CIS Educator Forum
Volume 1, Number 1

THE PROGRAMMING LOGIC COURSE IN

THE DATA PROCESSING CURRICULUM

by Laura E. Saret
Associate Professor of Data

Processing

Oakton Community College
DesPlaines, Illinois

Abstract: Learning the rules of a programming language is much easier than learn-
ing how to program. Learning how to program, that is, developing the logic
necessary to solve a problem, is difficult for most people. Data processing students
must unlearn the complicated thought processes they have become used to in
dealing with everyday life and learn to tell the computer, in simplified terms, exactly
what to do, step by step. This article discusses the role of the programming logic
course in the data processing curriculum including reasons for teaching program-
ming logic as a separate course, where the programming logic course fits in the data
processing curriculum, appropriate course content, and teaching hints and strate-

.

gies.

INTRODUCTION:
WHAT IS PROGRAMMING LOGIC?

Learning how to program is not the
same as learning a programming lan-
guage. Learning a programming lan-
guage is learning a set of rules. Learning
how to program is learning how to formu-
late logical solutions to problems. For-
mulating solutions to problems is what
programming logic is all about.

Learning the rules of a program-
ming language is easy. Learning how to
program, that is, developing the logic
necessary to solve a problem, is difficult
for most people. Data processing stu-
dents must learn to “think like a com-
puter.” They must unlearn the compli-
cated thought processes they have be-
come used to in dealing with everyday life

and learn to tell the computer, in simpli-
fied terms, exactly what to do, step by
step.

This article discusses reasons for
teaching programming logic as a separate
course, where the programming logic
course fits in the data processing curricu-
lum, appropriate course content, and
teaching hints and strategies.

WHY TEACH PROGRAMMING
LOGIC AS A SEPARATE COURSE?

From my own experience as well as
that of others I have spoken to, it seems
that the first programming language is
very difficult to learn regardless of whether
that language is COBOL, BASIC, FOR-
TRAN, PASCAL, etc. Subsequent lan-
guages are considerably easier to learn.
The only explanation for this seems to be

that when students learn their first lan-
guage, they are also learning “how to
program” that is, programming logic.

The purpose of the programming
logic course is for the student to learn
how to solve problems using a structured
approach without being distracted by
learning a programming language at the
same time. Just as we learn to speak
English before learning the rules of the
English language, it is important to learn
how to solve programming problems before
learning the syntax rules of a program-
ming language. If, for example, when you
first learned to talk, someone corrected
everygrammatical error made, you would
soon have become frustrated and stopped
talking. First you concentrated on associ-
ating specific words with objects. Then
you worried about such things as whether
the verb matched the noun or the correct

Page 2

CIS Educator Forum
Volume 1, Number 1

pronoun was used. Similarly when first
learning how to program, it is much less
frustrating for a student to learn the logic
involved before being corrected by an
interpreter or compiler with regard to
language syntax.

Many beginning students have diffi-
culty distinguishing between syntax and
logic errors. The first semester I taught
COBOL, a student turned in an assign-
ment which compiled with no errors. The
output, however, was totally wrong. Since
the compiler indicated that there were no
errors, the student assumed that the pro-
gram was correct. Thisisequivalentto an
English student turning in a paper withno
grammatical or spelling errors and insist-
ing that the paper deserves an A even if it
doesn’t contain the content specified by
the instructor. By separating the teaching
of logic from the teaching of language
syntax (at least at first), the student starts
to appreciate that programming is not
merely coding and that logic and syntax
are not the same thing.

The programming logic course does
not require the student to work on the
computer. This has two advantages. First,
if you do not have enough computer fa-
cilities for all your students, you have a
course to offer the beginner which does
not require a machine. Second, many
students (particularly older students) are
somewhat intimidated by operating a
computer. They tend to worry about such
things as breaking it, permanently de-
stroying data, or some other catastrophe
happening when they attempt to use it. If
the student has to learn logic, syntax, how
to operate a computer, and use text edi-
tors, etc. in the same course, it can seem
overwhelming. By having the student
take programming logic as a separate
course, you have given the student some
confidence in his or her ability to learn
about computers and programming with-
out using lab facilities.

If you have students transfer into
your curriculum after having taken pro-
gramming courses at an institution which
does not teach structured techniques or
after having been a programmer for a

period of time, the programming logic
course will teach structured techniques
without forcing the student to repeat
programming language courses. For
example, we have had students enter our
curriculum after taking COBOL or BASIC
at another institution which did not teach
structured techniques. Rather than have
the student repeat the COBOL or BASIC
class, we have him or her take program-
ming logic and then start in the second
COBOL or BASIC class.

Just as we learn to speak English
before learning the rules of the
English language, it is important to
learn how to solve programming
problems before learning the syntax
rules of a programming language.

The programming logic course is a
good measure of both aptitude and inter-
est in the programming field. A student
can learn very early in his or her course-
work whether he or she really wants to be
a programmer and can learn the proper
thought processes that go along with it.

WHERE DOES THE
PROGRAMMING LOGIC COURSE
FIT IN THE CURRICULUM?

The programming logic course is a
first-semester course in a two-year data
processing curriculum. It is also appro-
priate as a first or second semester course
in a four-year information systems cur-
riculum. Where 1 teach, there is no pre-
requisite to the programming logic course.
It is assumed that the student can use
simple arithmetic tools, but no training in
advanced mathematics is required. Logic
is a required prerequisite for our CO-
BOL courses, a recommended pre or
corequisite for our BASIC courses, and a
requirement for graduation in the micro-
computer specialist curriculum. In fact, 1
have had students who had already com-
pleted two semesters of BASIC take the
programming logic course and tell me
that the logic course really helped to

improve their programming skills and
that they wished they had taken it sooner.

Students who have had an introduc-
tion to data processing course Or some
computer experience tend to be more
successful in the logic course. However,
with a 2-year community college curricu-
lum, we don’t have the luxury of postpon-
ing the logic course until the second
semester. If you are teaching in a four-
year school, that would be something to
consider. For students with no data proc-
essing background, it takes about a month
to “catch up” to those students who have
had anintroductory course. Inaclass that
has students both with and without a data
processing background, extra encourage-
ment must be provided to the beginners
so that they don’t get frustrated and quit.

COURSE CONTENT

The course I teach at Oakton Com-
munity College has a practical, business
emphasis. For this reason, it is not in-
tended for the computer science student.
It is geared for the student who will be
either working as a business programmer
or transferring into a four-year informa-
tion systems program after graduation.

Topics include data processing ter-
minology, introduction to program flow-
charting, structured techniques, report
and display headings, control codes and
control breaks, totals, input validation,
interactive input, extract programs, table
processing, sequential file processing,
nonsequential file processing, sorting, and
use of multiple input and output files.
The following describes each of these
topics in greater depth.

Data Processing Terminology.

About half of our students have taken
an introduction to data processing course
prior to enrolling in programming logic.
As a review for those students and an in-
troduction for students with no data proc-
essing background, the first week is spent
on introductory terminology. I discuss
what data processing is, describe what a
computer can and cannot do, discuss the

Page 3

CIS Educator Forum
Volume 1, Number 1

parts of the central processing unit and
their functions, the role of primary and
sccondary storage, and the role of input/
output devices. The data organization
concepts of files, records, fields, and char-
acters, and the differences among alpha-
betic, numeric, and alphanumeric fields
are also covered. In addition, the defini-
tion of a computer program, and the steps
in the programming process are explained
at this time.

Introduction to Program Flowcharting.

Since many students have had some
experience with flowcharts, and students
tend to have an easier time learning a
graphic technique to start with, program
flowcharts are used to introduce pro-
gramming logic. After discussing the
definition, purpose, advantages and dis-
advantages of flowcharting, I cover the
flowchart symbols and basic rules of flow-
chart construction. The approach at the
beginning is unstructured, because stu-
dents find structured concepts to be too
difficult at this point. Introductory topics
include input, output, and work areas in
storage, reading records into storage,
checking for end-of-file, simple looping,
using counters and accumulators, naming
fields in storage, field names vs. literals,
printer spacing charts, the need to clear
output areas, arithmetic, output editing
and the difference between branching
and subroutines.

In order to keep topics at an intro-
ductory level at this point, accumulators
arc only used for final totals, and report
output ignores the need for headings and
page breaks. In addition, opening and
closing files is ignored. In other words,
this introduction only teaches the basic
concepts of input, output, and data ma-
nipulation.
Structured Techni ;

Alter briefly discussing the history,
advantages, and disadvantages of
structured programming, the various
structures are introduced. Techniques
such as flowcharts, pseudocode, HIPO,
hierarchy (structure) charts, decision

tables, and Nassi-Schneiderman charts
arc described. Students are expected to
become familiar with and use hicrarchy
charts, flowcharts, and pseudocode.
Some people feel strongly that only
pseudocode should be taught. Others
feel that only flowcharts should be
taught. My fecling is that in the “real
world”, because organizations have dif-
ferent requirements, students will be
expected to know a variety of tech-
niques. Since it is impossible to master
all of the structured techniques in a
single semester, I have singled out the
more popular ones.

Report and Display Headings.

When introducing flowcharting, the
concepts of opening and closing files are
ignored. This is the time to discuss those
concepts as well as the role of initializa-
tion (housekeeping) and termination (end-
of-job) routines. The various types of
lines (heading, detail, and total) shown on
reports need to be described. Methods
for making the printer skip to the top of a
new page and clearing screens prior to
displaying headings are illustrated. In
addition, the use of alines counter tokeep
track of the number of lines printed or
displayed, the use of a page counter for
page numbers, describing heading lines
as constants within the program, and
various methods used to obtain the cur-
rent date must be covered.

Control Codes and Control Breaks.

These topics are extremely impor-
tant, because they are the basis for the use
of report totals. When discussing codes,
it is important to discuss why codes are
used and why they are usually numeric.
Control breaks that don’t generate totals,
such as breaks that cause a line to be
printed or displayed, a heading to change,
oranew page Lo be started are illustrated.

Totals.

I start with the use of a single total
at the end of a report. At this point,
students should be fairly comfortable with
the use of counters. Single level totals are

presented as a simple extension of count-
ers. Next, single level totals with control
breaks are discussed. Finally, the use of
multiple level totals is explained. The
steps to be followed at any level control
break are listed and explained to make it
casy for a student to learn to accumulate
and print totals.

Two methods are used to prevent
totals from being printed when process-
ing the first input record. The first method
involves updating the control field com-
pare area with the contents of the control
field of the input record as an initializa-
tion function. When processing the first
record and comparing the content of its
control field with the compare area, an
equal comparison results, so no totals are
printed. The second and less desirable
method involves using a first-record indi-
cator. I discourage students from using
first-record indicators because they are
inefficient. When using a first record
indicator, every time a control break occurs,
it is necessary to see if the first record is
being processed. Since the first record is
only processed one time, subsequent checks

are a waste of time.

Input Validation.

This topic begins with a discussion
of the types of errors that occur when
translating and executing computer pro-
grams. This is an opportunity both to
review the difference between translation
and execution errors and to emphasize
the need to test programs. After talking
about what a validation program can do,
the various types of validation are cov-
ered. Itis important to remind students
that they must check for all possible er-
rors on a record, rather than stopping
after the first error is found. Other topics
covered here include the use of indicators
to determine if a particular record or file
has errors, and creating a file containing
only valid records.

Interactive Input.

This topic covers programs which
input data interactively and data valida-
tion of interactive input. When discussing

Page 4

CIS Educator Forum
Volume 1, Number 1

this topic, 1 discuss the difference be-
tween batch and online input and valida-
tion methods.

Extract Programs.

Extract programs are used to se-
lect certain records from afile to create a
new file or report. Since extracts can be
based on one or more criteria, ways to
make the selection process an efficient
one are discussed. Rules are given for
determining the most efficient order for
checking the conditions based on both
AND and OR comparisons. Since my
students are generally not very sophisti-
cated mathematically, I have them memo-
rize the rules without explaining the sta-
tistical theory behind them.

This topic isimportant to the data-
base student in specifying sclection crite-
ria in database searches. It is important
that the student understand that the or-
der of specifying conditions will affect the
efficiency of a search. For a large data-
base, search time may be greatly reduced
by correctly choosing the search order.

I cover the use and creation of
parameter files to specify the selection
criteria. Students should understand that
if the selection criteriaare specificd in the
program, every time the criteria change, a
programmer must make the changes and
the program retranslated. Ifthe selection
criteria are specified in parameter files,
the user can change the criteria without
getting a programmer involved.

Table Processing.

I begin with a discussion of tables
used outside of data processing. I moti-
vate students to learn table processing by
demonstrating how the use of tables will
make a flowchart or pseudocode consid-
erably shorter by reducing the number of
ficld names required. At this point 1
discuss the use of subscripts. Students
have trouble using subscripts which are
ficld names rather than constants. Both
one- and two-dimensional tables are
covered. Table initialization and meth-
ods for sequential and binary search are

both explained. I discuss the use of tables
in both validation and extract programs.
Finally, I cover how tables are handled by
various programming languages.

Sequential File Processing.

This topic starts with an explana-
tion of sequential file organization. Then
the various types of sequential files, such
as master and transaction files, are dis-
cussed. The first type of sequential file
processing covered is merging. In a merging
program, two or more files are combined
into a single file. At this point, we talk
about the need to organize records in the
same sorted sequence on both the master
and transaction files prior to processing.
The second type of scquential file proc-
essing covered is matching, that is, using
information from the master file to proc-
ess the transaction file. Finally, we dis-
cuss sequential file updating and the use
of exception reports to show those trans-
actions in which an update error occurred.

As difficult as programming logic is
to learn, it is also difficult to teach.

Nonsequential File Processing.

Nonsequential processing is intro-
duced to show students that not all proc-
essing is done sequentially (even though
that’s probably what students will be doing
in introductory programming classes). It
isn’t necessary that beginning students
have an in-depth understanding of all
types of nonsequential processing. Since
every language and access method handles
nonscquential processing in a slightly
different way, specifics for doing nonse-
quential processing will have to be learned
when your students learn a particular
programming language.

I begin with background informa-
tion on why nonsequential processing is
desirable. I then go on to explain access
of records using their addresses. Both
random and indexcd file organization and
processing are covered with an emphasis
on indexed. Time permitting, I cover the

various types of database organization as
well.

Sorts.

Students can’t assume that files
are always in the correct sorted order.
This topic discusses several methods of
sorting including embedded (internal)
sorts, utility sorts, and various program-
mer-written sorts. Indexing is introduced
as an alternative to sorting.

Multiple Input and Output Files.

This topic is integrated through-
out the course when discussing topics
such as the creation of both report and
file output in validation programs, spool-
ing when more than one report is created
as output, and use of multiple input files
in file processing.

HINTS FOR TEACHING
PROGRAMMING LOGIC

As difficult as programming logic
is to learn, it is also difficult to teach.
Teaching the logic course requires the
patience to repeat the same explanation
many times in many different ways. It
requires seemingly endless paper grad-
ing. It requires putting together numer-
ous examples and exercises to support the
explanation of concepts. Because I be-
lieve that the best way to learn program-
ming logic is to see many completely
solved examples and that students need
to learn by doing, I have written the book
Data Processing Logic, which is nowin its
second edition, published by McGraw-
Hill Book Company.

Grading, Exams, and Assignments.

Those of us who have programmed
for a number of years find it very difficult
to remember what it was like when we
first started out. Concepts that seem
second nature to a professional are very
difficult for the beginner. Because stu-
dents need alot of feedback and rein-
forcement in programming logic, I give 5
tests during a semester and assign 11-12
logic assignments to be graded. Equal

Page 5

CIS Educator Forum
Volume 1, Number 1

weight is given to assignments and exams.
I also give “pop™ quizzes. Many of the
students who do not succeed in the logic
course do so, not because they don't have
the aptitude, but rather because they are
not keeping up with the course on a daily
basis. By giving “pop” quizzes (which
cannot be made up), I am hoping to
improve student success by encouraging
students to both attend class and keep up
their studying on a regular basis.

I never ask a student to construct a
program’s logic from scratch on a test,
because I find that most students cannot
dothat given the time and other pressures
of an exam. I do, however, include flow-
charts or pseudocode for students to modify
and/or answer questions about. Basi-
cally, I use exams to test terminology and
concepts. All exams are closed book and
give me a good indication of whether a
student is doing his or her own assign-
ments.

When determining final grades, I
allow the student to drop his or her two
lowest assignment grades. I include a mix
of pseudocode and flowcharts on assign-
ments and usually require construction of
hierarchy charts. Two assignments are
usually designated as group assignments.
Students are required to work in groups
of 2-4 students which encourages them to
share ideas and examine alternative solu-
tions as well as simulates working on
projects with other programmers.

Classroom Activities.

I divide class time among lecture,
discussion, small group work, and student
presentations of logic solutions. A sub-
stantial amount of class time is spent
discussing examples presented in the book
and going through exercises at the end of
chapters. Many exercises are assigned to
be discussed in class and are not graded.
Students find that “playing computer”
using sample data to show exactly how the
computer will process the data helps in
understanding examples and exercises.

Several times during the semester,
I divide the students into groups and have

them work on problems during class time.
These exercises are not graded, but serve
to build confidence prior to doing assign-
ments that will be graded. In addition,
they show students that there is more
than one way to solve a problem and
improve the group problem solving skills
which are so important in a business
environment.

‘When reviewing assignment solu-
tions in class, I ask students to present
their solutions and request class mem-
bers to make suggestions and criticisms.
Students learn programming logic by being
asked to “defend” their logic solutions.
These presentations also allow students
to see more than one solution to a prob-
lem and improve oral communication skills.

Two techniques I have found to be
very helpful in teaching are using every-
day (as opposed to data processing) ex-
amples and asking students to manually
solve problems. One of the first activities
I do is ask students to build paper air-
planes. Then I divide them into pairs and
without showing the other person their
airplane, one member of the pair writes
instructions for building the airplane. Based
on the instructions only (that is, they are
not to see the finished airplane or ask
questions of the person who gave them
the instructions), the other person then
builds the airpiane designed by his or her
teammate. This illustrates the impor-
tance of instructions being clear and in
sequence, as well as provides some fun in
class when everyone attempts to fly their
airplanes.

Other beginning activities include
asking students to draw flowcharts for
such things as brushing their teeth (it’s
amazing how many students don’t take
the top off the toothpaste!), backing a car
out of a garage (I have alot of students
who go right through the garage door
without ever opening it!), getting ready
for school or work, preparing for an exam,
giving a guest directions to get to their
house, and so on.

When discussing constants (liter-
als) vs. variables (ficld names), I bring an

empty box to class. | then put various
objects in it. The boxis used to represent
a variable; the objects are used to repre-
sent constants. I then talk about how the
box can contain various objects, but that
the objects never change.

When covering the MOVE or
ASSIGNMENT instruction, I have the
students actually move around the room.
I demonstrate how a single chair (mem-
ory location or variable) can hold only
one student. When I ask a student to
move from one chair to another, we talk
about how the student being moved will
replace the person currently in the chair
he or she is moving to, regardless of
whether the person currently in the chair
is larger or smaller than he or she is. This
illustrates that the content of the sending
field replaces the content of the receiving
field regardless of how many characters
the sending and receiving fields contain.
This analogy falls short, however, in ex-
plaining that the MOVE instruction does
not erase the data in the sending area.
This would require that I make a clone of
the student being moved, so that I can
leave one of him where he started from
and put one of him where he is moved to!

Lillustrate subroutines by sending
someone to my office to do some task. I
then talk about how the student returnsto
the classroom after completing the task,
thus illustrating that a subroutine returns
back to the calling routine. I take this
example one step further by talking about
how the person with whom I share an
office could send a student from the class-
room where he is teaching to our office to
do the same task. His student would
return to his classroom after completing
the task. The above shows that the same
subroutine can be accessed from more
than one place in a program and that the
program will know where to return alter
completing the subroutine.

When introducing structured tech-
niques, students will feel that structuring
complicates rather than simplifies the logic
(it does at the beginning!). Discuss their
feelings at this point. After all, you are
teaching them a new way of looking at

Page 6

CIS Educator Forum
Volume 1, Number 1

things which they probably will object to.

One non-data processing example
I use to illustrate the advantage of divid-
ing tasks into subroutines involves my
family’s annual trip to Colorado to visit
my husband’s family. Since the trip al-
ways takes place during the summer, the
items to be packed for each family mem-
ber are pretty much the same from year to
year. The first time we went, 1 spent a
long time putting together a list for each
family member (a subroutine) of things
to pack. For each subsequent year I am
able to use the old lists with minor modi-
fications. I do not have to recreate the
lists every year. In addition, the lists have
been “tested”, so to speak, so I know
nothing is forgotten. Similarly, after cre-
ating a subroutine, the student will be
able to use the subroutine in subsequent
assignments, because all programs share
many of the same tasks.

To carry the above one step fur-
ther, I discuss how many of the items on
each person’s “packing” list were the same
for all members of the family (c.g. tooth-
brushes, swim suits, underwear, etc.). To
simplify my task [made one master list
containing common items for the whole
family as well as lists for each family
member containing those items that are
unique to that individual (e.g. my son’s
favorite pillow, my daughter’s Barbie dolls,
my husband’s camera, etc.). In effect, I
created a list (subroutine) for each of the
four people in my family and a fifth list
(subroutine) to be used by each of us.
This fifth list can be compared to a com-
mom module or routine because it is
accessed by each of the other lists.

Students seem to struggle with the
concepts of testing for an EOF condition
only following a READ instruction and
the use of an end-of-file indicator. I
illustrate this using the example of calling
directory assistance. When you call di-
rectory assistance in my area, the opera-
tor (or computer) will give you the phone
number once (compare this to checking
for EOF only once). If you record the
number in your personal phone directory
(an indicator), you can check the number

anytime you want.

In the beginning of the course we
read entire records into the computer and
print entire records. We quickly progress
to needing to treat ficlds individually and
naming them. I use the following non-
data processing example to illustrate this.
IfIsent a partyinvitation addressed tothe
SACKS (neighbors of mine), their entire
family of five people would come to the
party. Thisis equivalent to treating all the
fields in the input area (everyone in their
home) as one unit. On the other hand,
suppose the invitation was addressed to
STEVEN SACKS. Only Steven would
come to the party, leaving the rest of the
family at home. This is equivalent to
assigning unique names to ficlds in the
input area and allowing one or more of
the fields to be moved to the output area
and be written.

When introducing housekeeping
and termination functions, compare the
tasks to what you must do when you're
giving a party. Before the party begins,
you must do housckeeping. That is, you
must clean the house, prepare the food,
and so on. After the party is over, you
have to clean up. Ina computer program,
housekeeping refers to the tasks you must
do to prepare for processing. Termina-
tion functions are done after processing
the input.

In covering opening and closing
files, compare the computer task to the
manual task of opening and closing file
cabinets when using a file contained within

the cabinet.

When discussing the need to de-
fine report lines in work areas rather than
in output areas, I use the analogy of the
chair in my family room that everyone
likes to sit in to watch television. The
chair (output area) can only hold one
person at a time (comfortably). If some-
one is sitting in the chair, the only way
another family member can use the chair
is if the first person leaves the chair.
While waiting to use the favorite chair,
family members sit on the sofa (work
area). Similarly in a computer program,

there is only one output area which must
be shared by all the output lines for a
particular report. The work area is used
to hold the lines that are waiting to use the
output area.

When discussing tables, arrange
the chairs in your classroom so that they
are in rows and columns. Have a class
discussion in which students must ad-
dress cach other by their row and column
location rather than by name.

It is important to have your stu-
dents manually solve problems. You will
find that most of your students can manu-
ally solve any example or problem you
give them. The difficulty seems to be in
translating manual solutions into instruc-
tions that the computer can follow.
Throughout the entire course, I stress
and remind students that they can manu-
ally solve the problem that we are provid-
ing a computer solution for. When manu-
ally solving a problem I have students
write down the steps they used. Isome-
times have them trade these solutions
with a classmate to see if the classmate
can solve the problem using the instruc-
tions. This teaches the students tobe very
careful to include all the steps in the
solution.

When discussing programs that
include totals, start with solving problems
manually. Have the students write down
the steps. Then talk about solving the
problem on a computer. Most students
will roll totals when they solve a problem
manually. After all, it takes less effort to
roll the totals than to accumulate them
for each input record. Remind them that
whatever saves time manually will also
save time when programming and when
the program is executing.

In the discussion of sequential file
processing, have each student create a
master file and a transaction file on index
cards. Have students process the files
using the rule that once a record is re!d
from a file, previous records on that file
are no longer available. Using manual
processing, students will be able to under-
stand the need for sorting files prior to

Page 7

CIS Educator Forum
Volume 1, Number 1

sequential processing and the logic in-
volved in sequential matching, merging,
and updating.

When sorting, have students physi-
cally sort items using the various algo-
rithms.

SUMMARY
The difficult part about learning

to program is learning programming logic.
Logic must be taught either as part of a

programming language or as a separate
course. Even students who already have
programming language skills need to be
taught to solve data processing problems
in a structured manner.

I have taught programming lan-
guage courses both when programming
logic is a prerequisite and when it is not.
When students have been exposed to
programming logic prior to being taught
a language, the success rate in the lan-
guage course is greater, and considerably

more material can be covered in a semes-
ter.

If you are presently thinking about
developing a programming logic course, I
hope you will find the material presented
in this paper helpful. If you are currently
teaching a programming logic course, the
teaching suggestions described above will
assist you in improving your students’
understanding.

AUTHOR’S BIOGRAPHY

Laura Saret is Associate Professor of Data Processing and Coordinator of
Faculty Development at Oakton Community College. She has an MBA from
the University of Chicago with an area of concentration in information systems.
Her undergraduate degree is in mathematics and mathematics education.

She has authored a textbook entitled, Data Processing Logic, published by
McGraw-Hill (1987) and coauthored two textbooks with Peter Dublin: Using
Software Tools (Word Perfect, VP Planner/LOTUS and dBASE III Plus) and
Using Software Tools (Word Star, VP Planner/LOTUS and dBASE III Plus),

published by McGraw- Hill (1988).

Prior to teaching at Oakton College, Laura was a programmer, systems
analyst and operations research analyst at a pharmaceutical company.

Page 8

ISCCID EpsiG

Serving Information Systems Educators

Information Systems & Computing
Academic Professionals v

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©1988 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

