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Abstract: Soil texture and particle size fractions (PSFs) are a critical characteristic of soil that influ-
ences most physical, chemical, and biological properties of soil; furthermore, reliable spatial predic-
tions of PSFs are crucial for agro-ecological modeling. Here, series of hybridized artificial neural 
network (ANN) models with bio-inspired metaheuristic optimization algorithms such as a genetic 
algorithm (GA-ANN), particle swarm optimization (PSO-ANN), bat (BAT-ANN), and monarch 
butterfly optimization (MBO-ANN) algorithms, were built for predicting PSFs for the Mazandaran 
Province of northern Iran. In total, 1595 composite surficial soil samples were collected, and 64 en-
vironmental covariates derived from terrain, climatic, remotely sensed, and categorical datasets 
were used as predictors. Models were tested using a repeated 10-fold nested cross-validation ap-
proach. The results indicate that the hybridized ANN methods were far superior to the reference 
approach using ANN with a backpropagation training algorithm (BP-ANN). Furthermore, the 
MBO-ANN approach was consistently determined to be the best approach and yielded the lowest 
error and uncertainty. The MBO-ANN model improved the predictions in terms of RMSE by 20% 
for clay, 10% for silt, and 24% for sand when compared to BP-ANN. The physiographical units, soil 
types, geology maps, rainfall, and temperature were the most important predictors of PSFs, fol-
lowed by the terrain and remotely sensed data. This study demonstrates the effectiveness of bio-
inspired algorithms for improving ANN models. The outputs of this study will support and inform 
sustainable soil management practices, agro-ecological modeling, and hydrological modeling for 
the Mazandaran Province of Iran. 

Keywords: spatial distribution; particle size fractions; evolutionary algorithms; sub-humid regions; 
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1. Introduction 
Soil texture is one of the most critical physical properties of soil and is classified based 

on the relative proportions of sand, silt, and clay. These individual particle-size fractions 
(PSFs) are a type of compositional soil data and have important impacts on the behavior 
of other physical, chemical, and biological properties of soil; furthermore, it is a major 
control of soil fertility [1–4]. For example, the buffering capacity of soils [5], fertilizer ap-
plication rates [6,7], soil carbon maintenances [8,9], and taxonomic-based diagnostic hori-
zon definitions [10] are greatly dependent on soil PSFs and textural classes. Moreover, soil 
PSFs are the most widely used input for developing pedotransfer functions, which are 
used to predict soil characteristics that are difficult to measure, which are in turn used for 
hydrogeological, erosion, and environmental modeling purposes [11–14]. Hence, provid-
ing high-resolution spatial data related to soil PSFs is of great interest to researchers. 

Globally, soil surveying practices have largely transitioned towards the use of digital 
soil mapping (DSM) approaches as a means to reduce the cost and time required to de-
velop soil maps and leverage the advances in modern technologies related to computing, 
remote sensing (RS), machine learning (ML), and geographical information systems. 
Within a DSM framework, different statistical methods are used to infer the relationships 
between soil response variables (e.g., soil texture and PSFs) and a suite of environmental 
covariates to predict soil variability in unsampled locations. Typically, these environmen-
tal covariates may be derived from digital elevation models (DEM), geomorphological 
data, climatic data, and RS data for predicting PSFs [11,15,16]. 

The use of ML models has become increasingly prevalent for predicting the spatial 
distribution of soil properties. When predicting soil PSFs, various ML-based DSM studies 
have included the use of artificial neural networks (ANNs) [17–21], boosted regression 
tree (BRT) [19,22,23], Random Forest (RF) [18,24], and artificial neuro-fuzzy inference sys-
tem (ANFIS) [16,25]. Despite the variety of ML models that a DSM practitioner may apply, 
existing literature does not seem to suggest that one model is universally better than oth-
ers; furthermore, model comparison studies have shown that different models have the 
potential to generate drastically different outputs when given the same input data [26].  

When predicting PSFs, however, ANNs have been shown to be particularly effective, 
and they are the most widespread approach due to their accuracy and flexibility [17–21]. 
However, this model has several considerable shortcomings, such as inconsistent archi-
tectures for different applications, coupled with the process required to tune and fit a neu-
ral network, which is a time-consuming procedure that is largely based on trial and error 
[27,28]. Conventionally, ANNs have been fitted using a backpropagation (BP) algorithm; 
however, state-of-the-art approaches using bio-inspired, metaheuristic, optimization al-
gorithms have become increasingly prevalent, including the genetic algorithm (GA) [29], 
particle swarm optimization (PSO) [30], ant lion optimization (ALO) [31], spotted hyena 
optimizer (SHO) [32], binary spring search algorithm (BSSA) [33], grey wolf algorithm 
(GWO) [34], genetic optimization resampling based particle filtering (GORPF) algorithm 
[35], and ant colony optimization (ACO) [16]—all of which may be hybridized with ANNs 
to address the aforementioned disadvantages.  

The separate estimation of each particle size class does not guarantee that the sand, 
silt, and clay percentages will sum to 100% for all predicted locations. To reduce the un-
certainty and unreliability in spatially predicting PSFs, soil PSFs must be treated as com-
positional data (i.e., sum to a constant value) [3,12,14]. To address this, different types of 
transformations include the additive, centered, and isometric log-ratio transformations 
[12,14]. A unique feature of the ANN model is its ability to use a softmax transform func-
tion in the output layer. The softmax function, also known as a softargmax or a normalized 
exponential function, is very similar to the additive log-ratio transform, which ensures 
that the sand, silt, and clay fractions sum to unity [12].  

Within the DSM literature, the use of these optimization techniques is limited, and a 
comprehensive comparison has yet to be carried out on individual soil properties—in par-
ticular, compositional soil data, such as PSFs. Hence, the main objectives of this study 
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were: (1) to develop and test the performance of metaheuristic, optimization algorithms 
that were hybridized with ANNs for predicting soil PSFs using existing soil survey; (2) to 
rank the explanatory power of individual environmental covariates for predicting the dis-
tribution of soil PSFs for a case study in northern Iran; and (3) to map the spatial distribu-
tion of soil PSFs and soil textural classes at a provincial scale. This study was carried out 
in the Mazandaran Province of northern Iran, which is an agriculturally significant region 
with intensive crop production and diverse soil types. Due to the nonuniform impacts of 
the soil forming factors, coupled with the unique eco-hydrological characteristics of the 
area, the surficial soil texture is highly diverse across the province. 

2. Materials and Methods 
2.1. Study Area 

The Mazandaran Province located in the northern region of Iran, within 50°31′21″ E 
to 53°56′52″ E longitudes and 36°38′06″ N to 36°54′59″ N latitudes, has an areal extent of 
23,833 km² (Figure 1). Forestlands, rangelands, croplands, and orchards are the dominant 
landcover types, occupying 46%, 24%, 10% and 4% of the total area, respectively. The soils 
of the province are mostly fertile and, due to the suitable climatic conditions, play a sig-
nificant role in producing various crops (e.g., rice, wheat, and corn) and fruit trees (e.g., 
citrus and kiwi) in Iran. The elevation ranges from <5 m above mean sea level in the north-
ern region, along the shoreline of the Caspian Sea, to >3000 m above mean sea level in the 
southern region, along the Alborz Mountain chains. According to the De Martonne meth-
odology for climate classification [36], the Mazandaran Province is described as having a 
mixture of very humid, humid, Mediterranean, and semi-humid climatic conditions. 
Within the province, the rainfall in the eastern part is about 400 mm and increases along 
a westward gradient to 1400 mm; hence, the soil moisture regime is classified as xeric, 
ustic, and udic along that same gradient. The predominant soil temperature regime class 
is classified as being thermic and followed by mesic and cryic [37]. The most important 
soil environmental factor, which influences the soil development and variability at the 
provincial scale, is climate, followed by the relief, parent material, and vegetation, which 
control local-scale soil variation [38,39]. The dominant physiographic unit in this land-
scape are mountains (76%), followed by piedmont plains (6%), flood plains (6%), flood 
basins (5%), hills (2%), alluvial plains (2%), plateaus (0.2%), and alluvial fans (0.2%); in 
addition, miscellaneous land types occupy 3% of the total area. The main soil orders in-
clude Mollisols (39%), Entisols (17%), Inceptisols (7%), Alfisols (5%), and Ultisols (0.002%) 
and the remaining parts of the landscape consist of rocky outcrops, badlands, and water-
bodies (32%). 
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Figure 1. Localization of the Mazandaran province in Iran (a); and spatial distribution of soil sam-
pling locations within the Mazandaran Province (b). 

2.2. Soil Data 
The soil texture data for this study were acquired by the Mazandaran Agricultural 

Research, Education and Extension Organization (AREEO) in Sari, Iran and consists of 
1595 surficial soil samples collected between 2014 and 2018. All samples were collected 
from the 0–20 cm depth increment and their corresponding geographical coordinates were 
recorded using a global positioning system (GPS) device. Apart from those samples that 
were randomly sampled in uncultivated areas, more than half of the samples were ac-
quired from croplands and orchards using a gridded sample design with a 2 km × 2 km 
grid spacing (Figure 1). All samples were air-dried and passed through a 2 mm sieve for 
measuring the PSFs using the Bouyoucos hydrometer method [40]. A computer program 
was used for converting the PSFs to soil textural classes based on the classification system 
of the United States Department of Agriculture (USDA) [41]. 

2.3. Environmental Covariates 
To represent the possible pedogenetic and hydro-ecological process involved in con-

trolling the spatial distribution of PSFs, a large set of environmental covariates was gen-
erated for Mazandaran Province. The four main data sources included terrain-derived at-
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tributes, RS reflectance data, climatic characteristics, and digitized polygon maps. As tab-
ulated in Table A1, 64 environmental covariates that represented the SCORPAN factors 
[42] were used to predict soil PSFs. 

Geologic, soil taxonomic, and physiographic maps in the polygon format were in-
cluded as categorical covariates and the remaining 61 variables were based on continuous 
data. Using the SAGA GIS software, 18 topographic covariates were derived from a digital 
elevation model (DEM) at a 30 m spatial resolution. The terrain attributes included slope, 
aspect, catchment area, catchment slope, channel networks base level, elevation, flow ac-
cumulation, multi-resolution valley bottom flatness index (MrVBF) [43], topographic 
openness (NegOpen and PoOpen), plane curvature, relative slope position, slope-length 
(LS) factor, topographic wetness index (TWI), total insolation, upslope curvature, valley 
depth, vertical distance to channel networks, and wind effect. 

The 41 satellite-derived covariates were acquired based on the median values of op-
tical satellite data from Landsat 8 (Operational Land Imager) and Sentinel-2 imagery taken 
during 2014–2018. The individual spectral bands were used as covariates; furthermore, 
additional band ratios were calculated: normalized difference vegetation index (NDVI), 
enhanced vegetation index (EVI) [44], transformed vegetation index (TVI) [45], soil ad-
justed vegetation index (SAVI) [16], brightness index (BI) [46], normalized difference wa-
ter index (NDWI) [47], land surface water index (LSWI) [48], clay index [49], salinity index 
[50], carbonate index [51], and gypsum index [52]. Furthermore, five datasets were ac-
quired from MODIS images at a 1 km spatial resolution: near-infrared (858 nm) reflectance 
band, daytime land surface temperature, NDVI, SAVI, and soil brightness index. Lastly, 
data representing the mean annual rainfall (mm) and mean annual temperature (°C) data 
for the 1970–2000 period were acquired at a 1000 m spatial resolution from the WorldClim 
data repository to represent the climatic factors that control the soil forming process for 
the region [53]. 

All environmental covariates were aggregated (average resampling) or disaggre-
gated (bilinear resampling) to a common grid of a 30 m × 30 m spatial resolution and 
rescaled using Z-score standardization. With respect to the categorical covariates, they 
were all transformed into dummy variables.  

Selection of Environmental Covariates 
A feature selection technique was applied to identify the most suitable covariates for 

implementation in the model [54]. Here, a correlation-based feature selection method, 
which was fully automated. Here, an optimal covariate should be highly correlated with 
the soil response variables and not be correlated to any other relevant covariates [55]. The 
correlation-based feature selection method consists of two steps: (1) the selection of rele-
vant covariates; and (2) the identification and removal of irrelevant covariates from the 
original database [55]. The correlation-based feature selection method removed more than 
half of the environmental covariates and selected only 23 covariates. It should be noted 
that the calibration and testing of the ML models was carried out based on the 23 selected 
environmental covariates. 

2.4. Predictive Models 
The proposed ANN-based algorithms, which are among the most efficient neural 

computing methods, include genetic algorithm (GA-ANN), particle swarm optimization 
(PSO-ANN), bat (Bat-ANN), and monarch butterfly optimization (MBO-ANN). The train-
ing for ANN was performed with various evolutionary algorithms to unveil the most ef-
ficient method. A multi-layered feed-forward perceptron neural network with three main 
layers (one input, one hidden, and one output) was used to identify the non-linear rela-
tionships between PSFs and environmental covariates. The neurons between the three 
layers are interconnected weighted connection (i.e., synapses) [56]. By running the ANN 
model, the weighted predictors from an input layer are added to a bias coefficient, and 
the results pass through the transfer function in the hidden and output layers to produce 
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an output (i.e., PSFs). Figure 2 depicts a flowchart of the training process via the proposed 
hybridization methods. In this study, 2–20 neurons in the hidden layers were tested and 
the best architecture was selected considering the lowest mean squared error (MSE). In 
brief, the proposed ANNs consist of 23 neurons (i.e., covariates) in the input layer and 
three neurons (i.e., clay, silt, and sand contents) in the output layer. Sigmoid functions 
were used as the transfer functions in the hidden layers and softmax transfer functions 
were used in the output layers.  

The soil texture data are multivariate data with clay, silt, and sand fractions that must 
sum up to 100%. The strict requirement of summing to 100% is not met in most unsampled 
locations without pre-treatment of the PSFs data. Therefore, in this study, the predicted 
sand, silt, and clay fractions in the output layer of ANNs are passed through a softmax 
transfer function to address the compositional constrains [12]. The softmax transfer func-
tion takes, as input, a vector (i.e., the predicted clay, silt, and sand fractions), and normal-
izes it into values ranging from 0 to 1. whereby the vector adds up to 1. Finally, the re-
turned values from the softmax transfer function are multiplied by 100. 

 
Figure 2. Flowchart diagram of the ANN training using metaheuristic optimization algorithms. α 
and β represent the weights and biases, respectively. 

The local optima, convergence rate, and training time of the neural networks are 
greatly affected by their weights and biases, thus resulting in the need for optimizing the 
ANN parameters during the iteration process [57]. The hybridization of ANN with bio-
inspired, optimization algorithms has the potential to be a powerful tool, which may over-
come these challenges [28,57]. Hence, four bio-inspired, metaheuristic algorithms, 
namely, GA, BAT, PSO, and MBO, were trained to predict the PSFs as the target variables. 
Table 1 shows the hyper-parameter settings of the four metaheuristic algorithms, which 
were hybridized with ANN. The performances of these bio-inspired training algorithms 
were compared with the commonly used backpropagation algorithm (BP-ANN) for pre-
dicting PSFs. A brief description of each training algorithms is provided in the following 
subsections. 

Table 1. The hyper-parameters settings of algorithms used in this study. 



Remote Sens. 2021, 13, 1025 7 of 23 
 

 

Bio-Inspired Algorithms Hyper-Parameters Defined Parameters 

GA 

Population size 50 
Crossover rate 0.75 
Cost function RMSE 

Learning algorithm Levenberg-Marquardt 
Activation function Tangent-sigmoid 
Selection method Roulette Wheel 

Generation number 100 
Chromosome size 9 

Mutation rate 0.06 

PSO 
Acceleration constants 2.1 

Inertia weights 0.9–0.6 

BAT 

Loudness 0.5 
Pulse rate 0.5 

Frequency minimum 0 
Frequency maximum 1 

MBO 

Population size 50 
Maximum number of generations 100 

Max walk step (Smax) 1.0 
BAR 5/12 

Migration period (peri) 1.2 
Migration ratio (p) 5/12 
Activation function Hyperbolic tangent 

2.4.1. Backpropagation (BP) Algorithm 
The BP neural network, which uses the Levenberg–Marquardt algorithm, is the sim-

plest in terms of implementation and is also the most popular approach used for training 
neural networks [58]. BP is a type of supervised learning algorithm, which adjusts the 
weights and biases according to the target value(s). BP starts by randomly selecting initial 
weights and then comparing the outputs with the given target value(s) to calculate the 
difference in MSE [59]. The errors are then backpropagated through the earlier layers via 
a negative gradient descent direction for adjusting the weights and bias until at least one 
stopping criteria is reached. The maximum number of epochs and the MSE of the network 
output for each target PSFs were the two stopping criteria and were set as 500 and 0 in 
this study, respectively. It should be noted that the BP algorithm is a type of hill-climbing 
algorithm, whereby the algorithm may get “trapped” in local minima; furthermore, BP 
algorithms also tend to overfit the data [56]. 

2.4.2. Genetic Algorithm (GA) 
A GA is frequently used for hybridization with an ANN. This algorithm mimics the 

process of natural selection and the survival-of-the-fittest for optimizing the weights and 
bias of neural network connections [60]. GA commences with a random population with 
individual chromosomes as solutions, whereby the genes of the chromosomes are the ran-
dom values. Each solution/generation’s conditions are calculated with fitness values to 
select the parents to produce the children in the next solution/generation. Upon sequential 
generations, the chromosomes of the population tend to achieve the best solutions. The 
crossover and mutation are two operators mostly used by the GA algorithm to generate 
new offspring. In this study, the hyperparameter settings are described in Table 1. 

2.4.3. Particle Swarm Optimization (PSO) 
PSO is a metaheuristic algorithm, which was first proposed in 1995 [61]. It is modeled 

based on the swarming nature of insects and birds. By tuning the model parameters, PSO 
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algorithms are used for hybridization with different machine learning techniques—par-
ticularly with ANN models. To optimize an ANN with PSO, a recently outlined procedure 
was used [62]. PSO starts with random populations for a given fitness function. The indi-
vidual solutions are “particles” in a population with random velocities and positions. The 
fitness value of particles is then calculated to get the required value for the best fitness 
function. Particles adjust their movement to the best local position with the best fitness, 
accompanied by other particles’ best position in global optimization. Here, the local ve-
locity adjustment of particles on their best fitness and the other particles’ experience is 
considered in the PSO algorithm. The first step of the algorithm terminates following the 
mass movement. This process is repeated until the stopping criteria are met. By changing 
the particle’s position and velocity from their solution space, PSO optimizes the weights 
and biases of ANN [57]. The cost function (fitness function) of the ith particle can be de-
fined in the terms of RMSE in Equation (1): 

𝐸ሺ𝑤𝑖, 𝑏𝑖ሻ = ඩ1𝑆෍൥෍ሼ𝑇𝑝𝑙𝑠 − 𝑃𝑝𝑙𝑠(𝑤𝑖, 𝑏𝑖ሽଶை
௟ିଵ ൩௦

௞ୀଵ  (1)

where, wi is the weights; bi is the biases; E is the cost value; Tpls is the target value; Ppls is 
the predicted output; O is the neuron numbers; and S is the number of training samples.  

2.4.4. Bat Algorithms (BAT) 
The BAT algorithm is inspired by the echolocation ability of bats in finding their prey 

with global optimization [63]. The BAT algorithm begins the local position’s optimization 
with random fly followed by the sequential iterations to achieve the best local solution 
along with the optimum global location. Bats use echolocation for sensing the distances 
in search space for a global optimum. In this algorithm, bats at a position, Xi, fly randomly 
with velocity, Vi, to emit pulses at a frequency, fi, loudness, Ai, and emission rate, ri. In this 
study, the minimum (fmin) and maximum (fmax) frequencies were set as 0 and 1, respectively. 
Bats automatically adjust fi, and ri is changed based on the adjacency of their prey. Ai 
changes between 1, as a large positive value (A0), and 0 as a minimum value (Amin). The 
rules apply an initial population of bats to update Xi and Vi with initial random values of 
fi for n virtual bats to select the best solution in local search with following equations: 𝑓௜ = 𝑓௠௜௡ + (𝑓௠௔௫ − 𝑓௠௜௡)Ɵ (2)𝑋௜௡௘௪ = 𝑋௜௢௟ௗ + 𝑉௜௡௘௪ (3)𝑉௜௡௘௪ = 𝑉௜௢௟ௗ + (𝑋௜ − 𝑋௕௘௦௧)𝑓௜ (4)

where Ɵ is a vector with randomly generated values (0 to 1) and Xbest is the optimal local 
position of current bats. Subsequently, the new solution is generated using a random walk 
algorithm that selects the best local solution for a globally-optimal position of the bat in 
each iteration and balancing the Ai (loudness) and ri (pulse emission rate) [63,64]. The al-
gorithm initiates by randomly selecting an initial population of bats, and the weights and 
biases in an ANN. Afterward, the BAT algorithms assign the best solution for the output 
of the trained ANN. Subsequently, by searching in local space, a new solution is gener-
ated. Each local space with a satisfactory new solution will be substituted with an optimal 
global solution. These procedures are repeated until the maximum number of iterations 
(e.g., 100) is met and whereby the optimal values of weights and biases are found. 

2.4.5. Monarch Butterfly Optimization (MBO) Algorithm  
The MBO algorithm is a global-solving, metaheuristic algorithm with a high conver-

gence rate for high-dimensional data [65] and was initially proposed in 2019 [66]. This 
algorithm mimics the migratory behavior of individual monarch butterflies between 
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northern USA (Land1) to southern Mexico (Land2). MBO initiates with random genera-
tion of the population to form a local solution. Afterward, all populations are ranked by 
fitness functions. The ranked populations are separated into subpopulations, identified as 
Land1 and Land2, to consider the pre-defined fixed ratio of population p. The original 
population is kept unchanged by these two operators independently and where the ob-
jective is to simultaneously minimize the fitness functions. The migration operator gener-
ates the new candidate solutions/individuals and is adjusted by the migration ratio using 
the following equation: 𝑥௜,௞௧ାଵ = ቊ𝑥௥ଵ,௞௧𝑥௥ଶ,௞௧     𝑟 ≤ 𝑝𝑟 > 𝑝 (5)

where xi is the position of a butterfly i; t is the generation number; k is the element of xi at 
a generation of t + 1; r1 is the randomly generated position in Land1; r2 is the randomly 
generated position in Land2; p is the ratio of butterfly in Lands; and ri is equal to the prod-
uct of the period (peri) parameter, which was set to 1.2, and a random number (rand) be-
tween 0 and 1. 

The butterfly adjusting operator tunes the positioning behavior of other butterflies, j, 
in global best positions using the following equation: 

𝑥௝,௞௧ାଵ = ൞ 𝑥௕௘௦௧,௞௧𝑥௥ଷ,௞௧𝑥௝,௞௧ାଵ+∝× (𝑑𝑥௞ − 0.5)         𝑖𝑓 𝑟𝑎𝑛𝑑 ≤ 𝑝𝑖𝑓 𝑟𝑎𝑛𝑑 > 𝑝 𝑎𝑛𝑑 𝑟𝑎𝑛𝑑 ≤ 𝐵𝐴𝑅𝑖𝑓    𝑟𝑎𝑛𝑑 > 𝑝,𝐵𝐴𝑅 , (6)

where xbest is the best monarch butterfly position in Land1 and Land2; t is the current gen-
eration number; r3 is the randomly generated from Land2; BAR is the butterfly adjusting 
ratio; dxk is kth element of the walk step; and α= (Smax/t2) is the weighing factor with maxi-
mum walk step (Smax). The models’ weights and biases are encoded as the k elements of a 
D-dimensional vectors. In the process of optimization using MBO, the initial random 
weights and biases are updated at each generation with the best position of the monarch 
butterflies that achieve the optimal fitness functions. Here, MBO calculates the best 
weights and biases by allocating the best monarch butterflies’ positions in a forward path 
and obtains the mean square error of fitness functions for ANN training. This process 
periodically continues until the lowest RMSE of fitness is achieved or the maximum gen-
eration (e.g., 100) is met. 

2.5. Accuracy Assessment and Uncertainty Analysis 
For evaluating the performances of the hybridized ANN models in predicting the 

PSFs for Mazandaran Province, the soil data were randomly partitioned into two sets. 
Here, 70% of the data were randomly selected to calibrate the ANN models, and the re-
maining 30% of the data were used to test the models and determine the accuracy metrics. 
When training the ANN models, the calibration dataset was further subdivided into train-
ing and validating datasets, whereby 80% of the data were used to train the ANN models, 
and the remaining 20% were used to validate the model. The nested cross-validation pro-
cess was repeated 10 times to account for the effects of the internal (bootstrapping) and 
external randomness within the modeling procedure, thereby ensuring stability in the ac-
curacy metrics [67].  

The metrics used to evaluate model accuracy included mean absolute error (MAE), 
RMSE, coefficient of determination (R2), and Lin’s concordance correlation coefficient 
(CCC), which are formulated as follows: 

𝑀𝐴𝐸 = 1𝑛෍|𝑃𝑖 − 𝑀𝑖|௡
௜ୀଵ  (7)
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𝑅𝑀𝑆𝐸 = ඩ1𝑛෍(𝑃𝑖 − 𝑀𝑖)ଶ௡
௜ୀଵ  (8)

𝑅ଶ = ቆ ∑ (𝑀𝑖 −𝑀´)(𝑃𝑖 − 𝛲´)௡௜ୀଵඥ∑ (𝑀𝑖 −𝑀´)ଶ௡௜ୀଵ ඥ∑ (𝑃𝑖 − 𝑃´)ଶ௡௜ୀଵ ቇଶ (9)

𝐶𝐶𝐶 = 2 𝑟 𝜎ெ𝜎௣𝜎ெଶ + 𝜎௣ଶ + ሾ𝑀´ − 𝛲´ሿଶ (10)

where n is the number of samples in the cross-validation dataset; Mi and Pi are the meas-
ured and predicted PSFs for each sampling points, respectively; M´ and P' are the means 
for the measured and predicted PSFs values, respectively; and σM and σp are the variances 
of measured and predicted PSFs values. The model with the highest R2 and CCC and the 
lowest MAE and RMSE values was determined to be the best hybridization of ANN for 
predicting PSFs and soil textural classes. 

For analyzing the uncertainty of hybridized ANN, the PSF maps generated by each 
iteration of the models were used to calculate the mean and standard deviation (SD) of 
the PSF for each pixel. Then, the confidence interval (CI) was calculated as the prediction 
mean ± 1.64SD (standard deviation) for the given 90% CI. It should be noted that only the 
mean of the PSF contents for each pixel is presented. 

3. Results 
3.1. Summary Statistics 

Table 2 shows the descriptive statistics of the measured topsoil sand, silt, and clay 
contents for the study area. The silt contents were the highest in this area, with an average 
of 45.2%, whereas the clay and sand contents were 31.4% and 23.4%, respectively. Con-
sidering the high silt contents, the soils were typically classified as clay loam, according 
to the USDA system of soil texture classification. The coefficient of variation (CV) was the 
highest for sand values (63%), which indicates high heterogeneity with a wide range of 
sand spread across Mazandaran Province; in contrast, clay and silt had a CV of 39% and 
25%, respectively. The sand and clay values had high variability over the study area with 
CV > 35% [68], while the silt values had moderate variability (15% < CV < 35%). Regardless 
of the PSFs, the mean and medium values were similar, which suggests that the PSFs 
closely resembled a normal distribution and was further confirmed by the low skewness 
and kurtosis. 

Table 2. Summary statistics of PSFs data for the Mazandaran Province ( n= 1595). 

 Min Max Mean Median SD CV Skewness Kurtosis 

Clay (%) 0.2 70.0 31.4 31.3 12.51 39.84 0.13 −0.57 
Silt (%) 6.0 84.0 45.2 46.0 11.21 24.80 −0.27 1.04 

Sand (%) 1.0 86.0 23.4 20.0 14.68 62.73 1.21 1.50 
SD, standard deviation; CV, coefficient of variation (%). 

The distribution of the soil textural classes for all sample points, according to the 
USDA soil texture triangle, is plotted in Figure 3. Here, the plot indicates that there was a 
wide range of soil texture classes over the study area (Figure 3), which included eight out 
of the 12 possible texture classes: sand, loamy sand, sandy loam, loam, silt loam, silt, sandy 
clay loam, clay loam, silty clay loam, sandy clay, silty clay, and clay. 

The high variability in PSFs could be attributed to the variability in parent materials, 
topography, elevations, soil weathering rates, land uses and management practices, and 
other environmental elements [11]. The selective removal of particles that were <63 μm in 
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diameter on steep slopes in the study area via soil erosion processes may have been a 
controlling factor on the accumulation of finer soil particles in the low-lying areas [69]. 

 
Figure 3. Distribution of soil texture classes for all samples based on the USDA soil texture triangle. (Cl: clay; SiCl: silty 
clay; SiClLo: silty clay loam; SaCl: sandy clay; SaClLo: sandy clay loam; ClLo: clay loam; Si: silt; SiLo: silt loam; Lo: loam; 
Sa: sand; LoSa: loamy sand; SaLo: sandy loam). 

3.2. Accuracy Assessment and Uncertainty Analysis  
The performances of the five ANN models (i.e., BP-ANN, GA-ANN, PSO-ANN, Bat-

ANN, and MBO-ANN) for predicting three components of PSFs were compared in terms 
of MAE, RMSE, R2, and CCC. Once the ANN models were trained using the aforemen-
tioned algorithms, the optimal weights and biases of each input covariates were assigned 
to predict the PSFs [57,70]. Table 3 indicates the mean values of the accuracy metrics, cal-
culated using the testing data from the repeated, nested 10-fold cross-validation proce-
dure. As shown in Table 3, the accuracy of the ANN models varied amongst the different 
optimization learning algorithms. In terms of R2 and CCC statistics, MBO-ANN was the 
most effective in predicting clay contents with mean accuracy values of MAE = 5.6%, 
RMSE = 6.4%, R2 = 0.68 and CCC = 0.69. In comparison, BP-ANN, the reference approach, 
had substantially lower R2 (0.50) and CCC (0.51) and slightly higher MAE (6.5%) and 
RMSE (8%). Furthermore, BP-ANN was also considerably outperformed by the GA-ANN, 
PSO-ANN, and Bat-ANN models for clay predictions with CCC values of 0.68, 0.62, and 
0.66, respectively. Across all ANN hybridizations, there were considerable gains in CCC 
values for clay predictions, whereby an increase of 35%, 33%, 29%, and 22% was observed 
for MBO-ANN, GA-ANN, Bat-ANN, and PSO-ANN, respectively, when compared to the 
reference BP-ANN model. These results indicate that the bio-spired algorithms hybrid-
ized with neural network greatly enhanced the accuracy of clay prediction. 
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Table 3. Accuracy metrics of the five ANN models for predicting PSFs based on repeated 10-fold 
cross-validation. 

ANN 
Models 

Clay Silt Sand 
MAE RMSE R2 CCC MAE RMSE R2 CCC MAE RMSE R2 CCC 

BP-ANN 6.54 8.10 0.50 0.51 5.76 7.34 0.32 0.25 6.50 8.70 0.45 0.49 
GA-ANN 5.76 6.71 0.65 0.68 4.87 6.68 0.60 0.63 5.79 6.58 0.69 0.70 
PSO-ANN 5.78 6.77 0.57 0.62 5.01 6.70 0.58 0.60 5.88 6.85 0.59 0.63 
BAT-ANN 5.80 6.60 0.63 0.66 5.14 6.78 0.49 0.51 5.88 6.77 0.61 0.63 
MBO-ANN 5.60 6.46 0.68 0.69 4.81 6.60 0.62 0.65 5.74 6.59 0.70 0.71 
MAE, mean absolute error; RMSE, root mean square error; R2, the coefficient of determination; 
CCC, Lin’s concordance correlation coefficient. 

Similar trends of R2, CCC, MAE, and RMSE values were observed for the silt and 
sand predictions. With these PSFs, the results also showed that the BP-ANN model had 
the lowest R2 and CCC and highest errors (MAE and RMSE). Again, the MBO-ANN model 
resulted in silt and sand predictions that had the highest accuracy across all five hybrid-
ized models. Furthermore, the improvement of prediction using the hybridization of 
ANN with bio-inspired algorithms was most pronounced for the silt prediction in com-
parison to the clay and sand predictions. With respect to the silt predictions, the MBO-
ANN algorithm was an improvement on the BP-ANN algorithm by increasing R2 from 
0.32 to 0.62 (93.8% increase) and CCC from 0.25 to 0.65 (160% increase) and decreasing 
MAE from 5.76% to 4.81% (16.5% decrease) and RMSE from 7.34% to 6.60% (10.1% de-
crease). Again, similar to the clay predictions, MBO-ANN was the most effective bio-in-
spired hybridization of ANN followed by GA-ANN, PSO-ANN, and Bat-ANN, respec-
tively.  

With respect to the sand predictions, the MBO-ANN model was, again, the most ef-
fective approach amongst the hybridized models, yielding the highest R2 (0.70) and CCC 
(0.71) values and lowest RMSE (6.59%) and MAE (5.74%) values. In comparison with the 
traditional BP-ANN model, the bio-inspired hybridized algorithms improved the sand 
predictions across all accuracy metrics when compared to BP-ANN. Specifically, with re-
spect to CCC, the improvements for the MBO-ANN, GA-ANN, Bat-ANN, and PSO-ANN 
were 45%, 43%, 29%, and 29%, respectively. 

When evaluating the uncertainty estimates, ideally, 90% of test data with correspond-
ing observed values should fall within the confidence interval (CI) range for each of the 
PSFs (Table 4). Here, the evaluation of the uncertainty estimates showed a similar trend 
with respect to how the various ANN models performed, whereby the MBO-ANN results 
were the most optimal in generating uncertainty estimates because 85%, 83%, and 88% of 
the clay, silt, and sand observations, respectively, fell within the defined CI. Conversely, 
the bootstrapping of the BP-ANN model was the least effective in generating uncertainty 
estimates because only 78%, 72%, and 81% of the observed values fell within the 90% con-
fidence interval range. 

Table 4. The percentages (%) of three PSFs that fall within the 90% prediction intervals pre-
dicted by hybridized-ANN models 

ANN 
Models 

Clay Silt Sand 
Inside CI Outside CI Inside CI Outside CI Inside CI Outside CI 
5 to 95% <5% >95% 5 to 95% <5% >95% 6.50 <5% >95% 

BP-ANN 78 12.4 9.6 72 14.8 13.2 81 10.5 8.5 
GA-ANN 81 8.7 10.3 78 9.8 12.2 84 6.4 9.6 

PSO-
ANN 81 9.0 10.0 75 13.0 12.0 83 8.5 8.5 

BAT-
ANN 

82 7.2 10.8 74 11.4 14.6 86 8.4 5.6 
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MBO-
ANN 85 8.0 7.0 83 7.9 9.1 88 6.4 5.6 

CI, confidence interval. 

3.3. Covariate Importance 
The weight values assigned to each input parameter by the ANN model were used 

to identify the most important covariates for predicting the PSFs. In this study, the relative 
importance (RI) of the covariates, were categorized as follows: weakly relevant (RI < 2%), 
slightly relevant (2% < RI < 4%), moderately relevant (4% < RI < 6%), and strongly relevant 
(RI > 6%). The RI values of all covariates are shown in Figure 4, where it shows that there 
was a wide range of RI amongst the covariates when predicting PSFs.  

 
Figure 4. The relative influence of environmental covariates for predicting clay, silt, and sand con-
tents using the MBO-ANN algorithm. (Refer to Table A1 for covariate codes). 

The number of covariates with weakly, slightly, moderately, and strongly relevant 
contribution for PSFs prediction are shown in Table 5. The most critical factor controlling 
the PSFs was represented by the categorical data, which represented the study area’s soil, 
geologic, and physiographic variability. These covariates were then followed by climatic, 
terrain-derived, and RS-derived data, respectively. The categorical maps, along with the 
two climatic datasets (rainfall and temperature), were the most strongly relevant covari-
ates across all PSFs predictions for the study area. 

Table 5. The number of covariates with relevance contribution in predicting PSFs. 

Covariates 
Clay Silt Sand 

W Sl M St W Sl M St W Sl M St 

RS-based 
covariates 

Sentinel-2 2 1 2 - 1 3 1 - - 4 1 - 
Landsat-8 2 2 - - 1 3 - - - 4 - - 

MODIS - 2 - - - 2 - - - 2 - - 
Terrain-based covariates 1 1 4 1 - 3 3 1 - 5 2 - 

Climatic data - - - 2 - - - 2 - - - 2 
Categorical data - - - 3 - - - 3 - - - 3 

W, weakly relevant (RI < 2); Sl, slightly relevant (2 < RI < 4); M, moderately relevant (4 < RI < 6); St, 
strongly relevant (RI > 6). 
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By calculating the mean RI based on the covariate source, it was observed that data 
derived from the categorical maps were consistently ranked the highest for the clay pre-
dictions with a mean RI = 8.5%. The importance of the categorical data was then followed 
by climatic data (7.5%), terrain-derived data (4.4%), MODIS-derived data (3.1%), Sentinel-
2-derived data (3.0%), and Landsat-derived data (1.9%), respectively. When the covariates 
were evaluated on an induvial basis, the physiography map had the highest RI value 
(9.5%), indicating the most important driving factor for clay spatial distribution, followed 
by the geology map (8.2%), soil map (7.7%), rainfall (7.6%), temperature (7.3%), MRVBF 
(7.2%), topographic wetness index (TWI) (5.6%), and the Sentinel-2-derived clay index 
(4.7%), respectively (Figure 4).  

The importance of the covariates for predicting silt content were also similar, 
whereby the climatic data and categorical maps were ranked the highest and yielded a 
mean RI of 8.4% and 8.2%, respectively. The importance of these data sources was then 
followed by terrain-derived data, which had a mean RI of 4.1% and the remote sensing 
data, which had a mean RI of 3.0%, 2.6%, and 2.5% for the Sentinel-2-, MODIS, and Land-
sat-derived data, respectively. Similar to the clay predictions, the physiographic map was 
determined to be the most important covariate for silt predictions with RI = 9.8%, and 
followed by rainfall (8.4%), temperature (8.3%), geologic map (7.8%), soil map (7.0%), and 
MRVBF (6.1%), respectively (Figure 4).  

The ranking of the mean RI values by data source for the sand predictions were the 
same as for the clay predictions where the categorical maps had the highest mean RI of 
8.5% and was subsequently followed by the climatic data (7.9%), terrain-derived data 
(3.9%), and remote sensing data, where the MODIS-, Sentinel-2-, and Landsat-derived 
data had a mean RI of 3.4%, 2.9%, and 2.5%, respectively. Again, the physiographic map, 
geologic map, temperature, rainfall, soil type map, MRVBF, and TWI were the most im-
portant covariates for sand predictions with the RI values of 9.6%, 8.6%, 7.9%, 7.8%, 7.2%, 
5.5%, and 5.4%, respectively (Figure 4). 

3.4. Spatial Prediction of Soil PSFs 
The continuous map of clay, silt, and sand fractions and USDA soil texture classes 

for the whole region was produced using the MBO-ANN model due to its superior per-
formance in comparison to the other approaches (Figure 5). Furthermore, the MBO-ANN 
model, when coupled with the softmax transfer function in its output layer guarantees the 
summation of PSFs to 100%, which is necessary for precise predictions of PSFs (see the 
Supplementary Materials). Based on a visual assessment of the predictions, the silt con-
tents were relatively higher compared with the clay and sand contents along the central 
strip of the study area. The predicted PSF maps, produced using the MBO-ANN model, 
were also reclassified in accordance to the USDA soil texture classification system (Figure 
5). 
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Figure 5. Continues maps produced using the MBO-ANN model for the Mazandaran Province of: 
surficial clay content (a); surficial sand content (b); and surficial silt content (c); and textual classes 
(d). 
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Eight main USDA textural classes were identified: clay, silty clay, and silty clay loam 
classes were mapped in the northeastern region; the silty clay loam class dominated the 
central region; the silt loam, loam, and sandy loam texture classes dominated the southern 
regions of the province; and sandy clay loam soil texture class had a limited distribution 
in the study areas (Figure 5). 

With respect to the predicted clay contents, there was a relatively higher abundance 
of clay in the northeastern region of the province, which corresponds with a flood basin 
on the low-lying area and where the fine-textured materials are dominant. Here, the clay 
contents were >40% and were mainly distributed at low elevations (<10 m) and where 
fine-textured parent materials are present (Figure 5).  

In comparison, the sand content was low in the northeastern; however, was it sub-
stantially higher in the southern and southeastern regions, where the soils are mostly de-
graded and the coarse-textured parent materials are exposed. In addition, the thin coast-
line (about 10–20 m from shorelines), adjacent to the Mazandaran Province, includes a 
sand dune that was omitted from this study given that these areas were not mapped as 
soils by surveyors. With respect to the silt predictions, the map showed highest amounts 
of silt along the central region of the study area along an east to west direction. This area 
of high silt contents corresponds with the presence of a loess deposit and loess-derived 
soils, which are highest in the eastern region of the province [71]. 

4. Discussion 
4.1. Environmental Covariates 

The categorical maps, along with the two climatic datasets (rainfall and temperature), 
were the most strongly relevant covariates across all PSFs predictions for the study area. 
Soil taxonomic type, represented as great soil groups, was strongly relevant in explaining 
the total variation of PSFs soil in Mazandaran Province. The soil survey data were tradi-
tionally derived from the physiographic units in Iran and provide information directly 
related to the spatial patterns of PSFs; furthermore, the geological map also provided in-
formation on the soil parent material and its associated mineralogy—a key determinant 
of soil texture. By using these datasets as covariates, there is the potential to renew and 
improve upon existing soil textural and PSF maps for the Mazandaran Province using 
DSM approaches. The relationship between these datasets and PSFs was apparent in this 
study; for example, the spatial distribution of alluvial plains and flood basins were two 
physiographic units of the northeastern region of the study areas, which also coincided 
with the high clay contents that were observed. The information such as soil type and land 
cover could explain the considerable variation of PSFs [22,24,72,73]. Therefore, these re-
sults would seem to indicate that, for study areas where detailed and accurate soil maps 
exist, it would be beneficial to include them as a covariate in predicting PSFs [18]. Of the 
terrain-derived data, MRVBF was the most important—especially for the prediction of 
clay and silt. Here, MRVBF was effective in characterizing the low-lying terrains and the 
depositional features of the landscape, where fine particles tend to accumulate [43]. In 
cultivated alluvial/flood plains of low-lying areas, the use of land surface temperature 
data from MODIS was a promising covariate, particularly where the soils were clearly 
bare over a year [74]. 

RS-derived covariates were not strongly relevant for predicting PSFs in this study. 
The main reason was attributed to the effect of surficial soil moisture and roughness, the 
presence of vegetation canopy, and, in some cases, due to the low spatial resolution of the 
RS data [75,76]. All covariates derived from Landsat and MODIS imagery were classified 
as being weakly to slightly relevant covariates, whereas two covariates derived from the 
Sentinel-2 were moderately important. Specifically, the clay index was moderately rele-
vant for predicting all PSFs, while NDVI was moderately relevant for predicting the clay 
and silt fractions (Table 4). With respect to the clay index of Sentinel-2, there was a nega-
tive relationship with soil clay content [77]. The soil texture mapping using Sentinel-2 data 
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performance had a good discrimination for extremely different soil texture classes (e.g., 
sandy loam versus clay), whereas neighboring soil texture classes (e.g., sandy clay loam 
and clay class) had high uncertainty [75]. 

The weak relationship between the Landsat data and PSFs was most likely associated 
with lower spatial resolution of the images (i.e., 90 m) and the time of imagery acquisition 
[78]. A poor relationship between Landsat data and the sand and silt fractions was also 
reported for PSFs prediction in large-scale studies [79,80]. However, high correlations be-
tween clay contents and Landsat 7 images, particularly with Band 7, have been reported 
in other studies [81]. In comparison, the higher spectral and spatial resolution (10 m) of 
the Sentinel-2 data may have been the main reason the covariates derived from this data 
source had higher RI. Similar to this study, the covariates derived from Sentinel-2 data 
resulted in satisfactory/good predictors of clay contents for soils in the Czech Republic 
[82]. 

Although several variables were determined to not be important, accounting for 
them in the prediction process still has the potential to enhance the spatial predictions of 
PSFs [11,83,84]. PSFs have a complex, nonlinear hierarchal relationship between many co-
variates that were determined to be effective, and machine learning models are designed 
to discover these relationships. It could be concluded that the coarse-resolution categorical 
maps could potentially capture the average soil PSFs at large spatial extents and scales 
other covariates related to local terrain and vegetation would be more effective in captur-
ing soil erosional and depositional processes. 

4.2. Performance of Hybridized Models and Output Maps 
The poorest model performance for the PSF predictions resulted from the BP-ANN 

(i.e., traditional implementation of ANN) and was substantially improved upon by using 
bio-inspired optimization algorithms. The MBO algorithm was the most effective ap-
proach within the studied bio-inspired algorithms while PSO was the lowest-performing 
hybridization for clay predictions. The prediction accuracy of clay in this large-scale study 
for the proposed model was better than that of other studies [20,85,86] ranging 9.2–12.2% 
for RMSE and 0.33–0.54 for R2. By considering the multispectral (VNIR–SWIR) ASTER 
data as covariates for mapping the surface clay content at large scales, the results yielded 
the R2 of 0.61% [87] that is close but still lower than our findings. The prediction accuracy 
was close to another finding [20] with R2 of 0.71 and RMSE of 7.3% but much better than 
many other studies [85,86,88,89]. The slightly lower model performance for predicting silt 
contents in the MBO-ANN model with lower R2 and CCC compared with clay and sand 
contents may be due to the poorer relationship between the auxiliary covariates and silt 
content that is in agreement with other findings [24,85,86], which declared the low perfor-
mance was due to high variability. 

Regarding to the accuracy and uncertainty analysis, it was concluded that the hy-
bridized ANN using bio-inspired algorithms resulted in a vast improvement in compari-
son to the standard reference approach using BP-ANN by potentially overcoming chal-
lenges such as the local minima and low convergence issues [90,91]. Consistently, the 
MBO-ANN model outperformed all other hybridizations when mapping PSFs, which was 
likely attributed to its ability to optimize the initial input parameters (e.g., thresholds and 
weights) for ANN by the MBO algorithm, thereby resulting in the suitable convergence 
of the neural network towards a global optimum solution and effectively capturing the 
nonlinear relationships between variables [92]. Although the MBO-ANN approach was 
able to handle the large set of input variables in predicting the spatial distribution of PSFs, 
its processing time was longer than that of BP-ANN; furthermore, the use of the other bio-
inspired hybridizations with ANN were also longer, but acceptable. From this study, the 
increased computational demand and processing time was warranted given the level of 
improvement when compared to the BP-ANN approach, as evidenced by all accuracy 
metrics.  
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Theses soil textural class maps reflected the contribution of environmental covariates 
that were used to generate the PSFs prediction maps. These maps can also potentially 
improve land surface modeling for future studies. From a soil management perspective, 
information on the spatial distribution of clay in the northern region is important for de-
cision makers in order to improve agricultural practices and the management of paddy 
fields and orchards. In particular, the application of potassium fertilizer is greatly depend-
ent on the clay contents of the study area due to the ability of clay minerals to bind/fix the 
potassium in interlayers spaces and cause its unavailability for plant uptake. 

5. Conclusions 
Provincial-scale information on soil texture is crucial for the management of soil re-

sources and agricultural production planning by decision makers. By using a large set of 
environmental covariates derived from terrain, remotely sensed, climatic, and categorical 
data as the main sources of data, series of hybridized ANN models were built for predict-
ing PSFs and tested using a 10-fold cross-validation. The softmax transfer function was 
used in the output layer of the ANN models to normalize the predicted clay, silt, and sand 
contents, leading to the summation of PSFs to 100% in unsampled locations. Of the 64 
environmental covariates used, categorical data, which consist of physiographic maps, 
maps of soil types, and geologic maps, were the most effective variables for predicting the 
spatial distribution of PSFs. The importance of these categorical inputs was subsequently 
followed by the climatic data, terrain data, and RS-derived covariates, respectively. Where 
available, existing map products generated using conventional approaches (i.e., existing 
categorical maps) could have the potential of being refined using DSM approaches for 
future mapping of PSFs at the provincial scale. 

When compared to the reference ANN approach, BP-ANN, the bio-inspired optimi-
zation algorithms substantially improved the predictions of PSFs, whereby the results in-
dicate that MBO-ANN resulted in the best performance across all accuracy metrics and 
PSFs. Furthermore, the MBO-ANN approach also resulted in the lowest uncertainty in 
comparison to BP-ANN. It could be concluded that the application of bio-inspired com-
putational algorithms is a promising alternative to the conventional BP-ANN—especially 
given that the computational demands were not substantially greater. The high-resolution 
PSFs maps generated in this study can be used for integrated management of soils along 
with sustainable development strategies at the provincial scale. Furthermore. The maps 
can be used as inputs to support future environmental and hydrological modeling activi-
ties. 

Supplementary Materials: The following are available online at www.mdpi.com/2072-
4292/13/5/1025/s1. 
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Appendix A 

Table A1. Covariates initially considered for predicting the distribution of PSFs. 

No. Covariates Code Definition 

1 Geology map Geology Polygon map prepared by SWRI 

2 Soil map Soil Polygon map prepared by SWRI 

3 Physiography map Physi Polygon map prepared by SWRI 

4 Annual rainfall (mm) Rainfall It is derived from the monthly rainfall values 

5 Mean annual temperature (°C) Temp It is derived from the monthly temperature values 

6 Aspect (°C) Aspect The compass direction of the maximum rate of change 

7 Catchment area Cat.Area Area from which rainfall flows into a river 

8 Catchment slope (degrees) Cat.Slo. Average gradient above flow path  

9 Channel networks base level CNBL The interpolated channel network base level elevations 

10 Elevation (m) Elev Height above sea level 

11 Flow accumulation (number of cells) Fl.Ac Calculates accumulated flow  

12 Multi-resolution Valley Bottom Flatness Index MRVBF Measure of flatness and lowness  

13 Openness NegOpen How wide a landscape can be viewed from any position 

14 Openness PosOpen How wide a landscape can be viewed from any position 

15 Plan curvature (radians / m) Plan.Cur The curvature of a contour line  

16 Relative Slope Position Re.Slope.Posi The position of one point relative to the ridge and valley of a slope 

17 Slope Length factor  LS factor Slope Length and Steepness factor 

18 Topographic Wetness index TWI ln (specific catchment area/slope angle)  

19 Total Insolation (kWh / m2) To.In Calculate the total incoming solar radiation 

20 Upslope Curvature Ups.Cur The distance weighted average local curvature  

21 Valley Depth (m) Va.Dep The vertical distance to a channel network base level 

22 Vertical distance to channel networks (m) VDCN The altitude above the channel network 

23 Wind Effect WE The Wind Effect is a dimensionless index 

24 Coastal aerosol of Sentinel-2 B1.S Wavelength of 0.442 μm 

25 Blue band of Sentinel-2 B2.S Wavelength of 0.492 μm 

26 Green band of Sentinel-2 B3.S Wavelength of 0.559 μm 

27 Red band of Sentinel-2 B4.S Wavelength of 0.664 μm 

28 Vegetation Red Edge of Sentinel-2 B5.S Wavelength of 0.704 μm 

29 Vegetation Red Edge of Sentinel-2 B6.S Wavelength of 0.740 μm 

30 Vegetation Red Edge of Sentinel-2 B7.S Wavelength of 0.782 μm 

31 Near-infra red of Sentinel-2 B8.S Wavelength of 0.832 μm 

32 Shortwave IR-1 band of Sentinel-2 B9.S Wavelength of 0.945 μm 

33 Shortwave IR-2 band of Sentinel-2 B10.S Wavelength of 1.373 μm 
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34 Normalized Difference Vegetation Index NDVI.S (NIR−GREEN / NIR + GREEN) 

35 Enhanced Vegetation Index of Sentinel-2 EVI.S (2.5 × (Band4 − Band3)/(Band4 + 6× Band 3–7.7 × Band1 + 1) 

36 Transformed vegetation index of Sentinel-2 TVI.S (Band5 − Band3/ Band5 + Band3) 

37 Soil Adjusted Vegetation Index of Sentinel-2 SAVI.S (Band4 − Band3/ Band4 + Band3 + 0.5) × (1 + 0.5)) 

38 Land Surface Water Index of Sentinel-2 LSWI.S (NIR − shortwave infrared)/ (NIR+shortwave infrared) 

39 Brightness Index of Sentinel-2 Bright.In.S ((RED)2 + (NIR)2)0.5 

40 Clay Index of Sentinel-2 Clay.In.S (SWIR-1 / SWIR-2) 

41 Normalized Difference Salinity Index of Sentinel-2 Salin.In.S (Red-NIR)/(Red + NIR) 

42 Carbonate Index of Sentinel-2 Carbonat.In.S (RED / GREEN) 

43 Gypsum index of Sentinel-2  Gypsum.In.S (SWIR-1 − NIR) / (SWIR-1 + NIR) 

44 Blue band of Landsat-8 B1.L Wavelength of 0.450–0.515 μm of Landsat 8 spectral band 

45 Green band of Landsat-8 B2.L Wavelength of 0.525–0.600 μm of Landsat 8 spectral band 

46 Red band of Landsat-8 B3.L Wavelength of 0.630–0.680 μm of Landsat 8 spectral band 

47 Near infrared band of Landsat-8 B4.L Wavelength of 0.845–0.885 μm of Landsat 8 spectral band 

48 Shortwave Infrared-1 band of Landsat-8 B5.L Wavelength of 1.560–1.660 μm of Landsat 8 spectral band 

49 Shortwave Infrared-2 band of Landsat-8 B6.L Wavelength of 2.100–2.300 μm of Landsat 8 spectral band 

50 Normalized Difference Vegetation Index of Landsat-8 NDVI.L (NIR − RED) / (NIR + RED)  

51 Enhanced Vegetation Index of Landsat-8 EVI.L (NIR − RED) / (NIR + C1 × RED−C2 × BLUE + L) 

52 Soil Adjusted Vegetation Index of Landsat-8 SAVI.L (1 + L) × (NIR − RED) / (NIR + RED + L) 

53 Normalized difference moisture index of Landsat-8 NDMI.L (Band4 − Band5/ Band4 + Band5) 

54 Combined spectral response index of Landsat-8 COSRI.L [Blue + Green)/(Red + NIR)] × NDVI.L 

55 Brightness Index of Landsat-8 Bright.In.L ((RED)2 + (NIR)2)0.5 

56 Clay Index of Landsat-8 Clay.In.L (SWIR-1/SWIR-2) 

57 Salinity Index of Landsat-8 Salinity.In.L Band 3/Band 4 

58 Carbonate Index of Landsat-8 Carbon.In.L (RED / GREEN) 

59 Gypsum index of Landsat-8 Gypsum.In.L (SWIR-1 − NIR) / (SWIR-1 + NIR) 

60 MODIS Night Temperature Temp.M Land Surface Temperature/Emissivity Daily L3 Global 1km 

61 MODIS Near Infrared  NIR.M Wavelength of 0.841–0.876 μm of MODIS spectral band 

62 Normalized Difference Vegetation Index of MODIS NDVI.M (NIR – GREEN / NIR+ GREEN) 

63 Soil Adjusted Vegetation Index of MODIS SAVI.M (1 + L) × ( NIR − RED) / (NIR + RED + L) 

64 Brightness Index of MODIS Brigh.Index.M ((MODIS RED)2 + (MODIS NIR)2)0.5 

Note: Red: Categorical maps; Blue: Climatic data; Yellow: Terrain attributes; Green: Remote sensing. 
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