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Abstract: There is an increasing need globally to establish relationships among flow, ecology, and
livelihoods to make informed decisions about environmental flows. This paper aimed to establish
the ecological foundation for a holistic environmental flow assessment method in the Gumara River
that flows into Lake Tana in Ethiopia and the Blue Nile River. First, the ecological conditions (fish,
macro-invertebrate, riparian vegetation, and physicochemical) of the river system were character-
ized, followed by determining the hydrological condition and finally linking the ecological and
hydrological components. The ecological data were collected at 30 sites along the Gumara River on
March 2016 and 2020. River hydrology was estimated using the SWAT model and showed that the
low flow decreased over time. Both physico-chemical and macroinvertebrate scores showed that
water quality was moderate in most locations. The highest fish diversity index was in the lower
reach at Wanzaye. Macroinvertebrate diversity was observed to decrease downstream. Both the fish
and macroinvertebrate diversity indices were less than the expected maximum, being 3.29 and 4.5,
respectively. The normalized difference vegetation index (NDVI) for 30 m and 60 m buffer distances
from the river decreased during the dry season (March–May). Hence, flow conditions, water qual-
ity, and land-use change substantially influenced the abundance and diversity of fish, vegetation,
and macroinvertebrate species. The pressure on the ecology is expected to increase because the
construction of the proposed dam is expected to alter the flow regime. Thus, as demand for human
water consumption grows, measures are needed, including quantification of environmental flow
requirements and regulating river water uses to conserve the ecological status of the Gumara River
and Lake Tana sub-basin.

Keywords: ecological indicators; fish; macroinvertebrates; Gumara river; lake Tana; normalized dif-
ference vegetation index; non-metric multi-dimensional scaling; soil and water assessment tool; wet-
land
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1. Introduction

Knowledge about environmental flows is essential in conserving vigorous, prolific,
and resilient aquatic ecosystems that benefit flora, fauna, and human beings [1]. For
determining environmental flows in rivers, there is a need to establish relationships among
flow, ecology, and livelihoods. The concept of environmental flows is broad and includes
the quantity, quality, and timing of freshwater flows in rivers and levels necessary to sustain
aquatic ecosystems supporting human cultures, economies, sustainable livelihoods, and
well-being [2].

The knowledge and skill of establishing relationships between ecological processes
and hydrological characteristics in rivers and floodplains are important in estimating
environmental water requirements of water bodies to maintain ecological health impact-
ing human livelihoods [3]. For example, relationships between ecological responses to
flow alterations in regulated rivers in the Upper Tennessee River Basin were developed
by McManamay et al. [4]. In addition, McClain et al. [5] inferred flow–ecology relation-
ships by examining the ecology and annual flow regime of the Mara river in Kenya and
Tanzania. Other studies on environmental flow assessment in Africa include the Great
Ruaha River basin environmental flow assessment in Tanzania [6], application of the Down-
stream Response to Imposed Flow Transformations (DRIFT) in Lesotho rivers [7], and the
PROBFLO approach, as applied to the Senqu River catchment in Lesotho and the Mara
River catchment in Kenya and Tanzania [8].

The fauna and flora of rivers and wetlands in the Ethiopian highlands were highly
diverse in the 1930s, as shown in a study by Cheesman in the Lake Tana sub-basin [9]. Some
of this diversity still exists. For example, 15 unique cyprinid family migratory fishes in
the genus Labeobarbus were found in the Gumara River [10]. In addition, twelve globally
threatened waterfowl species were present in the Welala and Shesher wetlands [11]. Finally,
the Shesher and Welala wetlands have been named a Biosphere reserve area hot spot [12].

The degrading quality of lake Tana affected aquatic macroinvertebrates where Oligochaeta
were negatively correlated with phosphate and positively with oxygen [13]. Increasing
turbidity has increased Hirudinea and decreased Coleoptera and Bivalvia. In the central
highlands of Ethiopia, macroinvertebrate compositions were related to Average Score Per
Taxon (ASPT) values, water quality, and percentage of urban area [14].

Lake Tana has been targeted for rapid development by the Ethiopian Federal govern-
ment. Projects are funded to divert river water and construct dams on the major rivers
and drain wetlands [13,15,16]. As a consequence, livelihoods dependent on ecosystem
services are endangered [15,17]. Moreover, the abstraction of water and degradation of
fish spawning and nursery habitats are poorly understood [18,19]. Therefore, establishing
environmental flow requirements is essential to protect downstream aquatic ecosystems
and maintain a broad spectrum of environmental ecosystem services.

Reliable hydrological, ecological, and related monitoring data in the Lake Tana basin
are lacking to effectively investigate trends, relationships, and outline mitigation measures
effectively. Therefore, this research aims to establish the ecological status information to
develop a holistic environmental flow assessment method for the tropical highland rivers.
The specific objectives are to (1) characterize the ecological condition (fish, macroinverte-
brate, riparian vegetation, and physicochemical) across the reaches, (2) characterize the
hydrological condition of the area, and (3) assess flow condition, ecology, and livelihood
relationships that are dependent on ecosystem services. The Gumara River in the Lake
Tana basin was selected for this study. The results of this study can be applied to other
rivers in the Ethiopian highlands and similar ecosystems worldwide.

2. Methodology
2.1. Description of the Study Area

The Gumara River drains a basin of 1376 km2. The river starts at the 4000 m.a.s.l.
in the Guna mountains covered by afro-alpine vegetation and ends in Lake Tana. Two
permanent wetlands, Walala and Shesher, cover about 8 km2 altogether [17], and many
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seasonal wetlands are found along the river (Figure 1). These wetlands are encroached
by cultivation. Sixty-seven percent of the basin is cultivated agricultural land. The afro-
alpine grass and giant lobelia have shrunken to only 3.7%, and dense natural forest covers
2.4% [17]. The average annual precipitation is 1326 mm. Eighty percent of the rain falls
from the end of May to the middle of September.
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Figure 1. Location and sampling sites in the three reaches of Gumara River. (a) Ethiopia, (b) Lake Tana sub-basin, (c) Gumara
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wetlands (Welala and Shesher), and the Lake [16]. The numbers indicate the different sampling sites and are described in
the Supplemental Materials (Table S1).

2.2. Sampling Sites of the Study Area

The Gumara River basin was divided into three reaches: the upper (headwater), mid-
dle, and lower (Figure 1). The classification is based on landform, land use, and ecological
indicators consisting of fish, vegetation, and macroinvertebrates. Thirty sampling sites
were selected: 9 in the upper reach, 9 in the middle reach, and 12 in the lower reach,
including 5 in the wetland areas and river mouths. River order classification was based on
Shreve [20]. Sampling points were selected by the “Create Random Selection” sampling
tool in Hawth’s tools in ArcGIS (Figure 1 and Table S1).

2.3. Data Collection and Processing

Flow data: Flow data for all the sampling sites were generated using the SWAT model
(version 2012.10.4.21). Calibration, validation, and uncertainties were obtained using
SWAT-CUP version 5.2.1.1 for the entire Gumara catchment considering the observed
flow data of the lower gaging station—No. 111006, sampling site LR05 (Figure 1) [16].
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Temperature (ERA5) and rainfall (CHIRPS) were collected from the KNMI climate explorer
website as input in SWAT, which were validated using observed data (1994 to 2009) of the
Debretabor station (Supplemental Materials in Excel). We used the land use land cover
data of 2019 generated using the Google earth engine with the random forest classification
algorithm (see Supplemental Materials for details, Section S2), soil data from MoWIE [21],
and 30 m DEM SRTM data from USGS. The observed flow data from 1985 to 2010 were
used for sensitivity and calibration analysis, while the data from 2011 to 2018 were used
for validation. Flow Duration Curves (FDC) were determined using IHA software [22].
Environmental flow components were classified as moderate/high flows (exceedance
probability < 80%), low flows (80–99%), and extremely low flows (>99%) [18]. Historically,
March had the lowest discharge [16]. Ecological data were collected in March 2016 and
2020. According to the information in Abebe et al. [16], the pump irrigation of 15.5 km2

area (3.0 m3 s−1) above the bridge site (LR05) was deducted for the modelled flows of
March since 1997 to account for flow alterations and checked with the observed March
flow at station LR05.

Macroinvertebrate data: Macroinvertebrates were sampled following the multi-habitat
sampling approach [23]. A D-frame net with a mesh size of 500 µm was used for the
sampling. Pooled macro-invertebrate samples were identified to the lowest possible taxa
(family in this case) using identification keys with the help of a dissecting microscope [24].
The ecological status of the Gumara river was evaluated using the macroinvertebrate-based
ETHBios scoring methodology developed by Aschalew and Moog [14] and supplemented
using the South African Sensitivity Score (SASS) and Average BMWP Score Per Taxon
(ASPT) methods [5]. Moreover, the abundance, evenness, and Shannon Weiner diversity
index were calculated to assess species diversity. The formula for the Shannon diversity
index is:

Shannon Index (H) = −∑s
i=1 Pi lnPi, (1)

where Pi is the proportion of individuals in the ith species, and s is the number of individu-
als on the site.

Water physico-chemical data: All 30 sites were sampled for physico-chemical param-
eters. In situ measurement of dissolved oxygen (DO) and temperature was done using a
HORIBA multi-meter. Total phosphorus (TP), NO3-N, PO4-P, TN, and NH4-N were mea-
sured following standard methodologies [25] at the Bureau of Water, Irrigation, and Electric
(BoWIE) laboratory. XLstat 2019 was used to create box plots and tabulate means across
reaches. Water quality status classification was done by physico-chemical characteristics
based on chemical water quality requirements of the fishery [26–28]. The oxygen saturation
percentage, ammonia nitrogen, and phosphate phosphorus rating were used to interpret
the ecosystem health status of the Gumara River.

Fish data: Eleven sites were selected for fish sampling based on prior fishing practices
and expected potential (Figure 1). A cast net with a mesh size of 8 cm with 25 m perimeter
and 7.5 m length was used for the fishing. A trial of 25 times was applied in each 100 m
stretch. In addition, smaller fishes or fingerlings caught during macroinvertebrate sam-
pling with a D-frame net in unselected sites were also considered and identified. In situ
identification of fish was conducted with an experienced technician from the Bahir Dar
fishery research center using identification keys [29,30]. Fish abundance and the Shannon
diversity index (H′) were used to estimate the diversity of fish.

Land use and land cover data: Ground truth information was collected for 7 major
cover types in the Gumara basin including floodplain wetlands during the dry season in
2019. In general, a total of 2598 signatures (260 on wetland cover, 363 on vegetation (natural
and plantation forest land), 909 on cultivated lands, 110 on grass land, 791 on towns and
farm villages, and 165 on water bodies) were collected. Water bodies and towns were
selected directly on the image displayed on the google earth engine platform. Land use and
land cover between 1986 and 2020 were classified in the Google Earth engine. The random
forest classification technique, which is preferable for multi-class classification [31], was
used to identify land use and land cover types based on the ground truth dataset. Riparian
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vegetation changes were also investigated using the Normalized Difference Vegetation
Index (NDVI) of different years of the study area. Based on field observation and key
informant knowledge of the historical flooding extent of the river, NDVI changes at 30, 60,
and 90 m in the river buffer were chosen as indicative of riparian vegetation.

Livelihoods dependent on ecosystem services: Direct observation, a survey of 40 house-
hold heads, and key informant interviews were conducted. A structured interview ques-
tionnaire was prepared to collect information on ecosystem-services-dependent livelihoods.
During the direct observation, key informants were used to record local names of indige-
nous vegetation. The data generated from household interviews and key informants were
used to identify livelihoods dependent on ecosystem services. In addition, tree species and
medicinal plants were identified.

2.4. Data Analysis

Potential shifts in macroinvertebrate community composition among reaches and the
relationship among ecological metrics and flow were examined using nonmetric multidi-
mensional scaling (NMDS) with the Bray-Curtis distance to obtain the dissimilarity matrix
from the matrix of macroinvertebrate family abundance [18]. NMDS was carried out using
the VEGAN package in RStudio software (version 4.0.1) to find the differences across the
reaches. A two-way ANOVA test, PERMANOVA, in R using the Adonis package was also
carried out. Finally, the most sensitive taxa, Ephemeroptera, Plecoptera, and Trichoptera
(EPT) were used to relate abundance vis a vis the water quality, hydromorphology, and
flow rate in March 2016 (data extracted from Gezie [32]) and March 2020.

Establish relationships: Graphs in Excel and non-metric multi-dimensional scaling
in R were used to find the relationships of the cause and response. The flow condition,
hydromorphology and water quality were considered as causes. Ecological conditions
of vegetation, macroinvertebrates, and fish indicator metrics were selected as responses.
A conceptual framework was constructed based on cause-response relationships of flow
alterations to aquatic and riparian ecology; then, to livelihoods dependent on ecosystem
services identified in the Gumara river basin.

3. Results and Discussion
3.1. Monthly Flow and Flow Duration Curves

To understand flow alteration and consequent impacts on ecological conditions, the
natural river discharge was estimated and the flow duration curve developed using the
SWAT model. The model showed a calibration performance of R2 0.69 and NSE 0.54
and validation performance of R2 0.71 and NSE 0.64, which is rated as “satisfactory”
performance according to Moriasi [33]. The historical flow of the month of March between
1985 and 2020 was analyzed where the ecological data were sampled. The monthly flow
of March showed a decreasing trend, where there is an abrupt decrease after 1998. The
modelled flow at the Gumara mouth (LR09) decreased at a rate of 0.09 m3 s−1 with R2

0.50, the modelled flow at Gava (LR12) decreased at a rate of 0.09 m3 s−1 with R2 0.53, and
the simulated flow at the Bridge (LR05) decreased at a rate of 0.08 m3 s−1 with R2 0.59
(Figure 2).

Flow duration curves for sampling sites in the lower, middle, and upper reaches
showed that most of the lower-order sites in all reaches have little or no flow above 80%
exceedance probability in March during all years (Figure 3). In March 2016, when the first
sampling was performed, flow in 93% of the reaches was extremely low when compared to
the 80% exceedance probability flow (Q80), whereas in 2020, all sites were at moderate/high
flow conditions compared to Q80. Hence, the two sampling periods were in a bad/dry year
in 2016 and good/wet year in 2020 in terms of the flow inter-annual behavior (Table S3).
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reach, Menekuzer site (MR02) and Sensawuha site (UR06) in the upper reach; (b) lower river orders of Guanta lower site
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3.2. Ecosystem Health Status
3.2.1. Water Quality-Based Ecosystem Health Status

The dissolved oxygen (DO) concentrations showed a downward trend from upstream
to downstream (Table 1 and Table S4). DO was very high in almost all sites, indicating lower
water quality because of higher water temperature and abundant macrophytes (producing
oxygen). Ammonium-nitrogen was high in the lower reach and phosphate-phosphorus
was high in the upper reach, with mean values of 0.35 mg/L and 0.65 mg/L, respectively
(Table 1 and Table S4). Water quality evaluation based on the combined effect of DO, PO4-P,
and NH4-N classified most of the sites in Gumara River in moderate water quality status
with doubtful pollution status (Figure 4 and Table S5).
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Table 1. Water quality indices across reaches in the Gumara River. LR—lower reach, MR—middle
reach, UR—upper reach.

Reach NH4-N PO4-P DO_sat%

LR
Mean 0.35 0.38 147

Std. Error of Mean 0.15 0.11 11

MR
Mean 0.22 0.13 150

Std. Error of Mean 0.06 0.04 7

UR
Mean 0.24 0.65 212

Std. Error of Mean 0.03 0.34 21

Total
Mean 0.28 0.38 168

Std. Error of Mean 0.06 0.12 9
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Figure 4. Water quality status in Gumara river in March 2020 based on chemical water quality requirements of fishery [26–28]
and macroinvertebrate ETHBios, SASS, and BMWP scoring.

3.2.2. Macroinvertebrate-Based Ecosystem Health Status

Analysis of ecosystem health based on ETHBios macro-invertebrate scoring revealed
that most of the middle and lower reaches were in a moderate water quality state with
significant ecological disturbance, whereas the upper reach was of good water quality with
slight ecological degradation (mean score of 5.6) during March 2020 (Table S7). Three sites,
LR00, LR01, and LR07, in the lower reach were in a poor water quality state including the
Shesher wetland with average ETHBios scores of 3.7, 3.7, and 3.0, respectively. Most of the
sites in the upper reach were in a moderate to high water quality state, ranging from 4.1 at
UR08 (Shimagle Giorgis) to 7 at UR07 (Kosterwuha). Water quality was compromised in
all the reaches because the site is either close to the road, there was cattle interference (cow
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dung), it is downstream of towns with poor sanitation and vegetation cover (e.g., Woreta
town, LR08) and/or close to clothes-washing sites (Figure 4 and Table S5).

3.3. Macroinvertebrate and Fish Abundance and Biodiversity

Macroinvertebrate abundance and biodiversity: A total of 2643 individual aquatic
macroinvertebrates belonging to 43 families and 13 orders were sampled and identified
from 30 sampling sites during the study period (Table S4 and Figures S1–S3). The highest
abundance was observed in the upper reach and lowest in the lower reach with mean
values of 107 and 68, respectively (Figure 5a). Similarly, the diversity index was a bit
higher in the upper reach and lower in the middle reach, with values of 1.6, 1.5, and 1.5,
respectively. Diversity values ranged from a minimum of 0.77 at Shesher 01 wetland to a
maximum of 2.1 at Gava. By comparison, the maximum diversity index for the Lake Tana is
2.64 (Figure S4). Generally, the index varies between 1.5 and 3.5 and rarely exceeds 4.5 [34],
where the Gumara showed lesser diversity indicating riparian ecosystem degradation.
The evenness was almost equal across the reaches with 0.8 value for the lower and upper
reaches and 0.7 for the middle reach, which showed a similar population size in all the
sites (Figure 5c).
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Figure 5. Macroinvertebrate abundance (a), diversity (b), evenness (c), and fish diversity (d) across the three reaches of the
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Fish abundance and biodiversity: Nine fish species from five genera within three
families were found (Figures S5 and S6). Fish diversity in the lower reach was found to
be higher, the middle reach moderate, and the upper lowest, with 0.5, 0.4, and 0 mean
values, respectively (Figure 5d). The highest fish diversity index (1.58) was recorded at
Wanzaye LR10 (Table S8), which covered 48% of the maximum diversity index (3.29) for
27 fish species available in the Lake Tana sub-basin. The upper reach sites had no or only
one species, such as the smaller barbs of L. Pleurogramma, L. humilis, and Garra, which are
prey for larger barbs (Table S8). The fish diversity was lower or decreasing as a whole as
compared to previous years’ studies [19,35,36]. Shesher wetland, the largest wetland in the
flood plain, was found to be nil in fish catches. This was mainly attributed to drainage and
extensive agricultural encroachment. A similar study on Lake Tana wetlands revealed the
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same result, especially in Shesher wetland, having higher human disturbance as compared
to other wetlands [17] and internationally [37].

3.4. Vegetation Change

The normalized difference vegetation index for the dry season (March to May) de-
picted an overall decrease between 1985–2020 for a buffer distance of 30 m and 60 m
from the river, but not 90 m (Figure 6). The decline in NDVI values close to zero for
the 30 m and 60 m buffer distance showed degradation of riparian vegetation and its
transformation to bare land and degraded grassland. Riparian vegetation is crucial for
fish because it influences light, water temperature, shelter, and availability of food for
macroinvertebrates [38–40]. Thus, it can be deduced that the decline in riparian vegetation
in the Gumara basin has led to the decline of macroinvertebrate and fish diversity. This is
confirmed by recent studies in the Lake Tana sub-basin [13,15,41], whereas increasing the
90 m buffer distance of NDVI showed an increase in eucalyptus plantations in the Gumara
watershed, especially in recent years [16]. Because of its biological behavior, eucalyptus
consumes a lot of water per annum and causes higher groundwater suction during the
dry season, tending to decrease the baseflow in the river apart from water pumping for
irrigation in the lower reaches [42–46]. Hence, it showed that there is a delay in a high
flow pulse during the rainy season until the saturation zones get filled upstream where
the major fish migration period occurred from Lake Tana to floodplain wetlands [16]. This
severely impairs reproduction and growth of juveniles of the unique Labeobarbus species
inhabiting Lake Tana [15,16,37].
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3.5. Ecosystem-Services-Dependent Livelihoods

The Gumara River and associated wetlands of Lake Tana render several ecosystem
services for the riparian communities, as well as for the region as a whole. Household
interview results indicate that the key ecosystem services include drinking water for hu-
mans and livestock, forage for livestock, fishing, papyrus cutting for household utensils,
souvenir- and canoe-making, fuel wood, medicinal plants, beekeeping, water for irrigation,
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water for nurseries, tourism like bird- and hippo-watching, clothes-washing, and swim-
ming, sand mining, hot springs for holy-water medication, and research and education. In
this study, fish and vegetation were chosen as endpoints for our livelihood and ecological
study, where fish are a source of food and income and vegetation are a source of fuelwood
and medicinal plants (Tables S9 and S10).

3.5.1. Riparian Indigenous Tree Species

Based on direct field observation and household surveys of the local community,
we found 39 large tree species along the Gumara river, of which three are exotic, that
is, Eucalyptus camaldulensis, and E. globulus, and Acacia decurrens (Table S9). Four of the
tree species are unknown in the literature for their scientific names. The natural forest
inventoried in this survey are remnants, but the exotic tree species are being expanded
through planting by the government’s agricultural/forestry extension system. As informed
from the household survey, these tree species are used by the local community for fuelwood,
construction, furniture, and ploughing tools. Hence, the riparian vegetation cover is taken
as one objective for ecosystem-services-dependent livelihoods.

3.5.2. Riparian Herbaceous Medicinal Plants

Twenty-five medicinal (herbaceous/grass/sedge) plants were identified in the Gu-
mara riparian area and associated wetlands (Tables S7 and S8). These plants are being
used for medication of both humans and animals. These medicinal plants are disappearing,
and can be found in fewer places nowadays, as informed by the interviewed riparian
community. This is in line with previous studies in the Gumara-connected wetlands [17].
The degradation is potentially due to less flooding and drying out of the river during the
rainy season and dry season, respectively [16].

3.6. Relationships of Fish Abundance with Water Quality, Hydromorphology, and Flow

The Wanzaye site had the highest catches (26), followed by Ras amba (16), Sensawuha (13),
Chan and Woreta town (10 each), Fuafuat (9), Gava (8), and GenaMechawecha (7) (Figure 7).
In the present investigation, higher fish catches were identified at higher flow rates and
less disturbance or better water quality. However, some sites (i.e., Sensawuha, Chan, and
Gena-Mechawecha) have shown higher catches at low flow, which could be attributed to
possessing a larger pool and receiving little human and livestock disturbances (Figure 7,
Table S2 and Figure S8). Catfish (Clarias gariepinus) catch at the Woreta town site was high,
relative to other species. This is attributed to the site’s poor water quality (Figure S8) and
the higher tolerance of catfish to poor water quality [47].
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3.7. Distribution and Relationships of Macroinvertebrates Abundance with Flow, Water Quality,
and Hydromorphology

The similarities test in macroinvertebrate abundance within a major reach was more
similar and showed significant differences across the major reaches with stress values of a
Bray Curtis distance of 0.199 (alpha 0.01, p = 0.003) (Figure 8).

Water 2021, 13, x FOR PEER REVIEW 12 of 18 
 

 

 
Figure 8. Macroinvertebrate abundance across reaches and flow extent in March 2020. 

This shows a reasonable and good representation indicating that reaches have a sim-
ilar habitat, flow rate extent/depth, riparian vegetation, and pollution status determining 
the abundance and diversity of macroinvertebrates. Overlaps between some of the middle 
and lower reaches showed that the river order has its own influence on the relative abun-
dance of macroinvertebrates across reaches; that is, source and first-order reach sampling 
sites are closer to each other, indicating similarities in abundance (Figure 8).  

Relationships of EPT with water quality, hydromorphology, and flow: Abundance 
of the most sensitive macroinvertebrates, Ephemeroptera, Plecoptera, and Trichoptera 
(EPT) taxa was related to water quantity and quality. Their abundance increased with 
lower order, a moderate to low flow rate, and moderate to good water quality (Figure 9). 
The head waters and some lower reaches (such as Wanzaye (LR10), Bridge (LR05), and 
Guanta upper (LR04)) showed higher abundance and diversity of EPT, while the other 
sites in the lower reach with higher order (like Gava and Gumara mouth) showed lower 
abundance. Studies abroad showed similar outcomes in relating macroinvertebrate abun-
dance with flow, water quality, and hydro-morphology, where there are inter-relation-
ships [48]. This result is similar to fish abundance, for example, at Wanzaye, which might 
be explained in terms of the food web. Most of the larger Labeobarbus and C. gariepinus are 
predators of aquatic macroinvertebrates either in larval or adult stages [49]. A similar 
trend was reported in 2016 that EPT diversity decreased as flows increased or river order 
increased (Figure 9), which could be linked to water quality and hydro-morphological 
degradation in the three sites downstream [32]. Concomitantly, as mentioned in Section 
3.1, the year 2020 was a wetter year than 2016. The abundance in EPT was higher in 2016, 
implying that EPT decreased as flow levels increased (Figure 9).  

Figure 8. Macroinvertebrate abundance across reaches and flow extent in March 2020.

This shows a reasonable and good representation indicating that reaches have a similar
habitat, flow rate extent/depth, riparian vegetation, and pollution status determining the
abundance and diversity of macroinvertebrates. Overlaps between some of the middle and
lower reaches showed that the river order has its own influence on the relative abundance
of macroinvertebrates across reaches; that is, source and first-order reach sampling sites
are closer to each other, indicating similarities in abundance (Figure 8).

Relationships of EPT with water quality, hydromorphology, and flow: Abundance
of the most sensitive macroinvertebrates, Ephemeroptera, Plecoptera, and Trichoptera (EPT)
taxa was related to water quantity and quality. Their abundance increased with lower
order, a moderate to low flow rate, and moderate to good water quality (Figure 9). The
head waters and some lower reaches (such as Wanzaye (LR10), Bridge (LR05), and Guanta
upper (LR04)) showed higher abundance and diversity of EPT, while the other sites in the
lower reach with higher order (like Gava and Gumara mouth) showed lower abundance.
Studies abroad showed similar outcomes in relating macroinvertebrate abundance with
flow, water quality, and hydro-morphology, where there are inter-relationships [48]. This
result is similar to fish abundance, for example, at Wanzaye, which might be explained
in terms of the food web. Most of the larger Labeobarbus and C. gariepinus are predators
of aquatic macroinvertebrates either in larval or adult stages [49]. A similar trend was
reported in 2016 that EPT diversity decreased as flows increased or river order increased
(Figure 9), which could be linked to water quality and hydro-morphological degradation
in the three sites downstream [32]. Concomitantly, as mentioned in Section 3.1, the year
2020 was a wetter year than 2016. The abundance in EPT was higher in 2016, implying that
EPT decreased as flow levels increased (Figure 9).
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Figure 9. Ephemeroptera, Plecoptera, and Trichoptera (EPT) and flow of different river orders in the lower reach of Gumara
in March 2016 and March 2020. LR—lower reach, MR—middle reach, and UR—upper reach.

Hydromorphic: Hydromorphic differences among sites showed differences in EPT
abundance. Most of the sites with a higher proportion of riffles and lotic segments with
better water quality showed higher abundance. Lotic and riffles with low flow and less
water quality status showed no or less abundance. Pools, which are not sensitive to
flow extent and water quality status, showed less abundance (Figure S8), in line with
Worrall [50].

3.8. Relationship of Riparian Vegetation and Flow Change

Land cover, grass/sedge, and woodland of the 30 m buffer distance were extracted
from the results of Section 3.5.1 to show the condition of the riparian vegetation with the
historical annual flow of Gumara River. The result showed that there is a decrease in
grass/sedge and woodland and a slight increase in vegetation cover in line with a historical
decrease in flow. Change in annual flow is positively correlated with the change in riparian
vegetation, grass/sedge, and woodland cover; Pearson correlation r = 0.21, r = 0.20, and
r = 0.11, respectively (Figure 10a). The weak relation can be attributed to other factors,
like anthropogenic effects. The decrease in grass and sedge is related to the decrease in
flow, especially during the dry season, which informed the deterioration of the herbaceous
medicinal plants along the Gumara river. The decrease in woodland depicts the denudation
of natural riparian forest in the Gumara River, and the recent—after 2011—increase in
vegetation cover is attributed to the eucalyptus plantation along water courses. Recent
research findings indicated that eucalyptus has a hydrologic alteration impact [42,45,46].
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Figure 10. Flow versus vegetation change relationships in the Gumara River; (a) flow of Gumara river and riparian
vegetation cover between 1985 to 2018, and (b) flow of Gumara river and NDVI of 30 m buffer distance from the river
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NDVI of a 30 m buffer distance from the Gumara River resulted in a Pearson corre-
lation of 0.54 with flow at the bridge. It showed that the decrease in riparian vegetation
cover of the Gumara River is in line with flow decrease (Figure 10b).

3.9. Conceptual Framework of Flow–Ecology–Livelihood Linkages

Based on this study and Abebe et al. [16], the low flows and large floods have de-
creased, and floods occur later in the season in the Gumara River. It directly affects the
ecosystems and related human livelihoods dependent on ecosystem services.

Because of the decrease in low flows and the resulting increase in zero-flow days,
the resident fish species in the river are threatened. Historically, fish used the pools
along the river to survive in the dry season. However, these pools have dried up due to
pump irrigation. Additionally, the delay in floods by about 30 days [16], which delays the
migration of Clarias gariepinus (Catfish) and the Labeobarbus species to the Shesher and
Welala flood plain wetlands for spawning. Finally, submerged and emerged herbaceous
plants and grasses in the Gumara river are disappearing, and water supply for livestock
and humans is becoming problematic.

The decrease in large floods makes it easier for the local population to cut the large
riparian trees, such as Ficus vasta species for fuelwood and farm tools, and causes the trees
to disappear. Sand mining has also become more prominent, significantly affecting the
ecology of the Gumara River.

Generally, the relationship between flow alteration, the main ecological components,
and related human livelihoods helps to understand the impacts of anthropogenic inter-
ference on aquatic and riverine ecology. Hence, a flow–ecology–livelihoods conceptual
relationship was developed (Table 2) that can help in establishing a quantified relationship
by building sufficient historical and spatial data in the river–wetland–lake system to inform
science and policy.

Table 2. Conceptual framework for flow–ecology–livelihood linkages * in the Gumara River and connected wetlands of the
Lake Tana sub-basin. This is based on the findings of this study and Abebe et al. [16].

Flow Alterations Impacts on Aquatic and Riparian Ecosystem Impacts on Livelihoods Dependent on
Ecosystem Services

Decreased quantity of low flow
Decreased quantity of large flood
Increased zero-flow days
Delayed timing of high flow pulse

Decreased river and wetland habitat for fish
Delayed in fish spawning migration
Decreased feed for fish in rivers and wetlands
Decreased water available in rivers
and wetlands
Decrease in riparian and instream
vegetation cover

Decrease in fishery production
Lack of water for drinking
Deterioration of human health
Lack of water for agriculture
Lack of forage for livestock feed
Impact on ecotourism
Deterioration of hot-springs for
traditional medication
Disappearance of medicinal plants

quality of the river and connected wetlands
Change in morphology of the river

decreased aquatic habitat for fish and
macroinvertebrates
Decreased abundance and diversity of fish
Decreased abundance and diversity of aquatic
macroinvertebrates
Decreased vegetation

Lack of feed for fish for fishery production
Decrease in the population of fish for food and
marketing
Lack of habitat for riparian birds and wildlife
Impact on ecotourism
Lack of fuel wood

Decreased groundwater storage
Decreased dry season river flow quantity
and quality
Deterioration of water quality

Changed land use /cover
Decreased riparian and instream
vegetation diversity
Decreased abundance and diversity of
macroinvertebrates

Lack of feed for livestock
Lack of feed for fish
Deterioration/extinction of medicinal plants
Lack of fuel wood
Impact on apiary
Lack of water supply

* Note: Blue text represents alterations/impacts because of activities of water pumping for irrigation. Purple text represents the alter-
ations/impacts because of the activities of agriculture, sand-mining, and in situ clothes-washing. Green text represents the impacts because
of the activities of over-grazing, grass/papyrus harvest, tree cutting, and eucalyptus plantation. Besides, the table depicts that the first
column issues are impacting the second column with the same text color, and then the second column issues are impacting the third
column’s issues. One row in the first column has a relation with one or more rows of the same color in the second column.
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4. Conclusions and Management Recommendation

The Gumara River and Lake Tana sub-basin are composed of important biological
communities and freshwater ecosystems, which have conservation value and uniqueness.
The people in the Gumara watershed are dependent on these resources for food and income
sources, traditional medicines, evergreen trees as habitat for birds and wildlife, fuelwood,
lumber sources, agriculture, and roosting sites for migratory birds from Europe and hot
springs for recreation and holy water.

The dependency on the riparian resources is changing over time because of anthro-
pogenic pressures. The Gumara River has experienced hydrological alteration for the last
20 years because of unregulated pump irrigation and unwise catchment management,
including planting eucalyptus trees close to water sources. In addition, the water qual-
ity of the river has become seriously degraded with increased phosphorus and nitrogen
concentrations. Anthropogenic sources are responsible for water quality deterioration,
especially wastes from towns and the runoff of fertilizers from agricultural lands. As a
result, fish diversity (including spawning grounds) and riparian vegetation cover have
decreased considerably over the last 35 years. Hence, fishing has declined, people tend to
use commercial medicines to a higher extent than using medicinal plants, and spend long
hours collecting drinking water during the dry monsoon season.

The anthropogenic pressures are expected to continue, increasing in years to come.
New dams are proposed in all major rivers of Lake Tana which will alter the flow signifi-
cantly. As human water abstractions grow, measures are needed, including quantification
of environmental flow requirements and regulating and managing river, wetland, and lake
water use in order to conserve the precious resources in the Gumara River and Lake Tana
sub-basin as a whole.
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