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ABSTRACT
Monitoring the water contaminants is of utmost importance in water resource management. Pre-
diction of the total dissolved solid (TDS) is particularly essential for water quality management and
planning in the areas exposed to a mixture of pollutants. TDS primarily includes inorganic minerals
and organic matters, and various salts and increasing the concentration of TDS causes the esthetic
problems. The reflection of the pollutant burden of the aquatic system can remarkably determined
by TDS magnitudes. This study focuses on the prediction of TDS and several biochemical parame-
ters such as Na, Ca, HCO3, and Mg in a river system. To overcome nonstationarity, randomness, and
nonlinearity of theTDSdata, amulti-step supervisedmachine learningevolutionary algorithm (MSM-
LEA) is proposed to improve themodel’s performance at twogaging stations, namely Rig-Cheshmeh
and Soleyman-Tangeh, in the Tajan River, Iran. In addition, a hybrid model that recruits intrinsic
time-scale decomposition (ITD) for frequency resolution of the input data as well as a multivari-
ate adaptive regression spline (MARS) were adopted. A novel metaheuristic optimization algorithm,
crow search algorithm (CSA), was also implemented to compute the optimal parameter values for
theMARSmodel. To validate the proposed hybridmodel, standaloneMARS, empiricalmode decom-
position (EMD)-based models, and hybrid ITD-MARS as well as a MARS-CSA were considered as the
benchmark models. Results suggest the ITD-MARS-CSA outperforms other models.
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1. Introduction

The most common sources of river water are for irri-
gation, water supply, agriculture, etc. River systems are
extremely susceptible to pollution as they are inherently
dynamic and convenient environments for the disposal of
waste material (Ahmed et al., 2019; Bui et al., 2020). For
past decades, mismanagement of river systems caused
widespread contamination that has hamperedwater bod-
ies and rivers.

For the local water quality management, contamina-
tion is a significant issue. The amount of organic or
inorganic matter (i.e. salts) dissolved in a water sys-
tem is called TDS (total dissolved solids) and is usu-
ally measured as the amount/number of cations and
anions contained in a sample. Inorganic and organicmat-
ter, minerals, and salts consist most of these dissolved
solids (Miranda & Krishnakumar, 2015). Increasing the
concentration of TDS may lead to adverse changes in
esthetics with respect to precipitation, staining, or taste
(Sibanda et al., 2014). TDS also leads to toxicity by
increasing salinity and changing in the ionic composi-
tion of the water and toxicity of individual ions. Increases
in salinity have acute or chronic influences on the biotic
communities as well as specific life stages. The TDS con-
centration is one of the prominent water quality indexes
(Jonnalagadda & Mhere, 2001; Weber-Scannell & Duffy,
2007). In this regard, it is crucial to have an accurate
model to predict TDS that has significant social and prac-
tical values. As physical, biological, and chemical param-
eters for water quality parameters (WQPs) prediction are
strongly nonlinear, non-mechanical computer training
models were applied for the TDS prediction.

Since last decades, machine learning models like
adaptive neuro-fuzzy inference system (ANFIS), arti-
ficial neural network (ANN), model tree (MT), gene
expression programming (GEP), support vectormachine
(SVM), and extreme learning machine (ELM) have been
widely extensively developed designed for solving vari-
ous environmental engineering and water quality prob-
lems (Alizadeh et al., 2018; Anctil et al., 2008; Attar et al.,
2018; Chen et al., 2020; Chen & Chau, 2019; Choubin
et al., 2019; Hong et al., 2018; Kargar et al., 2020;Mouata-
did et al., 2018; Najafzadeh et al., 2016; Najafzadeh et al.,
2019; Noori & Kalin, 2016; Rezaie-Balf & Kisi, 2018;
Shamshirband et al., 2019; Shiri et al., 2011; Solomatine
& Xue, 2004; Taormina & Chau, 2015; Yassin et al., 2016;
Zounemat-Kermani et al., 2018).

In terms of TDS estimation, a plethora of studies have
been carried out that a couple of them can be mentioned
here. Abudu et al. (2012) appliedANN, transfer function-
noise, and Autoregressive Integrated Moving Average
(ARIMA) techniques for the monthly prediction of TDS

content in the Rio Grande in El Paso, Texas. Ghavidel
and Montaseri (2014) employed ANN, GEP, and ANFIS
with grid partition aswell asANFISwith subtractive clus-
tering to predict TDS values of the Zarinehroud basin,
Iran. In a sequence, Khaki et al. (2015) evaluated the
ability of ANN and ANFIS for the TDS estimation in
the Langat Basin, Malaysia. The performance of ANN
in the estimation of TDS was further strengthened by
Mustafa (2015) and Asadollahfardi et al. (2018) who
applied multilayer perceptron (MLP) and Box–Jenkins
time series approaches for the TDS prediction in the
Zayande Rud River, Iran. Soon after, Pan et al. (2019)
assessed the potential of hybrid principal component
regression (PCR), dual-step multiple linear regression
(MLR), and backpropagation neural networks (BPNN)
to model the TDS for an aquifer system in Canada.
Although there are strong approaches with high ability,
achieving more accurate predictive methods remains a
challenging task for the TDS assessment.

Owing to the forgoing hydorogical components,
WQPs behavior is known by high non-stationarity, non-
linearity, and anthropogenic changes. In this sense, creat-
ing an accurate TDS predictionmodel due to the existing
high complexity issue is highly challenging.MARSmodel
is one of the reliable machine learning (ML) models,
which has demonstrated its capability in solving engi-
neering regression problems ( Rezaie-Balf et al., 2019;
Zhang & Goh, 2016). The construction of MARS model
highly depended on three parameters, namely maximum
basis function (MaxFun), penalty parameter (d), and
interaction (Imax). In this regard, it is hard to select the
optimum parameters simultaneously because of the vari-
ety choices. The DDMs can be modeled as optimization
problems in continuous domains to identify the optimum
value of parameters.

Considering the intelligent behavior of crows which
are among the most intelligent birds, Askarzadeh (2016)
proposed an original Crow Search Algorithm (CSA). The
important advantages of CSA are the simple implemen-
tation and setting a few parameters. To overcome the
difficulty of MARS model, a metaheuristic optimization
technique, CSA, is employed in this study to optimize
the three aforementioned parameters of theMARSmodel
applied for the TDS prediction.

Due to seasonal data and non-linearity of time-series
records, feeding the raw metadata directly to the model
may not provide significant insights for water quality
parameter estimation. More often, a data pre-processing
technique is recommended to enhancemodel fidelity and
performance. Various strategies have been proposed in
order to extract embedded features in dynamical and
non-stationary time series signal including streamflow
(Rezaie-Balf & Kisi, 2018), evaporation (Ghaemi et al.,
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2019; Yaseen et al., 2020), rainfall (Ouyang et al., 2016;
Wu & Chau, 2013), solar ultraviolet index, groundwater
level (Rezaie-Balf, Naganna, et al., 2017; Roshni et al.,
2020), wind power (Niu & Wang, 2019), water quality
parameters (Fijani et al., 2019), soil moisture (Prasad
et al., 2019). More recently, intrinsic time-scale decom-
position (ITD) as a new noise assisted data analysis
technique is proposed to decompose input/output vari-
ables with a few proper rotation components (PRCs)
that change non-stationary signals into stationary stat-
ues (Martis et al., 2013). Interestingly, ITD is fully data-
dependent; thereby making the tool significantly robust
for relevant feature extraction without any loss of infor-
mation.

The scope of this study is to develop a multi-step
supervised machine learning evolutionary algorithm
(MSMLEA) for predicting TDS. The focus is on using
various physicochemical parameters to predict TDS at
the Rig-Cheshmeh and the Soleyman-Tangeh Rivers in
Iran. The main contributions of the research are as fol-
lows:

(1) The CSA optimization technique is used to deter-
mine the optimum value of the hyper-parameters
of the MARS model and avoiding trial and error
procedure. This model is developed with automated
workflow and settings without human intervention.

(2) Presenting an accurate and stable formula for TDS
using physicochemical parameters and comparing it
with Ghavidel andMontaseri’s empirical equation at
both aforementioned stations.

(3) To convert non-stationarity and non-linearity time
series to stationary ones, ITD was recruited and
MSMLEA is proposed to predict monthly TDS
records.

(4) By evaluation metrics and several visual plots,
experimental outcomes indicated that the proposed
MSMLEA method can provide better prediction
accuracy compared to several traditional equations
and models. This study is the first attempt, known
to the authors, that combine MARS, CSA, and ITD
models for the TDS prediction. Thus this study has
the potential to fill a significant research gap in TDS
simulation based on intelligent techniques.

This paper is organized as follows. In Section 2, the
case study and data are explained. In addition, the pro-
cedures, algorithms, and the functionality of proposed
models are introduced and discussed in this section. Data
screening and analysis is carried out in Section 4. Section
5 discusses the implementation and case studies. The
conclusion is provided, in Section 6.

2. Material andmethods

2.1. Case study and sampling locations

The case study in this research is Tajan River basin,
located in Mazandaran, Iran. Tajan Basin (53° 56’ – 36°
17’ north latitude and 53° 7’ – 53° 42’ east longitude)
passes through the urbanized region (the City of Sari),
with roughly 4147.22 km2 area (Ghanbarpour et al.,
2013). The climate system of this catchment is domi-
nantly humid; either cold and/or partially humid. The
average area slope, river discharge, and annual rainfall
are respectively 85%, 20 m3/s (cubic feet per second),
and 539mm (Rezaie-Balf & Kisi, 2018). The lowest and
the highest elevations of the Tajan basin are 26 and
3728m, respectively. Brown soil covers about 90% of
the forest surface. Alluvial soil, rendzina, colluvial soil,
and ranker are the next widespread types (Talebi et al.,
2014). The river is host to various agricultural, aquacul-
tural/aquafarming, and industrial activities and opera-
tions such as damming and sand mining, as the average
amount of measured TDS is directly depended to those
processes. A big dam has been constructed in the past to
separate up- and downstreams of the river (Shahid-Rajaie
Dam). So, this parameter should be monitored twice a
year; the first one in fall and winter since the rate of rain-
fall is relatively high and the second one when active
season of agriculture is coming. Currently, there are nine
active hydrometric gaging stations in the basin and this
research used Rig-Cheshmeh and Soleyman Tange gages
for addressing TDS modeling assessment (see Figure 1).
The characteristics and climatic and physical parameters
of the basin are presented in Tables 1 and 2. Accord-
ing to Table 2, among input and output variables, TDS
showed the maximum amount of concentration at two
proposed stations (Rig-Cheshmeh (1270) and Soleyman-
Tangeh (650)). Moreover, standard deviation (Sx) value
computed for this parameter indicated that the Sx values
of TDS records were spread over a wider range of values
compare to input variables. The WQPs data are obtained
from the Meteorological Organization of Mazandaran
Province (MOMP). It is undeniable that there are a
large number of variables which have significant influ-
ences on the TDS estimation. For example, Ghavidel and
Montaseri (2014) selected Bicarbonate (HCO3), Calcium
(Ca), Sodium (Na), Magnesium (Mg), and river dis-
charge as input variables to estimate TDS. Asadollah-
fardi et al. (2016) selected HCO3, pH, Na, Mg, carbonate
(CO3), Ca, and chloride (Cl) as input variables for the
TDS study. Barzegari-Banadkook et al. (2020) consid-
ered the Na, HCO3, Mg, Ca, Cl, and sulfate (SO4) for the
TDS study. In this study, Bicarbonate (HCO3), Calcium
(Ca), Sodium (Na), Magnesium (Mg) were considered
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Figure 1. Location map of the study sites at the Tajan basin.

Table 1. The location and characteristics of selected gaging stations across the Tajan basin.

Station Sub-basin Latitude (N) Longitude (E) Altitude (m) Number of samples

Rig-Cheshmeh Tajan 36.22 53.10 240 505
Soleyman-Tangeh Dodangeh 36.15 53.13 400 390

Table 2. Monthly values of statistical indices for the study sites located at the Tajan basin.

Station Variable Min Mean Max Sx Cv Csx

Rig-Cheshmeh Hco3 (mg/L) 1.60 3.88 12.2 0.89 0.79 2.05
Ca (mg/L) 1.1 3.16 7.5 0.68 0.46 0.55
Mg (mg/L) 0.1 2.17 6 0.69 0.48 0.39
Na (mg/L) 0.2 1.54 6.50 0.75 0.57 1.86
TDS (mg/L) 271 446.49 1270 78.7 6194.38 2.85

Soleyman-Tangeh Hco3 (mg/L) 1.2 3.84 7.70 0.91 0.83 0.55
Ca (mg/L) 1.2 3.41 6.3 0.66 0.44 0.07
Mg (mg/L) 0.5 2.07 4.5 0.68 0.46 0.29
Na (mg/L) 0.08 0.87 2.94 0.42 0.18 1.75
TDS (mg/L) 156 408.87 650 63.1 3981.8 0.46

Note: Sx, Cv, and Csx denote the standard deviation, variation coefficient, and skewness coefficient, respectively.

as the input variables to predict TDS. Monthly time
series of Bicarbonate (HCO3), Calcium (Ca), Sodium
(Na), Magnesium (Mg), and TDS were obtained for
March 1974–August 2016 and March 1984–August 2016
at Rig-Cheshmeh and Soleyman-Tangeh gauging sta-
tions, respectively. Approximately 75% and 25% of the
datasets were used for training and testing periods,
respectively.

2.2. Multivariate adaptive regression splines
(MARS)

Friedman (1991) introduced one formof non-parametric
regression analysis that is called a multivariate adaptive
regression spline. In this technique, there is not any
assumption of basic function (BF) regarding indepen-
dent and dependent variables; thereby the segment’s



ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS 255

endpoints (nodes) can estimate the endpoint of each
region (Kim et al., 2019).

One of the abilities of this method is the splines, which
cause increasing the performancemodel and considering
linear function deviations (e.g. curvatures and thresh-
olds). The adaptive algorithm is selected to determine the
position of nodes. Suppose y as a deterministic output
is a function of the input variable X (X = (X1, . . . , Xp)).
Hence, y is provided as follows (Najafzadeh & Ghaemi,
2019; Yilmaz et al., 2018),

y = f (X1, . . . ,Xp) + e = f (x) + e (1)

where e is defined as error distribution. Basic functions
containing piecewise-cubic and piecewise-linear func-
tions, that help the model to calculate f function accu-
rately. Piecewise-linear function is a kind of max (0, x–t),
where a node is suited at the value t. max (.) indicates the
positive part of (.) is only used and otherwise, it is equal
to zero (Zhang & Goh, 2016).

max(0, x − t)
{
x − t if x ≥ t
0 otherwise (2)

MARS is a combination of linear BFs and their mutual
relationships which is given by Equation (3) expressed by
Rezaie-Balf et al. (2019).

f (x) = β0 +
M∑

m=1
βmλm(x) (3)

Here f (x) denotes the predicted response correspond-
ing to the predictor variable x. Also, β0 and βm are the
predicted constant coefficients (can be determined thor-
ough least-squares technique) in order to attain the best
data fit; BF is represented by λm(x) and M is the num-
ber of basis functions. The MARS model is taken into
account as a data-driven technique that is firstly con-
ducted based on the calibration dataset. By cutting off the
β0 and basis pair, a model with a significant reduction of
calibration error is built. The next pairs are then added to
the model based on the M BFs (Zhang & Goh, 2016),

β̂M+1λ1(X)max(0, Xj − t) + β̂M+2λ1(X)max(0, t − Xj)

(4)
where the estimation of β is performed by means of LS
approach.Mutual interplay for the basic functions in that
model is carefully selected when the new BF is added
to the space of the model. Hence, BFs are added on the
model for achieving the maximum special term numbers
that cause an appropriate fitness model. Afterward, back-
ward elimination discipline is recruited for reducing the
termnumbers. Themajor aim removing process is to find
a closest to the optimum model thoroughly omitting the

inessential variables. In the backward process, for select-
ing the proper sub-model, the lowermost effective BFs are
eliminated. Therefore, the remaining BFs in the optimal
model, is utilized in the initial step. More significantly,
to compare model subsets generalized cross-validation
(GCV) represented by Equation 5 is applied as a less
computationally expensive function (Ghaemi et al., 2019;
Sharda et al., 2008).

GCV = MSE[
1 − N+dN

M

]2 (5)

whereM and N are, respectively the number of observa-
tions and basic functions and d is the penalty of BFs.

2.3. Crow search algorithm (CSA)

Among the category of birds and animals, crows are the
most intelligent birds with awide brain compared to their
body. They have significant ability to use tools, memo-
rize faces, communicate in sophisticated ways, and hide
and retrieve food during different seasons. Crows’s fea-
tures cause them to be able to find the hidden food places
of other crows and steal them in their absence. If a crow
recognizes that it is being chased by another one, it flies
to another place tomislead the pursuer. According to this
strategy, Askarzadeh (2016) suggested CSA as an evolu-
tionary algorithm to solve awide range of problems based
on the following roles:

(1) The living of crow is as the flock form
(2) They have more ability in memorizing the hidden

places of their food
(3) The pursuit each other for stealing their own hidden

foods
(4) Crows used a probability to protect their hidden

foods from robbery

The optimization process of the crow search algorithm
begins with a dimensional environment including sev-
eral crows. Each crow number N with its position i at
each iteration the search space is provided using a vector
xi,iter = [xi,iter1 , xi,iter2 , . . . , xi,iterd ], where i = (1, 2, . . . ,N)

and iter = (1, 2, . . . , itermax), which the maximum iter-
ation is shown by itermax. At iteration iter, each crow can
memorize the location of its hidden location (i) and save
it in its mind as the best place that the memory of that
crow is shown by mi,iter. At each iteration, two statuses
can happen when crow j flies towards its hiding situation
(mj,iter), and crow i pursuit crow j for stealing the foods
of crow j (Díaz et al., 2018; Gupta et al., 2018):
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(1) If crow j cannot understand that it is being followed
by crow i, crow i will find the hiding food place of
crow j and it is defined as a new position of crow i as
follows:

xi, iter+1 = xi, iter + ri × f li,iter × (mj, iter − xi, iter)
(6)

where ri is a random number between 0 and 1,
fli,iter is the flight length for crow i at each iteration
(iter).

(2) If crow j can understand that it is being followed by
crow i, it flies to another place in the environment to
protect its hiding food place.

In general, first and second conditions are summa-
rized as below:

xi, iter+1 =
⎧⎨
⎩

xi, iter+1 = xi, iter + ri
×f li,iter × (mj, iter − xi, iter) rj ≥ APi, iter

a random position otherwise
(7)

where APi,iter is the amount of awareness probability for
crow j at iteration iter. One of the main features of meta-
heuristic algorithms is providing a permissible balance
between diversification and intensification that this fea-
ture is performed by awareness probability (Askarzadeh,
2016; Mohammadi & Abdi, 2018).

2.4. Development ofMARS using CSA

In computing science, choosing the best parameters is an
important stage to attain well performance for machine
learning techniques in modeling. Considering ANN as
an example, the number of hidden layers and the num-
ber of hidden units (both discrete) or the weight and bias
parameters can be prominent parameters in the ANN
optimization. Various methods for finding appropriate
parameters combine various experiences with a limited
heuristic searching for possible optimal solutions which
is time consuming for the users. In this regard, using a
meta-heuristic algorithm (partial search algorithm) can
ease the modeling processes (Rezaie-Balf et al., 2019)
and may produce as the proper solution to an optimiza-
tion problem, particularly with incomplete or imperfect
information or limited computation capability.

Machine learning approach is highly dependent on
maximum basis function (Mmax), penalty parameter (d)
and interaction (mi). But it is hard to select the optimum
parameters in the MARS model simultaneously due to
various choices, selecting the proper parameters can add
to the MARS model fidelity. Focusing on various mod-
eling procedures, we aim to integrate MARS with CSA
(MARS-CSA) to make this complex problem easier to
encounter (Figure 3). At the first stage, MARS addresses

the basic function. New MARS-es are designed after-
wards for every CSA-produced parameter values and the
model quality is comparedwith the CSA’s greedy selector
regarding fitness function evaluation. Finally, the fitness
function has been evaluated by the following objective
function;

f = Ecalibration + Evalidation (11)

where Ecalibration is the error at the calibration stage and
Evalidation the error at the validation stage. Root means
square error (RMSE) in the above equation is defined as
the prediction error index. Moreover, the fitness func-
tion indicates the trade-off between model complexity
andmodel generalization. It also appears that over-fitting
in models arises from good training data fitness so that
the error combination of calibration error and validation
can build on a model that balances the minimum cali-
bration error. Secondly, CSA begins searching for find-
ing the most suitable parameter setting values, including
Mmax,mi, and d. Once the convergence criterion is satis-
fied, the optimization process is terminated. This study
used the generation number as the convergence crite-
rion to reach certain iteration numbers. After performing
the convergence criterion (and finishing calibration), the
best predictive model containing the optimal setting of
parameters with the best parameter settings is found and
it is ready to apply for the validation dataset.

This research utilized ‘ARESLab’, which is an open-
source code, developed by Jekabsons (2011), and CSA
(Askarzadeh, 2016) for the evolutionary MARS-CSA
model design. According to the MARS-CSA model, the
best values of the three mentioned parameters of the
model for both stations are described in Table 5. The
maximum BFs number and maximum interaction level
for the TDS prediction were 24 and 2, respectively, and
the pairwise BFs products are permissible can be allowed
(second-order interaction). At last, Finally, 16 piecewise-
linear BFs at Rig-Cheshmeh and 8 piecewise-linear BFs
at Soleyman-Tangeh stations were found, all with con-
taining the intercept term, were found to achieve the best
model, respectively, at Rig-Cheshmeh and Soleyman-
Tangeh stations. The details of the BFs for both sta-
tions are presented in Table A1 in Appendix 1 shows
the details of the BFs for both stations for prediction
of monthly TDS. In addition, 10-fold cross-validation
helped eliminate the possibility of performance bias10-
fold cross-validation was applied to prevent model per-
formance bias. Analysis of variance (ANOVA) decompo-
sition has been employed in high-dimensional methods
for training dataset in order to select important vari-
ables and interactions between them their interactions in
high-dimensional methods. Consequently, the ANOVA
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decomposition for the MARS-CSA model in TDS pre-
dicting has been carried out (see TableA2 inAppendix 1).
According to Table A2, the GCV lists GCV value for the
proposed model with all BFs (Table A2) for the specific
ANOVA function removed to indicate the significance
of the corresponding ANOVA function indicating the
significance of the corresponding ANOVA function, by
listing theGCVvalue for the proposedmodel with all BFs
(Table A2) for the specific ANOVA function removed.
Finally, theMARSmodel equations for both stationswere
computed as follows:

TDSRig - Cheshmeh

= 647.6 − 54.921 × BF1 + 73.774 × BF2

− 33.214 × BF3 + 33.002 × BF4

− 9.1184 × BF5 + 113.19 × BF6

− 58.14 × BF7 − 12.408 × BF8

− 95.847 × BF9 + 10.382 × BF10

+ 39.116 × BF11 + 6.1189 × BF12

+ 10.192 × BF13 − 16.932 × BF14

− 33.066 × BF15 + 62.001 × BF16

TDSSoleyman - Tangeh

= 283.82 + 50.373 × BF1 − 71.797 × BF2 + 64.492

× BF3 + 395.18 × BF4 − 133.12 × BF5

− 265.7 × BF6 + 183.62 × BF7 − 125.56 × BF8

2.5. Intrinsic time-scale decomposition

In 2007, Frei and Osorio introduced ITD as a time–
frequency indicator for non-stationary, complicated time
series assessment. To categorize the datasets, Proper
Rotation Components (PRCs) functions are used. ITD
as one of the decomposition-based methods is an EMD
improvement, which effectively processes nonlinear and
non-stationary signals with many successful applications
in hydrological modeling (see Frei & Osorio, 2007; Guo
et al., 2014; Martis et al., 2013).

ITD process technique includes four steps with an
operator L that, from in input signal x(t), generates
the baseline signal. This causes a precise rotation and
a lower frequency in residuals (Frei & Osorio, 2007).
Lx(t) = Lx(t) denotes the signal mean, expressed as L(t).
The PRCs are selected asHx(t) = (1 − L)x(t), presented
as H(t). The input signal x(t) is then decomposed as
(according to Martis et al., 2013):

x(t) = Hx(t) + L(t) = (1 − L) x(t) (12)

The steps to develop an ITD algorithm proceed as
follows:

(1) Determining τ k, which is the corresponding occur-
rence time, and x(t), which is the extreme points of
the input signal, in which k = 0, 1, 2, · · · the first
signal would be τ 0 = 0.

(2) Supposing the input signal x(t) in the interval of
0 and τ k + 2 and L(t) and H(t) as operators over
the time interval [0, τ k] that the baseline-providing
operator L is considered as linear function on the
interval [τ k, τ k + 1]. The baseline extraction oper-
ator is:

Lx(t) = L(t) = Lk +
(
Lk+1 − Lk
xk+1 − xk

)
(x(t) − xk),

t ∈ (τk, τk+1), (13)

and

Lk+1 = α

[
xk + (τk+1 − τk)

τk+2 − τk
(xk+1 − xk)

]

+ (1 − α)xk+1 (14)

where α is a constant value between 0 and 1 and
taken as a fixed value (α = 1/2).

(3) Applying an operator function to extract PRCs:

H(t) = Hx(t) = x(t) − L(t) = x(t) − L(t) (15)

The principal purpose of ITD is to integrate the high-
est signals into some PRCs. It is clear in Equation 15 that
PRCs can be achieved if the baseline is subtracted from
the input signal. In general, ITD has various advantages
which can be summarized in different concepts namely
providing the transient smoothing, solving the smearing
in time-scale space, and constant sifting, and time-saving
of computation.

(1) Repeating the process for Equations 13 and 14
iteratively until the baseline L(t) changes to a
monotonous function that the single signal is
divided into PRCs.

x(t) =
p∑

i=1
Hi(t) + Lp(t), (16)

where p represents the number of obtained PRCs.

2.6. Description of theMSMLEA predictionmodel

Providing an estimation of the TDS by physicochemical
input variables at a disparate natural stream is the prelim-
inary goal of ITD-basedMLMs. Figure 2 shows thework-
flow and procedure about how we developed and imple-
mented the MSMLEA for TDS. Before beginning three
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important steps of approaches based on decomposition,
TDS and other physicochemical measurements during
a one-month period were gathered and put into two
distinct groups, training and validation periods and the
appropriatemodel is determined independently from the
training period. The randomness of the applied dataset
and the parameter numbers play crucial roles in com-
puting the number of data points (Fijani et al., 2019).
In this study, random data variations indicated that a
suitable technique with an adequate number of accessible

observations could be predicted. Following a study by
Rezaie-Balf et al. (2019), the accuracy of the suggested
procedures was improved through the following 3 promi-
nent steps:

Step 1: ITD method is applied to decompose both
input and output datasets into some PRCs and a remain-
ing component.

Step 2: The MSMLEA is proven as a robust TDS pre-
diction tool for computing the decomposed PRC and cal-
culating each component bymeans of the same sub-series

Figure 2. Workflow of the proposed MSMLEA.
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Figure 3. Linear relationship between each physiochemical parameter and the TDS using Pearson correlation matrix.

(PRC1) and the residue component of input variables,
respectively.

Step 3: To produce the TDS value, a combination is
made from the estimated values of every extracted PRC
and residual components by MSMLEA.

ummarily, the MLMs which are based on ITD (ITD-
MARS-CSA) recommended the idea of ‘decomposition
and ensemble’. The ensemble can produce a consensus
formula to predict the original datasets; while the decom-
position is a proper tool to make the estimating method
easier.

2.7. Statistical analysis and performance
assessment

2.7.1. Physiochemical–Covariate correlation
TDS co-variability with Hco3, Ca, Mg, and Na as physio-
chemical variables are investigated by the Pearson Coef-
ficient that provides the dependency among several vari-
ables simultaneously. For evaluating the relationships
among the datasets, the correlation factor which varies
between −1 to +1 has been applied. In addition, the
linear dependency between two variables for the Rig-
Cheshmeh and the Soleyman-Tangeh stations is plotted
as a graphical correlationmatrix (Figure 3). As illustrated,
the monthly TDS has a high correlation with monthly
Na (0.68) for the Rig-Cheshmeh and Mg (0.65) for the
Soleyman-Tangeh stations.

2.7.2. Statistical analysis of variance
Evaluating the dependent and independent variables is
an important problem for data validation. One of these
approaches is Analysis of variance (ANOVA) according
to which modeler can use it to determine if there is any

interaction among independent variables that may mod-
ulate the variability of the dependent variable (e.g. Lam
et al., 2016). The GLM-ANOVA is one of the diagnostic
tools that reduce the error variance overtime during the
prediction period. In this study, the statistical significance
of independent variables (Hco3, Ca, Na, andMg) was set
at 0.05.

The GLM-ANOVA was employed for each variable;
the results are presented with a variable quantity, the
sequential sum of squares, and the number of (in per-
cents) independent variables given by the properties at
two proposed stations.

The effect of the null hypothesis (i.e. the variances are
equal) or significance test was defined to evaluate the
effect of independent variables on the TDS variability at
a probability level (p-value).

Table 3 shows that, by comparing the significance
level factor (0.05), p-values provided the significance of
independent variables.

The independent variables were all considered sig-
nificant due to their p-value ≤ 0.05. Additionally, an
evaluation was performed of the contribution of indi-
vidual input variables for the above-mentioned stations.
For the Rig-Cheshmeh, Na (84.16%) was the highest and
Ca (71.35%) the lowest contributors. In contrast, at the
Soleyman-Tangeh, Mg with 81.55% and Na with 73.85%
has the highest and lowest contributions, respectively.

3. Results and discussion

To evaluate ML techniques, several performance met-
rics (see Appendix 2) are employed for evaluating the
predictive performance criteria during calibration and
validation periods.
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Table 3. Analysis of variance (ANOVA) results.

Statistical parameters

Station Source of Variation DF Seq. SS Computed F P value Significance Co. (%)

Na 125 64,158.4 6.03 0.00 Yes 84.16
Ca 64 33,658.7 4.88 0.007 Yes 71.35

Rig-Cheshmeh HCO3 68 140,513.1 5.23 0.0005 Yes 78.59
Mg 59 64,152.9 9.35 0.00 Yes 81.56
Error 188 88,913 - - -
Na 82 9063.16 3.41 0.0001 Yes 73.85
Ca 38 13,035.48 4.33 0.004 Yes 69.42

Soleyman-Tangeh HCO3 57 12,620.05 5.03 0.00 Yes 77.18
Mg 38 40,672.63 9.98 0.00 Yes 81.55
Error 175 1,552,902 – – – –

Note: DF: degree of freedom; Seq. SS: Sequential sum of squares; Co.: Contribution.

3.1. Application and prediction outcomes

3.1.1. Rig-Cheshmeh station case study
This section discusses monthly TDS predictions for the
Rig-Cheshmeh gauging station. The predictive ability of
the standalone and integratedMARSmodels for the TDS
prediction for both calibration and validation dataset
presented concisely in Table 4.

Clearly, MSMLEA yielded better prediction (i.e. gen-
erally lowest RMSE, as well as the largest WI) com-
pared to the rest of models. This indicates that intrinsic
time-scale decomposition is a robust technique for per-
forming non-stationary assessment and increasing the
precision of the MARS-CSA model at this location dur-
ing calibration and validation periods. For instance, the
integrated ITD-MARS-CSA model provided the best
performance compared to the rest of hybrid methods
based on the performance criteria (NSE = 0.97 and
WI=0.992, lowest RMSE = 14.85, and RSD = 0.183).
The ITD-MARS model stands next based on the same
creations applied in this study.

The standalone MARS model and combined
approaches such as MARS-CSA, ITD-MARS as well
as MSMLEA used for the validation period (Table 4).

According to this table, the evaluation metrics of the
ITD-MARS-CSA model in terms of 95% uncertainty
interval (95% confidence interval; 12.599), PMARE
(2.51) and RSD (0.21) outperformed better whileMARS-
CSA with higher percentage error in case of RMSE
(46.91%) and U95 (2.508) ranked second.

As mentioned above, among various models, i.e.
Ghavidel and Montaseri (2014), ANN, GEP, ANFIS-GP,
and ANFIS-SC, GEP (Eq.17) performed better for the
TDS estimation in Zarinehroud basin compared to the
rest of approaches.

TDS = 91.2Na + Na − 14.5Ca[HCO3 − (4.97

+ HCO3)] + 2(HCO3)
2 + Mg + (Mg)1/3 − Ca

(17)

Based on Table 4, the GEP equation obtained by
Ghavidel and Montaseri (2014) performed poorly with
high error and uncertainty that made this model less
capable of predicting the TDS records.

The goodness-of-fit and Pearson’s Correlation Coeffi-
cients (R) values are presented as a scatterplot in Figure 4.

Table 4. Evaluation benchmarks of the proposed models for the calibration and validation periods at the
Rig-Cheshmeh station.

Statistical error indices

Models MARS MARS-CSA ITD-MARS ITD-MARS-CSA
Ghavidel and

Montaseri (2014)

Total available data in calibration period
NSE 0.94 0.95 0.92 0.97 0.25
RMSE 19.49 17.17 24.4 14.85 70.01
RSD 0.24 0.21 0.301 0.183 0.86
U95 16.329 16.229 16.581 16.141 20.984
PMARE 2.84 2.49 4.6 2.62 13.02
WI 0.982 0.988 0.971 0.992 0.857

Total available data in validation period
NSE 0.88 0.90 0.85 0.95 0.26
RMSE 21.26 19.76 23.88 13.45 53.79
RSD 0.338 0.314 0.37 0.21 0.85
U95 13.006 12.915 13.179 12.599 16.216
PMARE 3.038 2.98 4.75 2.51 10.09
WI 0.971 0.976 0.961 0.988 0.86
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The scatterplots display the agreement between pre-
dicted and output variables and a least-squares regres-
sion (LSR) line and the determination coefficient (R2)
with a linear fit equation (y = ax+ b) in each sub-panel.
As presented, the gradient and b denotes intercept on
the y-axis which is applied to outline the method’s per-
formance (Deo et al., 2016) based on the correlation
coefficient (R2).

As illustrated in Figure 4, ITD-MARS-CSA skill-
fully predicted the TDS values thereby it would be

our recommended model for the Rig-Cheshmeh sta-
tion. Figure 5 illustrates the time series of estimated and
observed TDS for the entire calibration and validation
records for the periods of March 1974 to August 2016
at the Rig-Cheshmeh station. Clearly, ITD-MARS-CSA
(dotted orange line) proved to be the potential model
to predict the TDS records whilst Ghavidel and Mon-
taseri (2014) proposed model (the solid red line) under-
estimated the peak values indicating the poor perfor-
mance of this model for this case study. Time required

Figure 4. Scatter plots between observed and predicted TDSs at the Rig-Cheshmeh station in training and testing periods.
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Figure 5. Monthly TDS predictions for training and validation periods at the Rig-Cheshmeh station.

to obtain the optimal solution for the proposed predic-
tion problem with and without CSA optimization was
computed for comparison purpose. For this station, the
execution time using a laptop with 2.20GHz Intel Core
i7 4702MQ processor (8 GB RAM) was 0.58 and 0.64 s,
respectively, for standalone MARS and MARS-CSA
models.

3.1.2. Soleyman-Tangeh station case study
A similar evaluation was also performed for the
Soleyman-Tangeh gauging station (Table 5). As perceived
in Table 5, when we used the hybrid model (ITD-
MARS-CSA) the performance improved significantly
with respect to all metrics (NSE, RMSE, RSD, U95,
PMARE, and WI).

Table 5. Evaluationmetrics of the proposedmodels in the training and validation periods at the Soleyman-Tange
gauging station.

Statistical error indices

Models MARS MARS-CSA ITD-MARS ITD-MARS-CSA
Ghavidel and

Montaseri (2014)

Total available data in training stage
NSE 0.899 0.91 0.902 0.92 0.36
RMSE (mg/l) 19.93 18.34 18.15 17.14 73.51
RSD 0.316 0.279 0.264 0.27 1.168
U95 12.939 12.725 12.551 12.784 18.968
PMARE 3.42 3.08 2.81 2.93 14.98
WI 0.972 0.975 0.978 0.98 0.72

Total available data in validation stage
NSE 0.51 0.86 0.85 0.94 0.15
RMSE 29.81 15.45 16.02 9.72 45.48
RSD 0.71 0.36 0.37 0.22 1.071
U95 10.171 8.859 8.898 8.541 12.199
PMARE 6.76 3.43 3.48 2.28 8.91
WI 0.84 0.96 0.95 0.98 0.76
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In the other hand, ITD-MARS-CSA relatively supe-
rior to the rest of predictive methods by achieving
the lowest prediction error (RMSE = 17.14), and the
highest predictive power (NSE = 0.92, and WI =
0.98) whereas ITD-MARS and MARS-CSA performed
poorly with relatively high error and low predictivity. As
expected, Ghavidel and Montaseri (2014) method per-
formed poorly with significant differences in PMARE
(14.98) and U95 (18.968). MARS model, on the other

hand, showed unsatisfactory results for the WQI predic-
tion during the calibration period.

In the validation period, among several predictive
models the MARS-CSA and RSD proved to have the
potential to predict TDS compare to the rest of the
techniques. Comparing the performance of MARS-CSA
and ITD-MARS-CSAmodels, the computed value of WI
slightly increased from 0.96 to 0.98. Likewise, the magni-
tude of RMSE and RSD largely decreased by 9.72 (mg/l)

Figure 6. Scatter plots between the observed and predicted TDS at the Soleyman-Tangeh gauging station in training and validation
periods.
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and 0.22, respectively. Similar to the Rig-Cheshmeh
gauging station, Ghavidel and Montaseri (2014) model
provided unsatisfactory results with the highest error
compared to the other ML methods. According to the
above results, the ITD-MARS-CSA hybrid technique was
the outstanding model because it combines the strengths
and knowledge of time-scale decomposition, multivari-
ate adaptive regression spline, and the CSA as a meta-
heuristic method.

In addition, scatter plots of predicted and observed
TDS records for the Soleyman-Tangeh gauging station is
presented in Figure 6. As illustrated, the slopes of the TDS
values for the ITD-MARS-CSAmethod are closest to the
best-fitting line although a number of TDS values are
underestimated. In addition, MARSmodel was unable to
estimate WQ parameter well compare to the other mod-
els which indicate the less capable of this model to the
TDS prediction.

The prediction results of observed and predicted
monthly TDS at the Soleyman-Tangeh station were sim-
ilar to that of the Rig-Cheshmeh station. It should be
noted that the proposed ITD-MARS-CSA exhibits the
most accurate result than other approaches, in terms
of both general tendency and estimating capacities of
the TDS peak values (Figure 7). As shown previously,

Equation (17) was poorly predicted the TDS values
revealing that an empirical equation is less capable of
predicting TDS variability. On the other hand, ML pre-
diction can be more valuable and expressive than the
outputs of empirical techniques.

3.2. Compression of theMSMLEA and the empirical
equation

To compare the ITD-MARS-CSA with the empirical
equation proposed byGhavidel andMontaseri (2014), we
analyzed the scatter plots and the validation results for the
TDS prediction. As illustrated in Figure 8, TDS records
predicted by the ITD-MARS-CSA showed more con-
sistency with observations at both stations. Further, the
trend of TDS records predicted by the ITD-MARS-CSA
was remarkably similar to the observations and followed
the same patterns. These results indicate that compared
to empirical methods, a Multi-Step Supervised machine
learning evolutionary algorithm can be used as a sophis-
ticated and intelligent approach to deal with both nonsta-
tionary and trends in the data while puttingmore empha-
sis on predicting the TDS peak values well. The idea of
ML algorithm is that a systemcan learn fromdata and can
adapt to the patterns in the data. This could be integrated

Figure 7. Monthly TDS predictions for training and validation periods at the Soleyman-Tangeh gauging station.
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Figure 8. Comparison of ITD-MARS-CSA and Ghavidel and Montaseri (2014) for the TDS prediction using scatter plots (a, b) and
hydrographs (c and d) for validation period.

with empirical or even physically-based models to make
informed decisions for water resources systems.

In addition, error histograms of standalone (MARS)
and hybrid models (MARS-CSA, ITD MARS, and
ITD-MARS-CSA) as well as Ghavidel, and Montaseri
equation were plotted for both stations in order to com-
pute error concentrations (Figures 9 and 10). Interest-
ingly, the density of errors is approximately scattered
around zero for all models with the exception of the
empirical approach. Among all models used in this study,
the accuracy of the ITD-MARS-CSA approach is supe-
rior and it is a more robust algorithm compare to the rest
of models. Times of execution for training and building
the MARS and MARS-CSA models were almost similar,

0.76 s and 0.74 respectively. That is, in this research,mod-
els’ runtime could not be compared for TDS prediction
at both stations and it may occurred for a few number of
independent (input) parameters.

As aforementioned above, for the standalone MARS
model, it is often hard to fully reflect the information
mechanisms of natural hydrological variables such as
TDS accurately tied to a few resolution components
that applied to establish the prediction models. This
reveals that other resolution subcomponents in the orig-
inal TDS time series cannot be separated effectively. To
avoid this problem, decomposition methods can be pro-
posed to select various resolution intervals and then
the features of each subseries can be separated. As a
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Figure 9. Relative error histograms for proposed standalone (MARS) and hybrid models (MARS-CSA, ITD-MARS, and ITD-MARS-CSA) as
well as Ghavidel and Montaseri empirical equation at the Rig-Cheshmeh station.

result, the performances of the hybrid method (ITD-
MARS) were outperformed to those of the standalone
MARS model. However, MARS development is hugely
dependent onmaximum basis function (Mmax), penalty
parameter (d), and interaction (mi). Although it was
a challenge to select the optimum parameters simul-
taneously. Owing to the various choices, selecting the

proper parameters may diminish the performance of
MARS model. This may increase the error in simula-
tion when the number of input variables increases that
can be a prominent factor for decreasing the model accu-
racy (such as ITD-MARS). In this regards, developing a
optimizing algorithm such as CSA could help find the
best parameter setting values and improve the model
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Figure 10. Relative error histograms for proposed standalone (MARS) and hybridmodels (MARS-CSA, ITD-MARS, and ITD-MARS-CSA) as
well as Ghavidel and Montaseri empirical equation at the Soleyman-Tangeh station.

accuracy. In this study, CSAwith optimizing the parame-
ter setting of ITD-MARSmodel could enhance themodel
accuracy.

The authors recommend the utilization of both
decomposition and optimization-based methods for
otherTDS assessmentwith the same scale of input/output
parameters as well as watershed physical character-
istics in order to assess the generalization of the
MSMLEA. Furthermore, nonlinear and/or dynamic ML

programming based on simulation models could be used
to find the contributors to the TDS in the river system,
however, this type of assessment typically imposes a pro-
hibitive computational burden, especially for large and
complex river systems prediction.

It should be noted that the amount of data used to train
a ML algorithm has a rather large impact on the accu-
racy of the prediction. There appears to be the expected
improvement in prediction that as the size of the data
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increased, the accuracy increased up to a significant level.
This causes the model being more optimized and capa-
ble of predicting TDS variability over time. The outcomes
of this research may assist in providing a range for how
much data is needed to create an optimized model for
water quality modeling system. The future of TDS mod-
eling usingmachine learning algorithms seems to be very
bright and remarkable with the continuous evolution of
AI techniques that created (and likely will create) more
intelligent and modern algorithms.

4. Conclusion

In this study, the capability of a multi-step supervised
based machine learning approach incorporated with the
evolutionary algorithm, MSMLEA, was evaluated for
monthly TDS prediction at two stations, Rig-Cheshmeh
and Soleyman-Tangeh, in Tajan River, Iran. This study
focused on predicting the most influential water qual-
ity parameters such as Na, Ca, HCO3, and Mg. Anal-
ysis suggests that Na and Ca contributed, respectively
84.16% and 71.35% to the total dissolved solid for
the Rig-Cheshmeh while Mg subsidized 81.55% to the
Soleyman-Tangeh River. Comparing the results of the
standalone and hybrid models revealed that ITD data-
decomposition technique has a significant influence on
models’ accuracy. This approach can successfully decom-
pose the dataset and solve the non-stationary associ-
ated with time series records. At the Rig-Cheshmeh and
Soleyman-Tangeh gauging stations, the predicted TDS
records were investigated in term of evaluation metrics.
Comparing the performance of MARS-CSA and ITD-
MARS-CSA, it is noted that the computed values of the
WI increased. Whereas, the magnitude of RMSE and
RSD also decreased significantly. On the other hand,
the outcomes showed that MSMLEA was the accurate
model with the help of data decomposing by the ITD
algorithm. Besides, our proposed equationwas compared
withGhavidel andMontaseri’s empiricalmethod. Results
suggest that MARS’s equation provided lower error than
empirical method for the TDS prediction in terms of
RMSE and PMARE at both stations.

Although the proposedmodel had an acceptable accu-
racy, it is possible to employed other evolution machine
learning and modern algorithms and integrating them
with pre-processing methods such as vibrational mode
decomposition (VMD), complete ensemble empirical
mode decomposition (CEEMD). This will create more
accurate models in the WQPs prediction. With the aim
of increasing the accuracy of TDS estimation, we rec-
ommend using large data samples with various input
variables based on daily or hourly timescales. As the
potential avenue for future research, the uncertainty asso-
ciated with the input/output variables and models can

be investigated to present more reliable predictive mod-
els. It can be considered how model input and parameter
uncertainty may affect the TDS prediction results. As the
final suggestion and limitation of the present research,
otherWQPs andhydrological parameters such as rainfall,
temperature, and river discharge can be fed to the model
as input layers to better compute the TDS variability and
patterns, particularly during low and high flow events.
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Appendices

Appendix 1

Table A1. BFs and corresponding equations of evolutionary
MARS-CSA for TDS prediction at Rig-Cheshmeh and Soleyman-
Tangeh stations.

Equation

BF Rig-Cheshmeh Soleyman-Tangeh

BF1 max(0,3.4 – Na) max(0, Na – 1.17)
BF2 max(0, Ca – 4) max(0,1.17 – Na)
BF3 max(0,4 – Ca) max(0, Mg – 1.4)
BF4 BF3 ∗max(0, Na – 3.4) max(0,4.4 – HCO3)
BF5 BF3 ∗max(0,3.4 – Na) max(0,4.2 – HCO3)
BF6 max(0, Mg – 3.2) max(0,4.5 – HCO3)
BF7 max(0,3.2 – Mg) max(0, Ca – 2)
BF8 BF5 ∗max(0, Mg – 3) max(0, Ca – 2.2)
BF9 BF6 ∗max(0,3.5 – HCO3)
BF10 max(0,3.7 – Mg) ∗ max(0, Ca – 2.7) ∗

max(0, Na – 1.8)
BF11 BF1 ∗max(0,1.9 – Ca)
BF12 max(0, HCO3 – 4.2)
BF13 max(0,4.2 – HCO3)
BF14 BF13 ∗max(0, Ca – 2.7)
BF15 BF13 ∗max(0,2.7 – Ca)
BF16 BF14 ∗max(0, Mg – 2.4)

Table A2. ANOVA decomposition of MARS-CSA technique.

Rig-Cheshmeh Soleyman-Tangeh

Function GCV STD No. of BFs Variable(s) GCV STD No. of BFs Variable(s)

1 358.22 4.85 2 HCO3 527.65 4.96 3 HCO3
2 426.21 26.21 2 Ca 1881.5 40.17 2 Ca
3 1070.81 42.38 2 Mg 1769.3 36.12 1 Mg
4 522.53 33.43 1 Na 1208.32 27.03 2 Na
5 374.53 8.47 2 HCO3, Ca
6 370.49 5.37 1 HCO3, Mg
7 386.45 12.18 3 Ca, Na
8 375.86 6.87 1 HCO3, Ca, Mg
9 361.21 6.94 2 Ca, Mg, Na

Appendix 2

Model’s evaluationmetrics

1. Nash-Sutcliffe Efficiency (NSE)

NSE = 1 −
∑N

i=1 (TDSpre − TDSobs)2∑N
i=1 (TDSobs − TDSobs)

2

2. Root Mean Square Error (RMSE)

RMSE =
√√√√ 1

N

N∑
i=1

(TDSpre − TDSobs)2

3. The ratio of RMSE to Standard Deviation (RSD):

RSD = RMSE
STDEVobs

=

[√∑N
i=1 (TDSobs − TDSpre)2

]
[√∑N

i=1(TDSobs − TDSobs)
]

4. Uncertainty at 95% (U95):

U95 = 1.96
√

(STDEV2 + RMSE2)

5. Percent Mean Absolute Relative Error (PMARE)

PMARE = 100
N

N∑
i=1

(TDSpre - TDSobs)2

6. Wilmot’s Index of agreement (WI)

WI = 1 −
∑N

i=1 (TDSobs − TDSpre)2∑N
i=1 (|TDSpre − TDSobs| + |TDSobs − TDSobs|)2

where TDSobs and TDSpre are the observed and predicted val-
ues of the TDS, and TDSobs is the mean value of the TDSobs. In
addition, N is the number of sample.
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