our coverage thresholds. This error mode does
not reduce with further stringency.
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4.2.1 Phasing consistent heterozygous kmer recruitment

To overcome these problems, each new kmer pair should be phasing consistent with
multiple prior kmer pairs. To create an ordering of kmers, I begin with a seed kmer
pair that has sufficient other kmer pairs it is phasing consistent with on a pairwise basis.
Then a graph of kmers is made using the HiFi reads taking into account directionality
by also building the graph and the reverse of that graph for the reverse complement
of that kmer (see figure 4.6) adding edge counts if the edge already exists. From the
seed kmer, this graph is searched in a breadth first manner to choose an order in which
to assess new kmers in a directional fashion. Then, at each step, the front kmer pair
is popped off of the priority queue and assessed for phasing consistency. If the counts
are sufficiently phasing consistent (>90% cis or trans, minor allele fraction of >15%,
>10 total phasing consistency counts), that kmer pair is added to the growing phase
block in the appropriate phase (whether its dominant counts were cis or trans). And
then all molecules containing that kmer pair, if not marked as already used, update
phasing consistency counts for other kmer pairs and then are marked as used. If the
kmer pair is not sufficiently phasing consistent, it is marked as used and unphased and
the process continues. This proceeds until the priority queue is empty. To build the
phase block in the other direction from the beginning, the process is reseeded at the
initial seed and kmer pairs are added to the priority queue in the opposite direction,
keeping track of phasing consistency counts and building the phase block in the other
direction until finished. For this step, both HiFi and linked reads are used, both of which
have a very low error/cross haplotype signal. Only the HiFi data is used to build the
kmer recruitment graph as the linked reads don’t have direction across different reads
within the same barcode.

4.2.2 Contig and haplotype read binning

Once this kmer pair phased assembly is done, it is used to assign HiFi reads to contigs
and haplotypes within contigs. Each read’s kmer content is inspected and kmer counts
for each contig/haplotype are calculated. Usually, the match is unanimous, but in the
case of conflict, the read is assigned if it favors one contig haplotype by three or more
kmers.
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Fig. 4.6: Kmer recruitment graph

Kmer recruitment graph from HiFi reads.

4.2.3 Haploid chromosome assembly

Now that reads are binned to contigs and haplotypes, the next step is haploid assembly.
The miniasm assembler is used with parameters suited to HiFi data as opposed to the
defaults which were for the more noisy CLR data[196]. This may result in a single contig
per assembly phase block or multiple contigs.

To validate, the contigs from these assemblies are mapped to the HiCanu assembly.
The contiguity of this assembly is less than HiCanu, with an N50 of ≈900kb. And there
are sometimes interesting heterozygous differences between the two haplotype assemblies.
In figure 4.7 the haplotype assemblies of one phase block aligned to the HiCanu reference
are shown. In one haplotype, the full phase block was assembled as a single contig. The
other haplotype assembled into three contigs. The haplotype read sets aligned to the
HiCanu assembly were inspected in IGV (not shown) as well as the bandage plot for the
GFA from the miniasm assembly of that haplotype, and there is evidence for a 35kb
duplication flanking a 23kb unique sequence[340]. This duplication does not appear to
exist on the other haplotype.

4.2.4 Assembly contig coverage vs HiCanu assembly

One of the haplotype assemblies from each assembly phase block was aligned to the
HiCanu assembly to inspect the overall contig coverage of our assembly (figure 4.8). The
first thing one notices is that there are three HiCanu contigs with very little assembly
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Fig. 4.7: Example of heterozygous structural variation.

a

b

a) alignment plots of haplotype contigs vs HiCanu assembly shows one haplotype not assembling
into a single contig because b) one haplotype has a ≈35kb repeat that is not present in the
other haplotype. HiCanu retained the haplotype that was most contiguously assembled.
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coverage. These are the haploid sex contigs that do not get assembled by our method
as it currently stands. The more complex contig on the lower right sex contig is rich in
repeat sequence and our system has assembled some of it. The other notable discrepancy
between these assemblies is the zero contig coverage areas on the ends of two contigs in
rows six and seven. The HiFi read alignments to the HiCanu assembly were inspected
and there is no support for this connection and thus are likely misassemblies in the
HiCanu assembly.

Fig. 4.8: Assembly contig coverage

Contig coverage of one haplotype of the phased assembly aligned to the HiCanu assembly. The
haploid sex contigs have not been assembled. The drops in coverage on two chromosomes in
rows six and seven have been determined to be misassemblies in the HiCanu assembly.
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4.3 Phasing aware scaffolding: phasst scaff

Because the process of assembly rarely creates chromosome length contigs, the order and
orientation of these contigs in their chromosomal context is unknown. The process of
finding this is called scaffolding. Generally long genetic information, such as Hi-C, linked
reads, or optical maps are used for this purpose. The most popular scaffolding method
currently is SALSA2, which uses Hi-C paired reads in which one maps to one contig and
the other maps to another contig to scaffold. The density of these cross mappings to
contig ends are normalized and a greedy approach is used to choose which connections
are made[104]. Scaff10x uses the co-occurance of molecular barcodes from linked reads
across contig pairs to scaffold in a similar fashion[121]. And Bionano genomics uses
optical maps which align to multiple chromosomes to provide order and orientation as
well as estimated gap sizes between contigs[296].

Here the goal is to use the phasing consistency of Hi-C reads (and optionally linked
reads) that cover heterozygous sequence on two contigs from our phased assembly or an
existing assembly to scaffold contigs. If using an existing assembly, the heterozygous
sites must be identified first. Then phasing consistency of those sites can be defined.

4.3.1 Multiple heterozygous site haplotype phasing consistency

When using phasing consistency as a signal for assembly scaffolding, all heterozygous
kmer pairs in one contig are compared to all heterozygous kmer pairs in another contig.
Figure 4.10 outlines what that looks like in the same way the previous phasing consistency
diagrams did for pairs of individual kmer pairs. In order to do this, the heterozygous
kmer pairs within each contig must be phased with respect to each other.

Fig. 4.9: Phasing aware scaffolding

Using phasing consistency for scaffolding requires all of the heterozygous kmer pairs within a
contig to already be phased with respect to one another.
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4.3.2 Haplotype phasing

A combination of data types are used to phase. The data type that is required is Hi-C,
but long reads or linked reads can be used in addition to them. The reason Hi-C data is
required is due to the very long range genetic information it gives us. With Hi-C, it is
possible to phase whole chromosomes instead of potentially having to break the phasing
into phase blocks that are smaller than the chromosome. While there are existing phasing
algorithms that can take multiple data types including Hi-C[84][293], I have developed
my own phasing algorithm that has several benefits in general and meets our specific
purposes. This algorithm is robust to non heterozygous sequence inputs (which our kmer
pairs will have) and can correct these genotypes. It also has the added benefit of being
trivially extendable to polyploid genomes.

4.3.2.1 Sparse Bernoulli mixture model clustering

I treat the haplotype phasing problem as a clustering problem. We first consider the
diploid case. By clustering reads according to heterozygous kmer pair alleles they contain,
this gives an implicit phasing of each kmer pair. Similar to the clustering algorithm
in Chapter 2, I treat the haplotype clusters as vectors of allele fractions. In Chapter 2
this represented the probability parameter of a binomial because the underlying data
were allele counts, but here it represents the probability parameter of a Bernoulli as I
make the assumption that a single read can only have one or the other of two alternate
alleles. Of course each haplotype will only have one allele, but treating it as a continuous
number instead of a discrete number opens the door to continuous numerical optimization
methods that are often faster than discrete combinatorial optimization techniques. The
optimization process then can drive the allele fraction numbers to 0 or 1 if the data
supports that outcome.

Definitions:

• H: number of haplotypes. Lower case h will be used for indexing and referring to
a specific haplotype.

• R: number of reads. Lower case r will be used for indexing and referring to a
specific read.

• V : number of kmer pairs. Lower case v will be used to index and refer to a specific
locus. Vr will be a list of kmer pairs with observed data in read r.
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Fig. 4.10: Sparse Bernoulli mixture model clustering haplotype phasing

The phasing problem is treated as a sparse clustering problem in which reads are clustered into
haplotypes.

• A: Alleles. Av,r is a Boolean representing whether read r for kmer pair v had the
alternative allele or the reference allele.

• ϕh,v: cluster center value representing allele fractions of haplotype h at locus v.
The expectation is for this to be near 1.0 or 0.0 because each haplotype can only
have one allele or the other, but I allow the value to be continuous to allow for
continuous numerical optimization techniques and errors.

4.3.2.2 Model

A maximum likelihood strategy is used by optimizing L(data) under a given model.

argmax
ϕ

L(data, ϕ) (4.1)

The likelihood of the data is defined by treating reads independently and marginalizing
each read across the haplotypes it could belong to.

Cluster model Likelihood function

L(A) =
∏
r∈R

∑
h∈H

1
H

∏
v∈Vr

ϕh,v Av,r == true

1 − ϕh,v Av,r == false
(4.2)

This likelihood is then optimized by expectation maximization, randomly initializing
cluster centers ϕ ∈ (0, 1). Due to the local nature of long reads and linked reads as well
as the majority of Hi-C reads, this method can get stuck in local maxima in which for one
region, the random initialization favored reads from one haplotype going to haplotype
cluster 1 and in another region, reads from that same haplotype preferring haplotype
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cluster 2. In this case, the optimization would come into conflict at the boundary between
these two regions. One could make this solve localized to a window and grow that window
over time. Another option is to use the very long scale Hi-C links for an initial solve,
thus giving the haplotype cluster centers a rough global initial solution before adding in
all of the data and fine tuning the local solutions. This is what I currently do, but this
requires plentiful Hi-C data for the initial long range solution. It is also possible that by
employing the same deterministic annealing strategy as in Chapter 2, it may be able to
get through these local maxima, but I have not tried this.

4.3.2.3 Polyploid phasing

This algorithm has several advantages compared to other haplotype phasing methods.
Most methods’ time complexity scales super linearly, oftentimes exponentially, with
ploidy, if they are able to solve polyploid phasing problems at all. In this method, since
haplotypes are just cluster centers, one just adds more cluster centers to match the ploidy.
It would be untrue to say that this definitely scales linearly for an optimal solution. This
algorithm does not guarantee optimality but neither do most modern phasing algorithms.
The only modern phasing algorithm I know of that guarantees optimality is WhatsHap, a
method that uses dynamic programming to ensure optimality but does not handle gapped
data such as linked reads and Hi-C well[254]. While this algorithm is not optimal, and
its iterations to convergence may change with ploidy, the computation per expectation
maximization step scales linearly with ploidy.

4.3.2.4 Genotype correction via phasing

Additionally this algorithm is highly robust to non heterozygous sites. Most phasing
algorithms assume as input a set of heterozygous variants. However, even with standard
resequencing, read mapping, and variant calling, some called variants will be false
positives (homozygous reference) or falsely called heterozygous when they are actually
homozygous for the alternative allele. This algorithm has the valuable property that the
inputs are not assumed to all be heterozygous. If input variants are not heterozygous,
the haplotype centers should be driven to the correct genotype by the data. If the reads
support that this kmer pair is a false variant, the values will be driven to 0 for both
haplotypes, and if the reads support the alternative on both haplotypes, the values will
be both driven to 1. This type of genotype correction via phasing has been done before,
but with a 3rd discrete categorical state on top of the two normal states representing
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a 0|1 vs 1|0 phasing[182]. In that method, the 3rd state represented either 0|0 or 1|1
by marginalizing across both. If that state was chosen, the posterior for each case was
calculated and genotype reassigned accordingly. This does work, but has the dramatic
downside of increasing the total solution space from 2n to 3n where n is the number of
loci.

Fig. 4.11: Sparse Bernoulli mixture model phasing allows for polyploid phasing and
genotype correction

In order to handle polyploid phasing, one simply increases the number of cluster centers. And
because sites are not assumed to be heterozygous, the algorithm can naturally correct miscalled
genotypes.

I ran this algorithm on Hi-C Arima, 10x Genomics linked read, and PacBio HiFi
data from the butterfly Vanessa atalanta from the Darwin Tree of Life project with
≈300x, ≈90x, and ≈40x coverage, respectively. I then compared this phasing to which
allele the HiCanu assembly contained. HiCanu uses the HiFi data, and while it does not
explicitly phase haplotypes, it uses such stringent filters for read overlaps, that generally
one haplotype is assembled in a contig unless there is a homozygous region that no read
spans. Initially I show the phasing cluster center values on a single contig to compare
phasing with Hi-C alone vs with linked reads and/or long reads (see figure 4.12). And in
figure 4.13 I show the phasing against the entire genome.

4.3.3 Phasst phase

Because the sparse Bernoulli mixture model haplotype phasing can run into local optima,
it currently requires plentiful and high quality Hi-C data. Also, for some organisms,
such as diptera, chromosome pairs colocate within the nucleus[303], greatly increasing
the number of cross haplotype Hi-C links. This makes it not always sufficient to have
an initial solve with just the long range Hi-C. I still believe that this algorithm can
be made to work either with a moving or expanding window or through deterministic
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Fig. 4.12: Phasing with Hi-C alone vs combined data

Here I show the haplotype cluster center values for sparse Bernoulli mixture model haplotype
clustering with the values for the haplotype 2 cluster offset by -0.2 such that any phase switches
would be visible and not overwritten by other data points. Each point represents the haplotype
cluster center value of a heterozygous kmer. The kmer observed on the HiCanu assembly is
colored red while its paired kmer is colored blue. Hi-C alone (upper left) produces fairly noisy
phasing probably because the chances that a Hi-C read hits two heterozygous loci is fairly low
reducing the total amount of useful data. When linked reads and/or HiFi reads are added, the
phasing becomes much robust. *txg = 10x Genomics linked reads
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Fig. 4.13: Phasing Vanessa atalanta genome

Phasing for Vanessa atalanta genome. Vertical black bars indicate contig ends and the contigs
are distributed over several rows for visibility (right facet is row number and can be ignored).
Here one can see that contig 1 as well as the first and last large contigs on the last row are from
sex chromosomes and thus haploid. Again, the cluster center values for haplotype cluster 2 were
offset down by 0.2 for visibility. There are rare, but notable long switch errors vs the HiCanu
assembly. Because my algorithm uses Hi-C data with chromosome length scale information, it
is likely that these phase switch errors are errors in the assembly and not my phasing algorithm.
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annealing, but we decided to take another direction for the time being. I developed a
reference/assembly based phasing consistency rules based phasing algorithm. This is very
similar to the phased assembly algorithm, but uses the existing assembly to determine
the order in which kmers are treated. First a good seed kmer is found by looking at
all pairwise phasing consistencies. The kmer must have sufficient other kmers that it is
phasing consistent with. Then phasing consistency counts are added for all molecules
that contain this seed kmer pair to a growing data structure and mark those molecules
as used. I then proceed according to the order that kmers from the paired kmer pair
set occur on the assembly. If the kmer pair’s phasing consistency counts are sufficient
(>90% consistent—mostly cis or mostly trans, the minor edge of the major phase—cis
or trans—makes up >15% of the counts (avoiding the phasing consistency error modes
outlined in figure 4.3), and the total phasing counts is at least 10), it is added to the
growing phase block in the appropriate phase. Then for all molecules that contain that
kmer and are not already marked used, potential new kmer counts are updated and that
molecule is marked as used. This is done until the end of the contig is reached or there
are a string of 10 kmer pairs with zero phasing consistency counts. I then go back to the
seed kmer and proceed in the same way in the other direction. A simple diagram of this
process is shown in figure 4.14.

Fig. 4.14: Building phase blocks

Diagram outlining the process of building phase blocks with HiFi and linked reads using phasing
consistency rules.

Because only HiFi and linked reads have been used in the process thus far, it is not
expected to create contig or chromosome length phase blocks. Instead, very high quality
phase blocks are made that can then be phased with respect to one another using the
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Hi-C reads. This is done in a way that is very similar to how Hi-C is used for phasing
aware scaffolding. The Hi-C reads that have two or more phased kmer pairs in different
phase blocks are used to create inter-phaseblock phasing consistency counts. Because the
phase blocks are typically hundreds of kilobases long, there are plenty of Hi-C molecules
linking them with two or more heterozygous kmer pairs.

I ran this on the same data used to demonstrate the sparse Bernoulli mixture model
phasing, this time using the HiCanu assembly post purge dups but pre-scaffolding and
curation and show the results in figure 4.15.

Fig. 4.15: Phasst phase results on Vanessa atalanta

Phasst phase shows cleaner phasing than sparse Bernoulli mixture model phasing because
it skips over any kmer pairs that are not phasing consistent, it only allows discrete phasing
instead of a continuous solution. Vertical black bars are contig ends. Because we are using the
pre-scaffolded and pre-curated assembly this time, there is a collection of very short contigs
which were placed or removed in the curation process (this explains the black section on row 11
which is caused by many short contigs).
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4.3.4 Haploid / sex contig detection

Phasing consistency counts should only be used when the chromosome is diploid (or
polyploid if the rules were extended to apply to polyploid genomes). This makes contigs
coming from haploid sex chromosomes problematic. It would be desirable to detect these
prior to phasing and scaffolding such that they can be treated separately in a more
standard fashion by using Hi-C read linkage as a signal for scaffolding. Kmer counts and
kmer pair density are used as signals for haploid contigs. Using a fast kmer package from
Gene Myers called FASTK[243], I find all kmers that occur exactly once in the assembly
and check their counts in the HiFi data and take the mean for each contig. For kmer
pair density, I simply find how many of the kmer pairs occur on each contig and divide
by the contig length. Figure 4.16 shows contig kmer counts vs kmer pair density for
Vanessa atalanta for contigs > 100kb.

Fig. 4.16: Haploid / sex contig detection for Vanessa atalanta

Kmer counts are a signal for haploid/sex contigs, but only a weak one because the heterozygosity
for this species is so large, much of the sequencing in diploid chromosomes are haploid counts.
Kmer pair density is a much better signal for haploid contigs. The three contigs on the left of
the graph are sex contigs. The one intermediate contig is just over 100kb and we do not know
if it is diploid or not.

While haploid sex contig detection works well for this dataset and assembly, it is
quite different for different species. This could be due to pseudoautosomal regions, repeat
structure, or several other factors. An alternative method would be to use orthologous
genes known to be on sex chromosomes in related species for sex contig detection.
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4.3.5 Contig breaking

Before scaffolding, one should break any contigs that are likely chimeric misassemblies.
This is a common first step in scaffolding[104][272]. The Hi-C data is used to break
contigs across regions where there are extremely low or no Hi-C links. Both paired kmers
as well as a modimized sampling of likely homozygous kmers are used in order to utilize
more of the data. Because Hi-C uses a restriction enzyme or a collection of restriction
enzymes to create its cuts and then enriches for reads ligated by those cuts, the coverage
across the genome is not uniform, but in a wide enough region there should be Hi-C
links with high probability if those two regions are physically close in the 3D genome
(and also in the 1D sequence). A window is swept across kmer positions on the contig
and count how many Hi-C links cross the midpoint of that window. Both raw counts
and phasing consistency counts of kmer pairs across the midpoint of the window are
kept separately. Figure 4.17 shows a depiction of this process as well as data on a contig
that contains a chimeric misassembly and requires breaking from the Vanessa atalanta
HiCanu assembly. I show both total links across the midpoint of a 200 kmer pair window
as well as the percent phasing consistency across that window. In this case, the total
links drops to zero, so of course the phasing consistency also drops to zero, but one can
see how phasing consistency for breaking contigs can be a very powerful signal. However,
this does require that one has detected the sex contigs in order to treat them differently.
With this, I found the same three breaks in the HiCanu assembly that SALSA does
(within 10kb of the SALSA break).

4.3.6 Phasst scaff: phasing aware assembly scaffolding

Now that the paired kmers are phased on each contig, at least for the ones that could
be phased, one can now look at the phasing consistency counts of pairs of contigs by
looking at Hi-C reads that contain kmer pairs that occurs on two contigs. An example of
a phasing consistent match we found has the following counts: cis1: 10150, cis2: 10278,
trans1: 98, trans2: 101. A binomial test is used to compare cis vs trans counts to a
random expectation of 0.5 and of course these numbers yield exceedingly low p-values.
The counts between non matches are essentially randomly distributed between cis and
trans. For the HiCanu assembly of the butterfly Vanessa atalanta, the system found the
same scaffolding matches that SALSA finds.
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Fig. 4.17: Contig breaking using Hi-C total linkage and phasing consistency

a

b

a) shows the setup for contig breaking. A 200 kmer pair window is used and the linkage and
phasing consistency are calculated across the midpoint of a sliding window. Below, b) shows
the results of this at each position of that sliding window. The low values on the left and
right are low due to how this is calculated and should be ignored. The low value in the middle
represents a contig misassembly that should be broken.
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4.3.6.1 Chromosome binning

Using these matches, a graph is created where nodes are contigs and edges are phasing
consistent scaffolding matches. The connected components of this graph are found and
these connected components of contigs represent the chromosomes these contigs belong
to.

4.3.6.2 Order and orientation

To order and orient, the heterozygous and homozygous kmers on the ends of each contig
(100,000 bases on each contig end, or to the middle of the contig if shorter then 200kb)
are used. Counts of how many Hi-C reads link the start and end of each contig to the
start and end of each other contig in the chromosome bin are calculated. This number is
then normalized by the actual length used (if less than 100,000). SALSA takes these
normalized link numbers between the ends of each contig that passes its scaffolding
thresholds and takes the highest weight link and makes that a new longer scaffold and
then the next highest weight until completion.

I have not yet implemented order and orientation, but have sketched out how I plan to
do this. I will create a stochastic process in which the edges are chosen with a probability
weighted on the normalized linkage value and otherwise proceed as SALSA does. This
process will be run many times and the final scaffolding will be selected that maximizes
the total sum of normalized linkage weights. For each link, I will be able to report what
percentage of the stochastic scaffoldings it was chosen to give a level of confidence to the
ordering and orientation.

Although some of the elements of this chapters are not as polished as chapters 2 and
3, which correspond to published papers, I feel this material contains multiple significant
contributions to the field and will result in publications in the future.

4.4 Discussion

Due to recent advances in long read and long range genetic information technologies,
our ability to assemble high quality genomes has increased greatly. But some issues
still exist around high heterozygosity and small organisms. With the advent of the
Earth Biogenome project and the Darwin Tree of Life project, there is a need for new
assembly and scaffolding methods that are robust to these issues and work on a wide
range of organisms. While there are a number of phased assembly methods currently
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available, I take the approach of treating phasing consistency as a first class signal for
physical linkage and make it just as important as sequence similarity in the assembly
and scaffolding processes.

I presented a method for phased assembly by using heterozygous kmer pairs and their
phasing consistency as a signal of physical linkage. I then use this to bin HiFi reads into
haploid bins that can be assembled separately. By phasing prior to assembly, the errors
and bias caused by the ambiguity between heterozygosity and paralogous sequences are
removed. Furthermore, I generate a complete set of paired haplotype sequences, linked
by confirmed single-copy kmer-pairs, in the process identifying large scale structural
variation. Although N50 numbers are shorter than from some modern assemblers, I
believe the linked haplotype output of our method is the correct goal for diploid assembly.
The same approach could in principle be applied to higher ploidy genomes.

I demonstrated a new phasing aware scaffolding method and compared it to the most
commonly used existing scaffolder. It is clear that phasing consistency is a powerful
tool in determining if contigs should be scaffolded together or not. There is a dramatic
difference between the phasing consistency counts of contigs from the same chromosome
and different chromosomes using Hi-C reads.

I also described a novel algorithm for de novo haplotype phasing. This algorithm
is capable of scaling to polyploid genomes efficiently by adding more haplotype cluster
centers. It is also robust to receiving as input sites that are not actually heterozygous
and is capable of correcting the genotypes of those sites. This algorithm is of general
use even outside of the context of phasing aware scaffolding. I believe this will be of
particular use for plant genome research as many crops are polyploid. When expanded
with either a growing window approach or deterministic annealing, I believe that the
local optima problems from regionality of many data types will be solved.



Chapter 5

Conclusions

Genetic variation along with natural selection, has driven the evolutionary history on
earth creating us and all other life. Much work has been done to assess population
variation across humans and other species and use that to link genotypes with phenotypes
and infer evolutionary histories. Less work has used these as markers to disambiguate
data in different problems in genomics.

ScRNAseq suffers from several error modes that arise from natural limitations of
detections of small materials as well as from the strategy used to partition cells. Because
cells contain miniscule amounts of mRNA, amplification methods must be used and these
lead to technical artifacts between cells within an experiment and across experiments.
Because cells are loaded into droplets in a Poisson process, in order to capture many
singletons, the cell suspension must be in a concentration that will also randomly load
two or more cells into a single droplet. And if cells lyse or if there is RNA in solution
prior to partitioning, some reads will have cell barcodes of cells from which they did
not originate. One experimental design promises to address each of these issues at once.
Mixing cells from multiple individuals reduces the batch effects when comparing them,
cross sample multiplets should be easier to identify and remove, and the skew in allele
fractions away from those expected from a diploid genome may be used to measure the
ambient RNA. In chapter 2, I presented souporcell, a computational tool which uses the
genetic variation between individuals to cluster cells in a single cell RNAseq mixture of
individuals by the variants expressed in the reads. Souporcell also calls doublets using
the alleles in cells versus the alleles in each cluster. And souporcell estimates the amount
of ambient RNA in the system by how far the allele fractions in the clusters vary from
those one expects from a diploid organism. I validated and compared souporcell to the
other relevant tools and found that it compared favorably against all of them including
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the previous gold standard, demuxlet, which requires more information a priori. I believe
this is due to the rigid model based system used in demuxlet versus the simple cluster
center method that I used, which is robust to any unmodeled factors. Souporcell has
already been used in several million+ cell experiments and has been externally validated
using cell hashing. I believe that mixture experimental designs will only get more popular
over time due to the advantages this strategy has.

Long read sequencing has undoubtedly revolutionized genome assembly and has
motivated large projects such as the Darwin Tree of Life and Earth Biogenome projects
that seek to sequence and assemble high quality genomes for all multicellular eukaryotic
organisms. This will provide the next generation of science with an invaluable resource,
allow for insights into evolution not possible before, and serve as a conservation of
biological information in an era of extinction unprecedented during humans’ time on
earth. While much progress has been made through both data improvements and
algorithmic methods, some issues remain especially for small organisms and highly
heterozygous genomes. In chapter 3, we present the first high quality assembly of a single
mosquito. This was made possible by recent advances in library preparation for long
read sequencing reducing the DNA requirements. This improved the assembly versus
other mosquito assemblies which used pools of individuals or short reads because of the
presence of only two haplotypes versus many haplotypes.

While many consider heterozygosity a hinderance to genome assembly, and most
assemblers perform worse on highly heterozygous genomes, it can have some benefits as
well. In chapter 4, I turn this idea that heterozygosity is bad on its head and instead use
heterozygosity as an advantage by using the phasing consistency of reads across multiple
heterozygous sites as a signal for physical linkage in both assembly and scaffolding. In
doing this, I also describe two phasing algorithms (three, if phased assembly is counted).
One of these algorithms is novel and has several benefits of general interest. It is both
robust to, and can correct incorrect genotypes because it does not make the assumption
that every input variant is heterozygous and has relaxed the discrete constraint shared
by most phasing algorithms. Another benefit of this algorithm is that it scales well for
polyploid because we use treat haplotypes as cluster centers and can trivially increase
the number of clusters as the ploidy increases. We demonstrate our phased assembly and
scaffolding on the lepidoptera Vanessa atalanta. While we do not meet the contiguity of
some modern assemblers and do not assemble sex chromosomes, these can be assembled
separately. We believe that phased assembly is the correct solution to diploid and
polyploid assembly.
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