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Abstract

Infrared spectroscopy of cells and tissues

is prone to Mie scattering distortions,

which grossly obscure the relevant chem-

ical signals. The state-of-the-art Mie

extinction extended multiplicative signal

correction (ME-EMSC) algorithm is a

powerful tool for the recovery of pure

absorbance spectra from highly scatter-distorted spectra. However, the algorithm

is computationally expensive and the correction of large infrared imaging

datasets requires weeks of computations. In this paper, we present a deep con-

volutional descattering autoencoder (DSAE) which was trained on a set of ME-

EMSC corrected infrared spectra and which can massively reduce the computa-

tion time for scatter correction. Since the raw spectra showed large variability in

chemical features, different reference spectra matching the chemical signals of

the spectra were used to initialize the ME-EMSC algorithm, which is beneficial

for the quality of the correction and the speed of the algorithm. One DSAE was

trained on the spectra, which were corrected with different reference spectra

and validated on independent test data. The DSAE outperformed the ME-EMSC

correction in terms of speed, robustness, and noise levels. We confirm that the

same chemical information is contained in the DSAE corrected spectra as in the

spectra corrected with ME-EMSC.
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1 | INTRODUCTION

Infrared spectroscopy has become a popular tool in biol-
ogy and medical and material sciences for investigating
the structure and chemistry of intact materials [1–7]. The
information content provided by infrared techniques for
the investigation of biological samples such as cells and
tissues is overwhelming and twofold: (a) Chemical func-
tional groups absorb in the mid-infrared region, thus the
obtained absorption signal is a precise and interpretable
fingerprint of the chemical composition of the sample.
(b) Cells and tissues are highly scattering samples and
thus the acquired spectral data is distorted by scattering
signatures, which carry information about cell morphol-
ogy and shapes of the cell components [8]. In infrared
microspectroscopy, infrared radiation impinges on thin
biological materials and the radiation transmitted in for-
ward direction (or over a numerical aperture) is collected
by a detector, which is either a single element or a focal
plane array (FPA) detector. This results in spectra that
quantify the loss of radiation in forward direction with
respect to the incoming radiation. However, radiation is
lost in forward direction not only due to absorption by
the material, but also as a result of scattering. The loss of
radiation due to scattering is considerable in infrared
microspectroscopy of cells and tissues, since strong scat-
tering effects appear when the wavelength of the infrared
radiation matches the size of the cell and tissue compo-
nents. Scattering in infrared spectroscopy of cells and tis-
sues can be well estimated by the Mie theory [9–14],
which provides a formalism for calculating the so-called
extinction efficiency determining the loss of radiation
due to scattering and absorption as a function of the
wavelength. From the extinction efficiency, the apparent
absorbance spectrum can be calculated. We call it “appar-
ent,” since scattering effects increase the absorbance,
implying that features of the absorbance spectrum are
not only due to absorption, but also due to scattering. In
the ideal case, when scattering effects are absent,
absorption can easily be quantified by the absorbance,
which is, according to Beer-Lambert's law, linearly
dependent on the concentration of chemical compo-
nents that absorb at a certain wavelength. However,
scattering effects, in particular Mie-type scattering, lead
to highly non-linear absorbance data and have therefore
been considered a major obstacle for the interpretation
and data analysis of spectra in vibrational micro-
spectroscopy [15]. Scattering and absorption are
entangled by highly non-linear mechanisms, which can
be modeled by electromagnetic theory. For interpreta-
tion, data needs to be scatter-corrected, which involves
the separation of scattering and absorption contributions
in infrared spectra.

Scatter correction of infrared microspectroscopy and
imaging data involves solving an inverse scatter problem,
which aims at recovering the frequency-dependent
refractive index from the measured scatter spectrum. An
iterative method based on extended multiplicative signal
correction (EMSC) meta-modeling (ie, emulation by
data-driven modeling) of the Mie equations has been
developed and provided to the infrared spectroscopy
community [1, 10–14, 16]. The state-of-the-art algorithm
for estimating Mie-type scattering in infrared micro-
spectroscopy and imaging of cells and tissues, the so-
called Mie extinction EMSC (ME-EMSC) algorithm was
published recently and is openly accessible [1]. However,
a drawback of the existing ME-EMSC algorithm is that it
is computationally expensive, and it is therefore of inter-
est to investigate alternative and less computationally
expensive routes. Machine Learning has in recent years
been applied in most disciplines of science and has
proven itself to be a useful tool for solving a wide variety
of problems. In particular, Deep Learning has recently
been used to solve an inverse scattering problem for
image reconstruction in diffraction tomography [17].

In the field of vibrational spectroscopy, deep learning
has been employed as an unsupervised technique for pre-
processing of spectra [18, 19]. In the current paper, we
investigate if a supervised representation learning
approach could replace the existing ME-EMSC algorithm,
that is, if the process of Mie scatter correction could be
learned by a Deep Learning model from an experimental
dataset, which has been corrected by the ME-EMSC algo-
rithm. For this purpose, we correct a dataset of infrared
imaging data by the ME-EMSC algorithm and train a
convolutional descattering autoencoder that predicts pure
absorbance spectra from strongly Mie-distorted spectra.

2 | THEORY

2.1 | Convolutional neural networks

Deep learning is a subset of machine learning which uti-
lizes neural networks, which can discover highly complex
structures in large datasets and learn representations of
data with several levels of abstraction. Neural networks
are models containing multiple processing layers, which
are usually optimized through backpropagation of errors
[20]. The backpropagation indicates how to alter the
internal parameters used to compute the representation
in each layer from the representation in the previous
layer, in order to minimize a predefined loss function
quantifying the network's performance [21].

Convolutional neural networks (CNNs) are shift-
invariant, locally connected networks that were initially
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introduced to reduce overfitting and the number of free
parameters, as compared to fully connected neural net-
works [22]. CNNs utilize the convolution operation and
turned out to be an efficient way of exploiting composi-
tional hierarchies, where high-level features are com-
posed of lower-level features [21].

The convolution operation is computing a linear com-
bination of the local input in a small window, and the set
of weights for this linear combination is called the convo-
lution kernel. The convolution kernel slides over the
input and yields feature maps which preserves spatial
structure.

Using convolutions for analyzing images allows for
efficiently extracting information and is widely used in
image processing. It is, however, difficult to decide a
priori which kernels are optimal for a given problem, and
hand-engineering algorithms based on convolutions is
tedious and often demands domain expertise.

With CNNs, we circumvent this problem, since the
kernels' weights are learned during training and the CNN
itself decides which kernels to use to get optimal results
for the task at hand. Having multiple convolutional layers
allows the CNN to learn complex spatial hierarchical
structures in the data. This strategy has, in conjuncture
with the increase in computational power and availability
of data, yielded state-of-the-art results on several bench-
mark datasets and led to CNNs becoming ubiquitous in
analyzing images, video, speech, and audio [21, 23, 24].

CNNs can be applied in a plethora of cases for one- or
multi-dimensional data, which have a spatial or temporal
structure, and have also been applied in the field of spec-
tral analysis. It has been demonstrated in several studies
that CNNs can be used to extract salient features from
raw spectral data [25].

2.2 | Autoencoders

Autoencoders are a particular class of neural networks of
which the main objective is to learn robust representa-
tions of complex data [26]. Generally, an autoencoder is
considered an unsupervised learning technique, which
attempts to map its input onto itself. It consists of an
encoder-decoder network sequentially defined as

e :X !L Encoderð Þ
d :L!X Decoderð Þ ð1Þ

where the encoder e maps the original data into a latent
space L and the decoder d maps from L back into the
original feature space X . The autoencoder is trained by
minimizing the reconstruction loss

ℛAE =
X
i

R x ið Þ, d∘eð Þ x ið Þ
� �� �

ð2Þ

where x(i) is the training data and R is a metric quantify-
ing the reconstruction quality, such as, for example, the
mean squared error. To ensure that the autoencoder does
not learn the identity mapping, the dimension of the
latent space, denoted jLj, is often smaller than that of the
original space j X j . This creates a bottleneck, through
which the data must be squeezed. During training, the
encoder learns to extract the most salient features of the
data, from which the decoder, as faithfully as possible,
reconstructs the original data.

Autoencoders can learn particularly robust represen-
tations of the data by reconstructing it from a corrupted
version of itself [27]. If we let F model the process of cor-
ruption and xc = F(x) be our corrupted data, we can train
the autoencoder to minimize RðxðiÞðd∘eÞðxðiÞc ÞÞand thereby
learn to encode the corrupted input and undo the corrup-
tion process, that is, the autoencoder learns the inverse
function F−1.

Autoencoders have been used for de-noising blurry
images, as well as removing text or watermarks from
images [28, 29], and has thus been established as a means
of learning mappings from corrupted images to the origi-
nal images.

2.3 | Mie scattering

Mie scattering occurs when radiation impinges on scat-
terers whose morphology changes on the same scale as
the wavelength of the incident radiation and which are,
at least locally, approximately spherical.

Correcting Mie-distorted absorbance spectra involves
the solution of a highly non-linear inverse scatter prob-
lem [1, 10, 12–15] to retrieve the pure absorbance spec-
trum. When the pure absorbance spectrum is known, it
can be used to estimate the scatter-distorted measured
spectrum by using rigorous Mie theory. In the following,
we let this process of Mie-distortion of absorbance spectra
be denoted as ℳ. The map ℳ maps the pure absorbance
spectrum on the scatter-distorted spectrum. Thus, solving
the inverse scatter problem involves estimating ℳ−1.

2.4 | Mie extinction EMSC

The inverse process ℳ−1 is very well approximated by
the ME-EMSC algorithm [1], which estimates the pure
absorbance spectrum from the Mie-distorted spectrum.
This is achieved by an iterative process that gradually
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updates an estimate of the pure absorbance spectrum
until the scatter-free spectrum can be predicted with high
accuracy.

Mie scattering features in the measured spectra are
estimated by adding scattering curves, denoted pi, to an
multiplicative signal correction (MSC) model,

Zapp ~νð Þ= c+ bZref ~νð Þ+
XAopt

i=1

gipi ~νð Þ+ ε ~νð Þ ð3Þ

where Zapp is the measured spectrum, Zref is the reference
spectrum and Aopt is the number of scattering curves.
The parameters c, b, and gi are estimated by least squares
regression of Zapp onto the model spectra. The residuals
are denoted ε.

The scattering curves derive from a PCA subspace
model where Mie scattering first is simulated for many
possible realizations of scattering of spheres with differ-
ent radii and refractive indices. This is done to take into
account that these physical parameters generally remain
unknown. The subspace model is calculated from the van
de Hulst approximation to rigorous Mie theory, given as

Qext ~νð Þ≈2−4e−ρtanβ cosβ
ρ

sin ρ−βð Þ

−4e−ρtanβ cosβ
ρ

� �2

cos ρ−2βð Þ

+4
cosβ
ρ

� �2

cos2β

ð4Þ

where ρ=4πa~ν n−1ð Þ , tanβ= n0
n−1, a is the radius, and n

and n0 are the real and imaginary parts of the refractive
index, respectively. Qext defines the extinction efficiency
in forward direction. While the real part of the refractive
index, consisting of a constant and fluctuating part den-
oted n0 and nkk, respectively, relates to wave propagation,
the imaginary part of the refractive index is directly con-
nected to the absorption properties of the sample. In fact,
n0 can be estimated directly from the absorbance spec-
trum of a sample, given that the absorbance spectrum is
the so-called pure absorbance, Zpure, which is not affected
by scattering. Since Zpure is exactly what we are searching
for when we seek to remove scattering features from the
measured spectrum, the problem is an inverse problem.
The solution to this problem has been to implement the
Mie correction as an iterative algorithm which is initial-
ized by providing a range for the physical parameters a
and n0, and a reference spectrum. The role of the refer-
ence spectrum is twofold. Firstly, the reference spectrum
is used to estimate the imaginary part of the refractive
index. The fluctuating part of the real part of the

refractive index is then found through n0, using the
Kramers-Kronig relation. To facilitate the estimation of
n0 and nkk, it is beneficial to choose a reference spectrum
that is close to the true underlying pure absorbance spec-
trum. Secondly, the reference spectrum is used in the
EMSC model for estimating the model parameter related
to the optical thickness of the material and to normalize
the spectra with respect to the effective optical path
length.

The algorithm is initialized with a reference spec-
trum, which is assumed to be relatively close to Zpure. As
the corrected spectrum is estimated iteratively, the resid-
uals contain the chemical differences between the refer-
ence and the underlying pure absorbance spectrum. The
residuals are therefore used to update the reference spec-
trum to a more suitable estimation of the pure absor-
bance spectrum. This implies that we use the corrected
spectrum as a reference for the next iteration. With each
iteration, the scatter free pure absorbance spectrum is
gradually retrieved.

The algorithm is normally initialized with the same
reference spectrum and physical parameters for one
dataset. However, already for the next iteration, the
EMSC reference spectrum is updated in the iterative algo-
rithm, since the residual term in the EMSC model used
for updating the reference spectrum depends on the
chemical signals that are characteristic for each measured
spectrum. Therefore, the iterative process needs to be run
separately for each spectrum in the dataset. In each itera-
tion, the subspace of Mie realizations, the Qext curves,
must be calculated since they depend on the updated ref-
erence spectrum, which makes the algorithm time con-
suming. The complexity of the model employing a
computationally expensive formula such as the formula
for the Qext, the Hilbert transform used in the Kramers-
Kronig relation, and the need for individual iterative cal-
culations per spectrum, result in a time consuming cor-
rection procedure.

The role of the reference spectrum and its effect on
the correction has been discussed in a number of publica-
tions previously. It has been shown that the state-of-the-
art algorithm for Mie correction [1] is less dependent on
the reference spectrum than earlier versions of the algo-
rithm [12, 15]. However, it is expected that a high chemi-
cal variability may still require the use of multiple
reference spectra. An algorithm that tests different refer-
ence spectra for one scatter-distorted spectrum and
decides which is the best reference spectrum to be used,
does currently not exist. A testing of multiple reference
spectra is expected to increase the computation time fur-
ther since the iterative algorithm has to be performed for
each reference spectrum. However, when for example the
tissue type is known for a given sample and respective
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reference spectra for this tissue type exist, different refer-
ence spectra could be used for different samples. This
may improve the quality of the ME-EMSC correction if
there is a high chemical variability in the dataset.

3 | | MATERIALS AND METHODS

3.1 | Descattering autoencoder

In order to establish a deep convolutional descattering
autoencoder (DSAE), we consider the effects of Mie-scat-
tering as corruption of the pure absorbance spectra, and
the ME-EMSC corrected spectra a representation of the
“non-corrupted” pure absorbance spectra. We train an
autoencoder to correct for the scattering effects and
reconstruct the non-corrupted spectra. Formally, we let
s ið Þ
c be the raw spectra corrupted by Mie scattering and
s ið Þ =ℳ−1 s ið Þ

c

� �
be the ME-EMSC corrected spectra, and

we train an autoencoder to minimize the reconstruc-
tion loss

ℛmie =
X
i

R si, d∘eð Þ s ið Þ
c

� �� �
: ð5Þ

We want to let the autoencoder learn a robust repre-
sentation of the chemical signals in the spectra and dis-
card the signals coming from scattering. The concept is
depicted in Figure 1.

We use a convolutional autoencoder architecture as
depicted in Figure 2, consisting of blocks of convolutions,
batch normalization, and ReLU-activations. After each
block in the encoder, average-pooling is employed to
down-sample the data, and in the decoder, we use inverse
convolutions [30] for the up-sampling. We tried several
architectures with different number of blocks, and in our

final model we have 5 blocks in both the encoder and the
decoder, and a total of 110 000 trainable parameters.*

The first blocks have convolutional layers with larger
kernels and many channels, where we start with kernels of
size 23 and 64 channels. Then, we gradually decrease both
the kernel-size and the amount of channels toward the bot-
tleneck in the latent space, where we have four channels
with kernels of size 3, and thus a 22 × 4 dimensional latent
space. To train the model we try both mean squared error
and absolute-square error and combinations thereof as
training objectives, and use the RMSprop-optimizer. Fur-
thermore, we use L2-regularization to constrain the weights
of the network. L2 regularization is done by adding a term
with the L2 norm of all the weights of the network to the
training objective, such that no weights will be too large.
The training time of the DSAE which was used in the fol-
lowing was roughly 5 hours.

The rationale behind this approach is not to strictly
mimic the ME-EMSC algorithm, but rather to use the
ME-EMSC corrected spectra as training data to teach the
model how to separate the chemical and physical signals
in the measured spectra. The encoder should thus extract
the chemical information encoded in the peaks of the
scatter-polluted spectrum. The convolutional kernels run
across the measured spectrum to extract information
about spectral bands and baseline distortions, such as
their shapes at different scales. During training, the
DSAE learns which spectral information to extract and
which to disregard. The extracted information is encoded
into the feature maps and eventually reduced into a com-
pressed representation of the spectrum's chemical infor-
mation in the latent space. From the spectral information
encoded in the latent space, the decoder is trained to
build the scatter-free spectrum. In this way the DSAE

FIGURE 1 An illustration of the idea behind the proposed

approach. We train a deep convolutional descattering autoencoder

to correct for Mie-scattering in accordance with the ME-EMSC. We

train the DSAE on a set of spectra which have been scatter-

corrected with the ME-EMSC algorithm

FIGURE 2 Illustration of the descattering autoencoder

architecture. The DSAE consists of several blocks of convolutional

layers, batch-normalization, and ReLU-activation functions. We

down-sample with average pooling and up-sample with inverse

convolutions. The length of the convolutional layers signify the

number of channels and the width the dimension of the data at

that given layer
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learns to separate the physical and the chemical contribu-
tions to the measured absorbance spectrum and re-con-
struct the pure absorbance spectrum.

3.2 | Fungal data

Our dataset consists of 16 FTIR hyperspectral images
of single cells of the oleaginous fungal strain Mucor
circinelloides VI 04473†4. The images were obtained by
a microscope employing an FPA imaging detector,
resulting in infrared images of a size of 128 × 128
spectra with 1505 wavenumbers. The data were
obtained in a study with the aim to establish a sus-
tainable production of polyunsaturated lipids using ole-
aginous filamentous fungi. The fungal strain Mucor
circinelloides VI 04473 was grown on four different
growth media, where the growth media differed in the
content of inorganic phosphate salts. For every growth
condition we have 4 hyperspectral images of different
parts of the fungi, which were collected with an
Agilent FPA microscope. All images were recorded
with 15× spatial resolution, and with a spectral resolu-
tion of 4 cm−1. For most of the images, 128 scans
were averaged in each pixel. An averaging of 512 scans
were also used for selected samples, to gain a higher
signal to noise ratio.

Before correcting the spectra with ME-EMSC, suitable
reference spectra needed to be established. Since the dif-
ferent growth conditions used for the cultivation of the
filamentous fungi created strong spectral differences in
some regions of the spectra, different reference spectra
which corresponded to different growth conditions were
used for the ME-EMSC correction. The reference spectra
were recorded with a high throughput system (HTS)
measurement of cell populations of the same fungal
strain, grown under the same conditions [31]. The HTS
spectra are obtained from the homogenized fungal bio-
mass and constitute the average infrared fingerprint of
the bulk cell constituents for the given condition. The
HTS-FTIR spectra were measured for each sample in
three technical replicates using a High Throughput
Screening eXTension (HTS-XT) unit coupled to a Vertex
70 FTIR spectrometer (both Bruker Optik, Germany).
The region between 4000 and 500 cm−1 was recorded in
transmission mode with an aperture of 5 mm, a spectral
resolution of 6 cm−1 and a digital spacing of 1.928 cm−1.
While the spectral resolution is due to the respective opti-
cal setup and different for the HTS and the FPA images,
the digital spacing is the spacing between the
wavenumber readings in the respective dataset, which is
set in the Fourier transform algorithm. For each HTS
spectrum, 64 scans were averaged.

The HTS spectra were normalized by a standard
EMSC [32, 33] before serving as a reference spectrum for
the Mie correction. The idea of using different reference
spectra for the ME-EMSC correction is in general not
applicable in a correction task. However, for a training
dataset, conditions, tissue types are in general known.
We were interested in achieving the best possible correc-
tion for the DSAE training dataset, which later could be
used on new independent data without any prior knowl-
edge about the growth condition. Therefore, the
approach of assuming that the growth condition, tissue
type, and so forth, is known, is valid.

3.2.1 | ME-EMSC correction of
fungal data

We created our training data for the descattering
autoencoder by using the ME-EMSC algorithm to correct
roughly 60 000 spectra taken from 12 different images.
We then evaluate our trained descattering autoencoder
on approximately 20 000 spectra from four independent
images, which were likewise corrected with ME-EMSC.

For all images, the ranges for the physical parameters
n0 and a were set to [1.2, 1.5] and [3 μm, 9 μm], respec-
tively. The maximum number of iterations was set to 15.
While for many spectra the algorithm did not completely
converge after 15 iterations, our experience is that the
corrected spectra are scatter free and the main chemical
features are retrieved. After correction, a strict filtering
procedure was applied to the spectra. Using the quality
test, the background spectra were discarded, and only
spectra corresponding to the sample area were used to
avoid building models on background spectra. The back-
ground filter was established by considering the scaling
parameter from a basic EMSC on the raw spectra [34].
Spectra which converged fast in the ME-EMSC correc-
tion, after four or less iterations, were also discarded. This
was done based on the knowledge that the correction
requires a higher number of iterations than four in order
to retain chemical features of the spectrum being
corrected. Furthermore, an assessment was made on how
successfully the scattering features were removed from
the spectra. This was done by evaluating the root mean
square error (RMSE) in the inactive regions from a basic
EMSC on the Mie corrected spectra. A relatively high
RMSE value indicates that there is still scattering features
left in the spectra after correction, and the spectra are
therefore discarded.

It is important to note that it is not possible to obtain
pure absorbance spectra from raw spectra with low qual-
ity. If the absorbance signals are very weak, such as at
the edges of the sample, the signal to noise ratio might be
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too low and the ME EMSC algorithm is strongly effected
by the reference spectrum, since there are no dominating
chemical features in the raw spectrum. This can lead to
corrected spectra which adapt mainly features from the
reference spectrum, which often is detected by a low
number of iterations before the algorithm terminates. To
make sure that the DSAE is only trained on high quality
spectra, the filtering routine explained above is applied.

4 | RESULTS AND DISCUSSION

In Figure 3, the ME-EMSC correction setup is shown for
FTIR images of the fungal strain Mucor circinelloides
grown under different conditions. Comparing to applica-
tions in the biomedical, the different growth conditions
may correspond to different tissue types or different
tumor types [35]. In the training data, the tissue types
and the tumor types are annotated and specific reference
spectra could be used for the ME-EMSC correction. Ref-
erence spectra can be obtained as average spectra. In our
study, reference spectra were obtained as HTS reference
spectra and several images from each growth condition

were corrected as training data. As further illustrated in
Figure 3, we trained one single DSAE using the set of
scatter-distorted raw spectra and the corresponding ME-
EMSC corrected spectra from all four conditions. This
approach allows the single model to be used for a wide
range of input spectra without prior knowledge of the ref-
erence spectra. It is important to stress that the DSAE is
trained on all of these images simultaneously resulting in
one single DSAE, and not one per growth condition. The
DSAE was thereafter validated on an independent set of
images with one image from each of the four conditions.

Figure 4 shows raw spectra, spectra corrected by the
ME-EMSC algorithm, and spectra corrected with the
DSAE. We can see that both the spectra which were
corrected by the ME-EMSC and the spectra which were
corrected by DSAE are very nearly scatter free. Fig-
ure 5A-D shows the comparison of single spectra that
were corrected by the ME-EMSC together with the DSAE
corrected spectra. The corresponding raw spectra are
shown in Figure 5E-H, that is, in the row below such that
corresponding raw and corrected spectra are below each
other. One spectrum from each growth condition is
shown. We can thus conclude that the DSAE is indeed

FIGURE 3 The setup for training and validation of the descattering autoencoder. Spectra taken from 16 different samples from four

different growth conditions are corrected, using the HTS spectrum for the given growth condition as a reference spectrum. The DSAE is

trained on samples from all of the conditions simultaneously. Three images from each condition are used to train one single DSAE, and the

remaining image from each condition constitutes the independent test set
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able to reconstruct the pure absorbance spectra and
remove severe Mie-scattering features in accordance with
the ME-EMSC algorithm. It has learned from the ME-
EMSC corrected spectra how to correct scatter-distorted
spectra, and which reference spectrum implicitly to use
for the correction.

Cross-validation between the conditions was also con-
sidered, where one growth condition was removed from
the training data at a time and the DSAE was used to cor-
rect spectra from the unknown growth condition. This
corresponds to a situation where a model is applied to an
unknown tissue type, which in most practical situations
is not the case, since the tissue type is usually annotated
in the dataset. Results are presented in Figure S1. When
the growth conditions are unknown to the DSAE model,
the height of some absorbance peaks are slightly differ-
ently scaled compared to spectra corrected by ME-EMSC
using the HTS spectra from that given growth condition
and the band ratios will thus differ slightly. However, the
internal relations between different types of spectra are
correctly represented, for example, the relation between
band ratios in DSAE corrected spectra of lipid bodies and
DSAE corrected spectra of hyphae are very similar to the
relations in the same the spectra corrected with ME-
EMSC. That is, we can still easily differentiate between
spectra of lipid bodies and hyphae.

Knowing that the ME-EMSC correction to some
extent depends on the reference spectrum, this is exactly
what we would expect. Cross-validation between growth
conditions is thus essentially equivalent to ME-EMSC
correction with a sub-optimal reference spectrum. So we

FIGURE 4 Examples of FPA microspectroscopic imaging

spectra of fungal strain Mucor circinelloides grown under different

nutrient conditions. We show 100 Raw spectra, ME-EMSC

corrected spectra, and DSAE corrected spectra

FIGURE 5 Results of Mie-scatter correction in filamentous fungi samples. A-D, Spectra corrected with the descattering autoencoder

and with the ME-EMSC algorithm. E-H, The corresponding raw spectra
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recommend training the DSAE on spectra coming from
several growth conditions and tissue types in order to
obtain a model which can correct a wide range of raw
spectra with large chemical variability.

4.1 | Speed

Correction of 1000 raw spectra with the descattering
autoencoder takes 200 ms on a GPU and 750 ms on a
CPU, while for the ME-EMSC algorithm it takes roughly
4-5 minutes. Thus the correction is at least three orders
of magnitude faster for the DSAE. In order to train a
DSAE, a training set of ME-EMSC corrected spectra is
required. However, since a representative training set can
be established using just a few images and the DSAE can
be subsequently applied on a huge number of images, the
speed improvement is considerable for the DSAE com-
pared to the ME-EMSC. For routine analysis in a clinical
setting, this means that the DSAE could perform the Mie
correction in real time.

4.2 | Noise reduction

We see clearly from Figures 4 and 5 that, in addition to
predicting the ME-EMSC correction very well, the DSAE
reduces noise. The noise reduction could be explained by
the convolutional nature of the DSAE as well as the fact
that the DSAE gradually compresses spectral information
into a smaller latent space, in which only the most salient
features of the spectra are contained and through which
the noise is not easily transmitted. Using CNNs with a
relatively simple loss function such as MSE/MAE could,
in theory, obscure also some of the relevant chemical var-
iations in the spectrum, but we have not detected any sig-
nificant loss of chemical information for the bulk of the
spectra, compared to the ME-EMSC for the dataset used
in this study.

To quantify the noise reduction we use the fact that
nearby spectra in the image domain should generally be
very similar, and the difference between neighboring
pixels can, to a large extent, be attributed to noise. There-
fore, we consider the absolute value of the difference of
every pixel and the mean of its eight nearest neighbors
and itself. This difference should for the large majority of
the pixels in the image be very small, since the chemical
signals in the spectra mostly does not vary much between
neighboring pixels. We calculate this difference for all
pixels of the image after removing empty pixels with
EMSC b-parameter quality test [34] and use the median
value within images of the samples as a measure of noise.
We found the median difference to be about 0.003 for the
DSAE corrected spectra and 0.013 for the ME-EMSC
corrected spectra. Thus we can conclusively say that the
DSAE yields less noisy spectra.

4.3 | Spectral information

To confirm that the bulk of the DSAE and ME-EMSC
corrected spectra contain the same chemical signatures,
we performed a PCA on the two corrected and filtered
sets of spectra. In Figure 6A,B shows the PCA score plots
of the first two principal components of the ME-EMSC
and DSAE corrected spectra are shown. We see that the
first two score vectors of a PCA of the DSAE corrected
spectra separate the spectra coming from the four differ-
ent growth conditions fairly well, and in accordance with
the PCA scores of the ME-EMSC corrected spectra. In
Figure S2, we show the loadings of the PCA, and in Fig-
ure S3a, we also consider the PCA score plot of the DSAE
latent space representation of all the spectra and find that
these spectra also cluster very nicely according to nutri-
ent conditions. This illustrates that the relevant chemical
information is contained in the latent space (bottleneck)
of the DSAE. To further show the chemical similarity of
the spectra corrected with the two different methods, we

FIGURE 6 PCA score plot of

the spectra from four different

growth conditions. Spectra are

corrected with the ME-EMSC in

panel A and with DSAE in panel B.

The scores are colored according to

samples grown under different

nutrient conditions
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consider the variability within single FTIR images. To
this purpose, we perform a PCA on the spectra from each
image, after removing the spectra which do not pass the
filtering routine described above. We use K-means clus-
tering to cluster spectra of each single image into two
classes based on the first and second principal compo-
nents of the spectra of the respective image. For one
image, the score plot for the first and second principal
components are shown in Figure 7A,B for the ME EMSC
corrected and the DSAE corrected spectra, respectively.
The mean spectra of the obtained classes are shown in
Figure 7C,D, respectively. The K-means clustering
resulted in classes which are very similar for the DSAE
and ME-EMSC corrected spectra. When evaluating four
images, we found that, depending on the image, 65%-90%
of the spectra are clustered equivalently to the ME-EMSC
corrected spectra. We observed that for the image that
was used to obtain the results shown in Figure 7, both
the DSAE and the ME-EMSC corrected spectra are clus-
tered mainly on the basis of the ratio of the Amide 1 peak
at 1650 cm−1 to the polyphosphates peak at 1265 cm−1, as
well as the ester peak at 1745 cm−1. Thus the main source
of variability for both sets of corrected spectra is the same
and they represent the same chemical information. In
Figure S4, we also see that that the PC loadings are very
similar for the DSAE and the ME-EMSC corrected spec-
tra and that the clusters co-localize in the image domain.

Furthermore, in Figure 8 the distribution of the
absorbance peaks for all spectra from an image from each
of the four nutrient conditions at two different
wavenumbers are shown as heatmaps. We see that the
distributions for the DSAE spectra are fairly similar to
the ME-EMSC spectra's distributions, and that they
change in the same way for different growth conditions.
This shows that the DSAE can be used for all different
growth conditions and yield similar correction as the
ME-EMSC with the reference spectrum tailored to the
growth condition.

4.4 | Chemical imaging

In Figure 9, DSAE corrected infrared images are shown.
We used all the spectra of the infrared image as input for
the DSAE without applying any quality test. We observe
that the DSAE corrected images yield informative hyper-
spectral images. Figure 9A shows the -C=O stretch at
1650 cm−1 which is characteristic for proteins and the
cell wall components chitin and chitosan, also known as
Amide I peak. Since the cell wall covers the whole cell
and since proteins have relatively homogeneous distribu-
tion in the cell except the active lipid storage sites, we
expect chitin/chitosan and protein related chemical sig-
nals in the complete cell area. We expect a higher

FIGURE 7 A and B, PCA score

plots of the first and second

component are shown for ME-EMSC

corrected spectra and DSAE

corrected spectra coming from one

image of the independent test set.

The scores are colored according to

classes that were obtained by K-

means clustering based on the first

and second principal component. C

and D, Mean spectra of two different

classes are shown for ME-EMSC

corrected spectra and DSAE

corrected spectra, respectively
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intensity of the 1650 cm−1 peak at the edges of the cells
due to the increased thickness of the cell wall. A very
strong signal related to chitin and chitosan molecules is
also expected at 3274 cm−1 (Figure 9D). The 3274 cm−1

signal corresponds to the N-H stretch in chitin and
chitosan. As before, we expect absorbance signals related
to the N-H stretch over the whole cells and an even
increased absorbance at 3274 cm−1 at the edges of cells.
Furthermore, the two most important lipid-related peaks
were analyzed: (a) The peak 1745 cm−1 (Figure 9C) corre-
sponds to the -C=O stretch in the esters in acylglycerides
which are the main lipid storage molecules in Mucor

circinelloides. (b) The peak 1710 cm−1 (Figure 9B) corre-
sponds to free fatty acids. From the DSAE chemical
images of the 1745 cm−1 peak, we observe that the main
lipid storage sites, that is, lipid droplets with readily syn-
thesized acylglycerides, are located toward the center of
the round-shaped cells, which is in accordance with
microscopical observations previously published in Kosa
et al. [36] The chemical image of the free fatty acids peak
at 1710 cm−1 shows lipid synthesis active sites located at
the edges of the cell close to the cell membrane and cell
wall where the formation of acylglycerides occurs [37].
Further details on the biological interpretation of these
results will be published elsewhere.

It is apparent from the chemical images shown in Fig-
ure 9 that salient chemical features can be revealed by
chemical images of DSAE corrected infrared images. The
obtained images have a high contrast and are not
corrupted by noisy spectra. The DSAE correction has a
de-noising effect as we already observed in Figures 4 and
5. The ME-EMSC corrected spectra can be rather noisy
and this noise is particularly detrimental in chemical
imaging and results in less information-rich images. If
the noise is of the same magnitude as the pure absor-
bance signal, creating chemical maps requires further
processing and de-noising. Therefore, it is a large advan-
tage that the DSAE produces smoother and less noisy
images. We can conclude that the DSAE results in highly
interpretative chemical images, while the input spectra

FIGURE 8 Heat map of the normalized distribution of the

absorbances at the polyphosphates peak at 1265 cm−1 (top) and the

lipids peak at 1745 cm−1 (bottom) for the ME-EMSC and DSAE for

the four different growth conditions

FIGURE 9 Descattering

autoencoder-corrected hyperspectral

image at four different wavenumber

channels
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strongly scatter distorted (see Figure 5). It is further
important to note that the DSAE was able to establish
the chemical images without any need of quality control
of spectra, for example, of background spectra and spec-
tra from edges of cells.

To further compare the DSAE to the ME-EMSC algo-
rithm, we cluster pixels on images using raw spectra,
ME-EMSC corrected spectra and DSAE corrected spectra.
Before K-means clustering, we reduced the chemical
dimension with PCA to six principal components and
performed K-means on the scores of these six compo-
nents. Figure 10 shows the result of the clustering as well
as the mean spectra for each class. When inspecting the
spectra of the classes, we find that the DSAE appears to
be able to correct spectra from all parts of the cell. We
find that the spectra close to the edges of the cell (cell
wall) show lower absorbance in peaks that are character-
istic for lipids and show comparatively larger absorbance
in chitin and chitosan related peaks, which is a typical
indication of the cell wall structure. These features which
are biologically meaningful are not as clearly provided by
the ME-EMSC corrected spectra. Furthermore we found
that the ME-EMSC algorithm resulted in several high-
noise spectra, which formed separate clusters in the K-
means clustering and complicated therefore the cluster-
ing procedure for the ME-EMSC corrected spectra. This
shows that the DSAE yielded a robust representation of
the chemical information in the spectra and not simply

copied the ME-EMSC algorithm. We observe further in
Figure 10 that the raw spectra can also be clustered by
the same approach. However, clusters are mainly
obtained according to shares of scatter contributions. It is
important to note that scattering features can be corre-
lated with chemical features. Therefore it is expected that
clustering according to scattering features (Figure 10C)
results in similar clusters as clustering according to
chemical features (Figure 10A). For example, we see from
the mean spectra in Figure 10F that there is a distinct dif-
ference in scattering in spectra deriving from the edges of
the lipid bodies (class 1) and spectra deriving from the
center of the lipid bodies (class 3). These differences cor-
relate with differences in chemistry between the center
and the edges of the lipid bodies. Therefore, we expect
that the chemical images obtained from raw spectra and
the chemical images obtained from DSAE corrected spec-
tra show similar features since scattering features and
chemical features are correlated.

4.5 | Independence of reference
spectrum

We would like to emphasize that although one reference
spectrum was used per growth condition when esta-
blishing the dataset with ME-EMSC, and all spectra of
one image were corrected initializing the algorithm with

FIGURE 10 The results of K-means clustering on the pixel-spectra of the hyperspectral image, after the pixel-spectra had been reduced

to their six first principal components. At the bottom the mean spectra in the different classes obtained from the clustering are shown
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the same reference spectrum, the spectra within one
image may still have a high chemical variability. This
means that while a given reference spectrum may fit for
the majority of the spectra within one image, there could
be some spectra which are chemically different within
one image and for which the ME-EMSC algorithm may
not work that well. The ME-EMSC in its present form
needs to adhere to one reference spectrum for the entire
image, while the DSAE was trained on a dataset that was
established by using multiple reference spectra, and has
therefore learned to correct spectra which with a large
chemical variability. We therefore expect that the DSAE
will use implicitly different reference spectra when cor-
recting spectra within the same image.

The influence of the reference spectrum on the ME-
EMSC correction can also be observed in Figure 6, where
the spectra from the different growth conditions separate
very clearly in the score plot for the ME-EMSC corrected
spectra without any overlap of the clusters. Whereas the
score plot of the DSAE corrected spectra shows some
overlap of scores from different images. The reason for
this is believed to be that the DSAE preserves the high
chemical variability within each image since it is implic-
itly using different reference spectra for different parts of
the images. The high variability is the actual chemical
variability in the images. We consider therefore the result
of the DSAE correction to be superior to the result of the
ME-EMSC correction. To investigate this further, we con-
sider the distribution of the heights of the absorbance
peaks in one image with a particularly large chemical
variability containing both lipid bodies and hyphae. We
consider the peak distribution at two different

wavenumbers, namely the Amide I peak and the ester
peak, at 1643 and 1745 cm−1, respectively. The high
chemical variability in the image means that using only
one reference spectrum may not be optimal for all spectra
in the image. The histograms are shown in Figure 11,
along with the height of the absorbance peaks for the ref-
erence spectrum.

We see that the absorbance values of the Amide I
peak and the ester peak for the ME-EMSC corrected spec-
tra are fairly tightly distributed around the absorbance of
the reference spectrum. The DSAE corrected spectra
show a stronger variability of the heights of these peaks.
This indicates that the ME-EMSC corrections can be
affected more by the reference spectrum, a tendency
which could be successfully reduced in the DSAE correc-
tion. Therefore, we argue that the DSAE can correct spec-
tra from different parts of the image which have very
different chemical features very well.

5 | | CONCLUSION

In this paper, we have demonstrated the potential of a con-
volutional descattering autoencoder to correct for the scat-
tering effects in FTIR microspectroscopy. We show that
spectra pre-processed by the DSAE contain the same chemi-
cal features as compared to the gold-standard pre-
processing with ME-EMSC, in addition to removing noise
from the spectra. Moreover, our approach is much faster
than the ME-EMSC algorithm, which is an important prop-
erty if the method is to be used by pathologists in clinics
when they need to pre-process the images in real-time.

FIGURE 11 Comparison of

distributions of absorbances in the

ester peak at 1745 cm−1 in panels A

and B and for the Amide I peak at

1643 cm−1 in panels C and D for ME-

EMSC and DSAE corrected spectra.

All the spectra are from the same

image. The dashed red vertical line

shows the absorbance of HTS

reference spectra at the peak in

question. Background spectra have

been filtered out beforehand with the

EMSC b-parameter quality test [34]
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The ME-EMSC is based on the Mie formalism and
involves transformations such as the Kramers-Kronig
transformation and singular value decomposition. The
DSAE learns to perform Mie correction from data that is
corrected by the ME-EMSC algorithm for a given applica-
tion and is not expected to work for any type of input
spectra. Therefore, the rationale behind our approach
was not to fully replace the ME-EMSC algorithm for arbi-
trary input spectra, but rather to train the DSAE using
ME-EMSC corrected spectra for a given application. The
DSAE learns to extract pure absorbance spectra from
spectra with a chemical variability which is inherent in a
given application and defined by the cell or tissue types
considered. This means in practice, that a DSAE needs to
be trained for each application in the same way as classi-
fiers need to be trained for each application. For a new
application, where input spectra display completely dif-
ferent chemical signatures, a new DSAE needs to be
trained.

We have shown that the DSAE is able to address and
correct noise in the ME-EMSC corrected spectra and
that it generally yields smoother and more stable correc-
tions, which is particularly important for producing
informative hyperspectral maps. The ME-EMSC in its
current form is not designed for using multiple refer-
ence spectra, where reference spectra are adapted to a
tissue type, condition, and so forth, since the tissue type,
condition, and so forth is usually only known in the
training stage. However, for establishing the DSAE, the
tissue type only needs to be known for the training data.
The trained DSAE uses then implicitly the most appro-
priate reference spectrum for a given correction task.
For the establishment of the training set, we used differ-
ent reference spectra in the ME EMSC that were
adapted to the respective growth conditions of the fila-
mentous fungi. The DSAE could then be trained on the
spectra corrected with the best possible reference spec-
trum by ME-EMSC and it learned which reference spec-
trum to use implicitly in a correction task. The situation
of using multiple reference spectra is a very prevailing
issue in the analysis of tissues. For example, tissue sec-
tions for pathology contain different tissue types that
can be chemically very different. We suggest therefore
to use different reference spectra for establishing a train-
ing set by ME-EMSC, that is, one reference spectrum for
each tissue type. This training set can be used to train a
descattering autoencoder which can then be used for
correcting spectra from any tissue type.
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