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a b s t r a c t 

Objectives: In extreme environments, such as the Arctic region, the anthropogenic influence is low and 

the presence of antimicrobial-resistant bacteria is unexpected. In this study, we screened wild reindeer 

( Rangifer tarandus platyrhynchus ) from the Svalbard High Arctic Archipelago for antimicrobial-resistant 

Escherichia coli and performed in-depth strain characterisation. 

Methods: Using selective culturing of faecal samples from 55 animals, resistant E. coli were isolated 

and subjected to minimum inhibitory concentration (MIC) determination, conjugation experiments and 

whole-genome sequencing. 

Results: Twelve animals carried antimicrobial-resistant E. coli . Genomic analysis showed IncF plasmids 

as vectors both for resistance and virulence genes in most strains. Plasmid-associated genes encoding 

resistance to ampicillin, sulfonamides, streptomycin and trimethoprim were found in addition to virulence 

genes typical for colicin V (ColV)-producing plasmids. Comparison with previously reported IncF ColV 

plasmids from human and animal hosts showed high genetic similarity. The plasmids were detected in E. 

coli sequence types (STs) previously described as hosts for such plasmids, such as ST58, ST88 and ST131. 

Conclusion: Antimicrobial-resistant E. coli were detected from Svalbard reindeer. Our findings show that 

successful hybrid antimicrobial resistance–ColV plasmids and their host strains are widely distributed 

also occurring in extreme environmental niches such as arctic ecosystems. Possible introduction routes of 

resistant bacterial strains and plasmids into Svalbard ecosystems may be through migrating birds, marine 

fish or mammals, arctic fox ( Vulpes lagopus ) or via human anthropogenic activities such as tourism. 

© 2021 The Author(s). Published by Elsevier Ltd on behalf of International Society for Antimicrobial 

Chemotherapy. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Recent studies have shown that antimicrobial-resistant bacteria 

an disseminate and persist in complete absence of selection pres- 

ure from antimicrobial agents, as exemplified by the expansion of 

hird-generation cephalosporin resistance among Escherichia coli in 

ordic broiler production where use of antimicrobials is almost ab- 

ent [1–3] . The reason why resistant bacteria can be successful in 

he absence of selective pressure is not fully understood, but plas- 
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ids containing both antimicrobial resistance genes and plasmid 

ddiction systems are considered important contributors. Acquisi- 

ion of resistance genes by bacterial clones with increased fitness 

nd host adaption may also enable the spread and persistence of 

ntimicrobial resistance [4] . 

The microbial communities of most environmental reservoirs 

re usually not directly exposed to selection pressure from 

ntimicrobial agents. However, many studies have documented 

ntimicrobial-resistant bacteria in different ecological niches, such 

s wildlife populations, soil and water [ 5 , 6 ]. Some of these studies

ave demonstrated a link between anthropogenic activity and in- 

reased occurrence of antimicrobial-resistant bacteria [7–9] . In ex- 

reme environments, such as the Arctic region, the anthropogenic 

nfluence is minimal and the presence of antimicrobial-resistant 
iety for Antimicrobial Chemotherapy. This is an open access article under the CC 
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acteria is unexpected. However, a recent study found genes en- 

oding antimicrobial resistance from soil samples taken at the 

valbard High Arctic Archipelago [10] . 

Svalbard, which is Norwegian territory, is an archipelago lo- 

ated between the Norwegian mainland and the North Pole. These 

slands consist of large areas with untouched nature, arctic cli- 

ate and very low human population density, restricted to a few 

maller villages. Svalbard reindeer ( Rangifer tarandus platyrhynchus ) 

s one of the seven remaining subspecies of reindeer, which af- 

er the last Pleistocene glaciations spread over all the arctic and 

ubarctic areas, locally adapting to these new locations and lead- 

ng to the appearance of different subspecies [11] . Because of the 

eographical isolation of the Svalbard Archipelago, Svalbard rein- 

eer have since had little or no contact with other reindeer and 

ave well-recognised morphological and physiological singularities 

s a response to adapting to a high arctic environment. Svalbard 

eindeer remain the most isolated of the high arctic subspecies 

f reindeer [ 12 , 13 ]. Thus, the Svalbard reindeer could be a good

entinel species for monitoring changes in the arctic environment. 

he aim of this study was to investigate whether Svalbard rein- 

eer in a remote ‘antibiotic free’ arctic environment can be carriers 

f antimicrobial-resistant E. coli . We performed in-depth sequence- 

ased bacterial characterisation, with special focus on plasmid con- 

ent, to evaluate possible source and routes of introduction for 

ntimicrobial-resistant bacteria to these environments. 

. Materials and methods 

.1. Sampling and isolation of bacteria 

Svalbard reindeer in Adventdalen and Reindalen, both defined 

s national parks on Svalbard, were in 2010 and 2011 immobilised 

n connection with field studies focusing on virus infections and 

arasites. We used the same animals for our study and collected 

aecal samples from a total of 55 apparently healthy animals. To 

btain faecal samples, 16 animals from Adventdalen were chem- 

cally immobilised in 2010 [14] and 39 animals from Reindalen 

ere physically restrained in 2011. All immobilisations and sam- 

ling were carried out according to national regulations on the 

se of animals for scientific experiments and with permits from 

he competent Norwegian authorities. Approval from the Gover- 

or of Svalbard was also obtained, and the projects linked to this 

ampling were registered at the Research in Svalbard Database 

 www.researchinsvalbard.no ) under project numbers RIS-ID 3753 

nd RIS-ID 10892. Samples were stored at –20 °C until analysis. Fae- 

al material was investigated by selective methodology for isola- 

ion of antimicrobial-resistant E. coli . Faecal material from each an- 

mal was plated directly on seven different MacConkey agar plates 

Becton Dickinson & Co., Le Pont-de-Claix, France) supplemented 

ith different antimicrobial agents. Agar plates contained the fol- 

owing antimicrobials and concentrations: ampicillin 8 mg/L; tetra- 

ycline 8 mg/L; nalidixic acid 16 mg/L; cefotaxime 1 mg/L; sul- 

amethoxazole 256 mg/L; and streptomycin 16 mg/L and 32 mg/L. 

lates were incubated in an aerobic atmosphere at 37 °C for 24–

8 h. Typical colonies were subcultured on blood agar plates, con- 

rmed as E. coli by standard bacteriological testing, and subjected 

o antimicrobial susceptibility testing. One resistant E. coli isolate 

rom each animal was chosen and included for further investiga- 

ions. 

.2. Antimicrobial susceptibility testing 

Minimum inhibitory concentrations (MICs) of 14 antimicro- 

ial agents were determined by the broth microdilution method 

VetMIC 

TM GN-mo; National Veterinary Institute, Uppsala, Swe- 

en) following the recommendations of the European Committee 
318 
n Antimicrobial Susceptibility Testing (EUCAST) ( www.eucast.org ). 

lassification of isolates as susceptible or resistant was based on 

pidemiological cut-off values (ECOFFs) defined by EUCAST. Es- 

herichia coli ATCC 25922 was included on a regular basis for qual- 

ty control. 

.3. Conjugation and confirmation of transconjugants 

Conjugation by liquid mating with E. coli DH5 α as recipi- 

nt strain was carried out as described previously [15] . Selec- 

ion of transconjugants was performed by plating dilutions of the 

ating solutions onto Mueller–Hinton agar plates with 20 mg/L 

alidixic acid and applying disks containing relevant antimicro- 

ial agents (corresponding to the resistance profile of the donor) 

s previously described [15] . Colonies of presumptive transcon- 

ugants were selected from growth within the inhibition zones 

nd were subcultured. The colony morphology of the transconju- 

ants was inspected after growth on blood agar and on lactose–

accharose–bromthymol blue agar ( E. coli DH5 α has small char- 

cteristic colonies and is not a lactose-fermenter). The resistance 

rofile of the transconjugants was determined by disk diffusion as 

escribed by EUCAST. 

.4. Whole-genome sequencing (WGS) and genomic analysis 

One isolate per animal positive for carriage of antimicrobial- 

esistant E. coli ( n = 12) and two transconjugant strains (obtained 

rom the most multiresistant strains, 2010-01-5562-str and 2011- 

1-8208-4-str) were subjected to WGS and further genomic anal- 

sis. Genomic DNA was extracted using a Wizard® Genomic Pu- 

ification Kit (Promega Corp., USA). Sequencing libraries were pre- 

ared using a Nextera XT DNA Lib Prep Kit (Illumina Inc., San 

iego, CA, USA). Isolates were sequenced on an Illumina MiSeq 

latform (Illumina Inc.). Genome sequence data were submitted 

o the NCBI Sequence Read Archive (SRA) under accession no. 

RJNA673093 . Quality control of the Illumina raw reads was done 

sing FastQC ( https://www.bioinformatics.babraham.ac.uk/projects/ 

astqc/ ), and multiQC [16] was used to merge the results. Further- 

ore, Trimmomatic [17] was used to trim the reads to remove 

uplicate reads, ILLUMINACLIP was used to remove the adaptors, 

nd bbduk v.38.86 was used to remove PhiX. Illumina reads were 

ssembled using SPAdes v.3.12 with default settings [18] . The on- 

ine tools ResFinder 3.2, SeroTypeFinder 2.0, MLST 2.0, FimTyper 

.0, pMLST 2.0, PlasmidFinder 2.1 and PointFinder available online 

rom the Centre for Genomic Epidemiology ( https://cge.cbs.dtu.dk/ 

ervices/ ) were used for the respective genomic analyses. The com- 

lete Virulence Factor Database (VFDB) was available from web 

erver at http://www.mgc.ac.cn/VFs/ [19] . Virulence genes were de- 

ected using NCBI BLASTn and the VFDB updated on 20 July 2020, 

here BLAST hits with e-value ≤1e –10 , query coverage ≥90% and 

ucleotide identity ≥90% were considered as positive hits. 

For the phylogenetic analyses, raw reads of sequence type 

8 (ST58) genomes were retrieved from EnteroBase ( https:// 

nterobase.warwick.ac.uk/ ) and assembled using Unicycler v.0.4.7 

ith default settings. Parsnp from the Harvest Tools suite [20] was 

sed to identify single nucleotide polymorphisms (SNPs) in the 

ore genomes of three ST58 strains from this study by aligning 

he genomes with the most closely related complete reference 

enomes from EnteroBase. The flag x was implemented to filter out 

ecombination events, which resulted in alignment of > 77% of the 

hree genomes. 

.5. Plasmid sequence reconstruction 

Plasmid sequences were assembled from the WGS assemblies 

sing MOB-suite v.3.0.1 [21] . NCBI BLASTn was used to select 

http://www.researchinsvalbard.no
http://www.eucast.org
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://cge.cbs.dtu.dk/services/
http://www.mgc.ac.cn/VFs/
https://enterobase.warwick.ac.uk/
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Fig. 1. Characteristics of antimicrobial-resistant Escherichia coli isolates from Svalbard reindeer, including plasmid-associated virulence genes. Blue squares represent the 

presence of a particular replicon, resistance gene or virulence gene (column) in a particular strain (rows). ST, sequence type; ND, not detected; cia , colicin Ia; cva , colicin V, 

etsABC , putative ABC transport system; hylF , haemolysin F; iss , increased serum survival protein; iroBCDEN , salmochelin siderophore; iucABCD , aerobactin siderophore; ompT , 

protease; sitABC , iron transport proteins. ∗ Transconjugants obtained from these donors were also included for plasmid sequence analysis. 
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losely related complete plasmids for comparative analysis. Plas- 

id sequences were also confirmed by mapping trimmed Illumina 

eads against a reference plasmid sequence. Bowtie v.2.3.4.2 was 

sed for mapping of trimmed Illumina reads [22] . Plasmid se- 

uences were annotated using Prokka v.1.14.5 with default settings 

23] . Annotations were manually curated in Artemis Comparison 

ool (ACT) [24] and CLC Main Workbench v.8 (CLC bio, QIAGEN, 

arhus, Denmark). BLAST comparison of plasmids was created in 

LAST Ring Image Generator (BRIG) v.0.95-dev.0 0 04 [25] . 

. Results 

.1. Phenotypic and molecular characteristics of 

ntimicrobial-resistant Escherichia coli isolates 

Antimicrobial-resistant E. coli were detected from 12 of 55 an- 

mals ( Fig. 1 ). Resistance to ampicillin, streptomycin, sulfonamides 

nd tetracycline was most commonly observed. None of the iso- 

ates were resistant to quinolones or produced extended-spectrum 

-lactamases (ESBLs) or plasmid-mediated AmpC β-lactamases. 

enes responsible for antimicrobial resistance were the same as 

hose commonly occurring in isolates from humans and animals, 

uch as the bla TEM-1 gene encoding ampicillin resistance, sul1 and 

ul2 mediating resistance to sulfonamides, tetA and tetB encoding 

etracycline resistance, strA–strB and aadA encoding streptomycin 

esistance, and the integron-associated gene cassettes drfA1 and 

frA5 encoding resistance to trimethoprim. Two isolates had cef- 

azidime MICs of 1 mg/L, one step above the ECOFF at 0.5 mg/L. 

owever, no genes or mutations were found that could explain the 

lightly elevated ceftazidime MIC in these isolates. In addition, one 

train was resistant to tetracycline but a gene responsible for tetra- 

ycline resistance could not be identified. An overview of the an- 

imicrobial resistance genes detected in the isolates is shown in 

ig. 1 . The MIC distributions of the resistant isolates can be found 

n Table 1 . 

Virulence genes typical for colicin V (ColV)-producing IncF plas- 

ids were present in the majority of isolates. These included genes 

or aerobactin biosynthesis ( iucABCD ), the receptor for aerobactin 

 iutA ) and salmochelin biosynthesis ( iroBCDEN ) in addition to iron 

ransporter genes ( sitABC ), haemolysin ( hlyF ), putative type 1 se- 
319 
retion system ( etsABC ) and colicin V ( cva ). The ompT gene en-

oding outer membrane protease and iss for increased serum sur- 

ival were also present. In addition, genes encoding adhesion were 

ound. Fig. 1 gives an overview of plasmid-associated virulence 

enes in the isolates, whereas all the of the virulence genes for the 

espective isolates are available in Supplementary Table S1. Conju- 

ation experiments showed that most of the strains carried resis- 

ance genes on self-conjugative plasmids ( Fig. 1 ). 

The isolates grouped into seven different multilocus sequence 

yping (MLST) sequence types (STs). Four STs were represented by 

ore than one isolate, namely ST58 ( n = 3), ST131 ( n = 2), ST88

 n = 2) and ST369 ( n = 2) ( Fig. 1 ). The ST131 isolates were cate-

orised as O25:H4 serotype, with fimH 22 type and were suscepti- 

le to fluoroquinolones. They therefore do not belong to the glob- 

lly distributed E. coli H 30Rx sublineage of ST131. The two ST88 

solates were recovered in different years and from animals in dif- 

erent geographic areas, whereas the three ST58 strains originated 

rom animals in Reindalen sampled in 2011. 

Phylogenetic analysis of the three ST58 isolates from this study 

nd a selection of ST58 downloaded from EnteroBase demon- 

trated a close genetic relationship between our isolates and a 

roup of previously sequenced ST58 isolates. Sequences of the ST58 

trains originated from humans, animals and different environmen- 

al niches and were isolated in different countries and years (Sup- 

lementary Fig. S1). The closest relative to strain 2011-01-8208- 

-str32 was strain SCK30-22, a serotype O8:H25 E. coli isolated 

rom an undisclosed human infection from the Netherlands. Strain 

CK30-22 was used to extract the core genome of 2011-01-8208- 

-str32 and to identify SNPs between them. We found 164 SNP 

ounts for 2011-01-8208-4-str32 compared with SCK30-22. Only 

4 SNP count differences were found between 2011-01-8038-1- 

tr32 and 2011-01-8038-2-str32. 

.2. Plasmid sequence analysis 

Analysis using PlasmidFinder indicated that all isolates har- 

oured IncF plasmids, while a single strain also contained an IncI 

lasmid. Seven IncF plasmids had pMLST profile F2:A-:B1. They 

ere present in ST58, ST88 and ST131 strains, whereas the re- 
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Table 1 

Distribution of minimum inhibitory concentrations (MICs) and antimicrobial resistance in Escherichia coli isolated from Svalbard reindeer. 

Substance Distribution (%) of MIC values (mg/L) ∗

0.016 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 ≥ 512 

Ampicillin 1 2 1 1 7 

Ciprofloxacin 1 3 8 

Nalidixic acid 1 3 7 1 

Gentamicin 4 8 

Streptomycin 4 4 1 1 2 

Tetracycline 4 1 1 1 2 3 

Florphenicol 11 1 

Colistin 7 5 

Sulfamethoxazole 5 1 6 

Trimethoprim 6 1 1 4 

Chlorampenicol 9 2 1 

Kanamycin 12 

Cefotaxime 3 7 2 

Ceftazidime 4 6 2 

∗White fields indicate range of dilutions tested. MIC values higher than the highest concentration tested are given as the lowest MIC value above the range. MIC values 

equal to or lower than the lowest concentration are given as the lowest concentration tested. Vertical lines denote epidemiological cut-off values for resistance. 

m

T

p

c

a

i

a

w

t

m

P

t

w

c  

I  

g

t

c

s

fl

t  

V

p

o

w

c

c

t

n

c

C

p

o

s

T

s

b

s

F

m

4

h

r

s

t

t

k

s

f

O

f

a  

c

l

w

A

C

a

a

b

p

o

s

3

l

h

C

s

t

a

M

t

p

i

g

c

i  

d

s

t

i

a

i

e

u

i

b

aining IncF plasmids had unique pMLST profiles (Supplementary 

able S1). 

From one strain (2011-01-8208-4-str), a nearly complete IncF 

lasmid sequence was determined (plasmid p8208-4). The nu- 

leotide sequence of the plasmid is available in NCBI GenBank with 

ccession no. MW228449 . This plasmid was subjected to detailed 

nvestigation. The approximate size was 148 200 bp with an aver- 

ge GC content of 51%. A total of 167 open reading frames (ORFs) 

ere predicted and annotated. A typical IncF plasmid carrying 

oxin–antitoxin (TA)-based addiction system ( yacAB ) and plasmid 

aintenance proteins (PsiA–PsiB, plasmid SOS inhibition proteins; 

arAB/SopAB, plasmid-partitioning proteins) was present. Besides, 

he complete genetic region encoding the transfer component ( tra ) 

as present, spanning ~32 kb of the plasmid. Plasmid p8208-4 

ontained many insertion sequence (IS) elements such as IS 2 , IS 4 ,

S 6 , IS 26 and IS 110 , which play a key role in bacterial genome or-

anisation and evolution. Antimicrobial resistance genes were clus- 

ered in a characteristic resistance gene locus containing a deleted 

lass 1 integron with dfrA5 and only 24 bp of the 3 ′ -conserved 

egment (CS). A cluster with bla TEM-1b –IS 26 –repA –sul2 –strA–strB 

anked by direct copies of IS 26 , corresponding to the composite 

ransposon Tn 6029 , was found adjacent to the partial 3 ′ -CS ( Fig. 2 ).

irulence genes typical for IncF ColV plasmids were located on 

8208-4, such as iucABCD, iutA, iroBCDEN, sitABC, hlyF, etsABC, cva, 

mpT and iss . Conjugation experiments showed that the plasmid 

as self-transferrable. Sequence data of the transconjugant strain 

onfirmed the presence of plasmid-specific regions such as repli- 

on sequences and resistance genes. 

Comparison of ColV plasmids from GenBank closely related 

o p8208-4 is shown in Fig. 2 . Plasmid p8208-4 shared > 99% 

ucleotide identity and > 99% coverage/length with previously 

haracterised plasmids, namely pG749_1 (GenBank accession no. 

P014489 ), pSF-088-1 (GenBank accession no. CP012636 ) and 

DB4277 (GenBank accession no. KP398867 ). The core backbones 

f plasmids derived from ST88 and ST131 strains were found to be 

imilar to p8208-4, but were different in resistance gene content. 

he characteristics of the remaining IncF plasmids from the other 

trains in this study indicated the presence of hybrid antimicro- 

ial resistance–virulence (ColV) plasmids in most of the strains, as 

hown in Fig. 1 . BLAST comparison of plasmids with FAB formula 

2:A-:B1 from this study, including p8208-4, is shown in Supple- 

entary Fig. S2. 

. Discussion 

In this study, we demonstrated that wild reindeer in a remote 

igh arctic ecosystem harboured antimicrobial-resistant E. coli. The 
320 
esistance genes and most of the virulence determinants were as- 

ociated with plasmids. The virulence determinants were similar to 

hose found on IncF ColV plasmids [26] . The majority of the resis- 

ant E. coli contained IncF ColV plasmids and these plasmids are 

nown to carry a ‘battery’ of virulence genes. They are strongly as- 

ociated with avian pathogenic E. coli (APEC) but are also reported 

rom clinical and intestinal carrier isolates of human origin [26] . 

ther studies have reported IncF ColV plasmids in E. coli STs also 

ound as hosts for such plasmids in this study, such as ST58, ST88 

nd ST131 [ 26 , 27 ]. This may indicate successful host and plasmid

ombinations. Their presence in arctic environments further under- 

ines the success of these STs and their associated plasmids. ST131 

ith IncF plasmids of type F2:A-:B1 have also been detected from 

ntarctic pinnipeds in a previous study [28] . 

Plasmid p8208-4 showed high genetic similarity to previous 

olV plasmids. The virulence genes and plasmid backbones were 

lmost identical to the corresponding regions in previously char- 

cterised plasmids. Furthermore, we observed that the antimicro- 

ial resistance gene locus, which is regarded as the less conserved 

art of ColV plasmids, was identical to the corresponding region 

f other ColV plasmids ( Fig. 1 ). This included a specific genetic 

ignature, consisting of the dfrA5 gene cassette and 24 bp of the 

 

′ CS. This signature has been shown to be present in highly re- 

ated IncF ColV plasmids obtained both from animal and human 

osts from different geographic locations [26] . The finding of IncF 

olV plasmids in multiple isolates in this study, with a high genetic 

imilarity to previously described IncF ColV plasmids, suggests that 

hey originate from ecological compartments where such plasmids 

re commonly circulating, such as poultry and/or humans [ 26 , 29 ]. 

ost of our strains contained self-mobilisable plasmids, however 

he conjugation experiments failed to demonstrate transmission of 

lasmids for a subset of the strains. Possible explanations could be 

ncapability of the method used or that genes needed for conju- 

ation were interrupted, such as the presence of an IS element in 

rucial genes of the conjugation machinery. 

The majority of STs and plasmids detected have been reported 

n previous studies [ 26 , 27 , 30 , 31 ]. Phylogenetic analyses of ST58

emonstrated that our strains grouped with previously sequenced 

trains. This indicates that the strains from reindeer have an ex- 

ernal source and that they have been introduced to Svalbard. The 

ntroduction routes of resistant bacteria to wild fauna in Svalbard 

re largely unknown. A possible theory is that migratory birds can 

ntroduce such bacteria to remote locations such as Svalbard. Sev- 

ral bird species that breed on Svalbard overwinter in densely pop- 

lated parts of central Europe, where they are exposed to res- 

dent microbiota. As an example, the pink-footed goose ( Anser 

rachyrhynchus ) migrates to Svalbard from mainland Norway, Den- 
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Fig. 2. BLAST comparison of closely related ColV plasmids from GenBank to p8208-4. Coloured arrows represent genes and their functions. The outer ring shows the gene 

content of p8208-4 along different reading frames that correlate with regions in plasmids that have been detected in the BLAST analysis. 
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ark, the Netherlands and Belgium [32] , whereas the barnacle 

oose ( Branta leucopsis ) that visits Svalbard in summer migrates 

rom Scotland [33] . Compared with Svalbard, all of these European 

ocations represent ecosystems more exposed to anthropogenic ac- 

ivity, agriculture and antimicrobial compounds, and with a higher 

nvironmental load of antimicrobial-resistant bacteria. A former 

tudy has also reported antimicrobial-resistant E. coli in arctic birds 

ampled in Siberia and Greenland, indicating migrating birds as 

otential vectors for resistant E. coli [34] . However, Svalbard is also 

 popular tourist attraction, especially during the summer months, 

ith more than 100 cruise boats docking in the archipelago ev- 

ry year. One should therefore not rule out that the large number 

f people visiting the archipelago could lead to the introduction 

f resistant bacteria. Intensified livestock production cannot be di- 

ectly blamed for the presence of resistant bacteria on Svalbard, 

ince no such production exists on the archipelago. There are no 

ther indigenous ruminant species in Svalbard, however cows and 

heep have been introduced in the past, both at Longyearbyen and 

t the Russian mining stations of Barentsburg and Pyramiden, but 

hey are no longer present. 
321 
The culture-based approach used in this study may not be the 

ptimal method to define the overall resistome within a given 

nvironment. Metagenomic DNA sequencing could produce valu- 

ble additional information. Also, we included only one (randomly 

hosen) isolate per animal for phenotypic and genotypic analy- 

es, which limits further exploration of ST diversity within the 

ame host. Polyclonal carriage of resistant E. coli could be possi- 

le, however this was not investigated further in this study. The 

ulture-based screening used in this study was designed to detect 

esistance to relevant antimicrobial agents for human and animal 

se. Our strategy included screening for resistance to ‘older’ types 

f antimicrobials, such as streptomycin and sulfonamides. We be- 

ieved this would increase the chance of detecting resistant iso- 

ates, as resistance to newer and broad-spectrum antimicrobials, 

uch as extended-spectrum cephalosporins and fluoroquinolones, 

as considered more unlikely to be present due to a presumably 

ower prevalence. 

Monitoring antimicrobial resistance within pristine ecosystems 

uch as the Arctic and at their interface with human-influenced ar- 

as could enable more insight into the frequency with which resis- 
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ant bacteria and genes encoding resistance are exchanged in mi- 

robial communities. We therefore argue that wild reindeer, and 

ikely other indigenous and migrant species, can function as impor- 

ant host reservoirs and potential vectors for the spread of resis- 

ant bacteria and genetic determinants responsible for resistance. 

n pristine areas such as the Arctic, this might highlight the impor- 

ance of wildlife species as sentinels for monitoring the spread of 

ntimicrobial resistance. 

In conclusion, environmental dissemination of antimicrobial re- 

istance appears to have reached the most remote Arctic regions 

uch as Svalbard, supporting previous studies. Furthermore, our 

ndings demonstrate that successful plasmids, such as IncF ColV 

lasmids, and their host strains are widely distributed, occurring 

lso in remote and high arctic environmental niches. Sequence- 

ased analyses support an external source for the plasmids and 

trains. In the future, a combination of well-designed monitor- 

ng programmes, preferably global ones, and advanced sequencing 

echnology will probably contribute to better understanding of the 

pidemiology of antimicrobial resistance also comprising environ- 

ental reservoirs. 
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