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Abstract  

To mitigate climate change, greenhouse gas emissions from the agricultural sector need to decrease. 

In this light, increasing agronomic use efficiency of nitrogen (N) application (i.e., additional grain yield 

per kg of N applied) is a promising avenue to attain similar yields with less inputs in regions such as 

Europe (with high N inputs). In contrast, on the African continent, N inputs need to increase to raise 

yields, which may contribute to improved food security and prevent land use change. In such case, 

increasing agronomic N use efficiency (N-AE) and simultaneously increasing N inputs can also be a 

mitigation strategy by decreasing losses to the environment and improving profitability. In both 

contexts, it is relevant to understand how much N-AE can be increased in a certain location, 

compared to the current status, and which N source (organic and/or mineral fertilizer) will be most 

efficient.   

In this working paper we present ongoing work on N benchmarking from the crop nutrient gap 

project (full name: Bringing Climate Smart Agriculture practices to scale: assessing their contributions 

to narrow nutrient and yield gaps). First, we compare current observed N-AE to the values they could 

potentially reach under optimal agronomic management. For this, we propose a new benchmarking 

method based on recent insights on the shape of N response curves and introduce the related 

‘degree of good agronomy’. Second, we compare the performance of mineral versus organic 

fertilizers for cereal cultivation on two continents (Europe and sub-Saharan Africa) based on large 

number of field experiments. Finally, we assess whether and how N-AE of mineral N fertilizer can be 

improved when combined with organic amendments.  

Preliminary findings show that the proposed benchmarking method can work but relies on 

availability of data on soil N supply, potential yield and attainable yields. Currently, this information is 

sparsely available which might be a barrier for uptake of the method. We show that N supplied by 

mineral fertilizers is taken up more efficiently than from organic sources, with variation depending on 

the type of organic amendment. Variation was larger for sites in Africa than Europe, which makes 

targeted fertilizer strategies less straightforward. Based on European experimental data, we show 

that organic amendments do not increase the N-AE of mineral fertilizer N application, most likely due 

to the increased total N availability.  

In future research, we hope to improve the data requirements for the proposed benchmarking 

method, assess drivers of variation for nitrogen fertilizer replacement values of organic amendments 

and disentangle effects of organic amendments on the efficiency of mineral fertilizer N use, while 

extending our analysis to tropical regions.  
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Acronyms 

FYM  Farmyard manure 

GHG  Greenhouse gas 

Ha  Hectare 

ISFM   Integrated Soil Fertility Management 

N  Nitrogen 

Nav  Available nitrogen 

P  Phosphorus 

K  Potassium 

Kg  Kilogram 

N-AE  Agronomic N-use efficiency  

Ymax  Attainable yield (not NPK limited) 

Yp  Potential yield 

Yr  Relative Yield 

Yw  Water-limited yield potential 

N  Nitrogen 

NFRV  Nitrogen fertilizer replacement value 
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Introduction 

To mitigate climate change, greenhouse gas (GHG) emissions from the agricultural 

sector need to decrease. In this light, improving the efficiency of applied nitrogen (N) 

to crops is a promising avenue. When improving the efficiency of applied N, yields can 

be increased while reducing the losses to the environment. This leads to lower GHG 

emissions per kg yield, higher profitability for farmers, and potentially higher food 

security. Evidently, increasing agronomic N use efficiency (N-AE) of organic or mineral 

fertilizer should be a priority for agronomic research. In this working paper, N-AE is 

defined as the additional grain yield (kg) for a certain amount of N application, 

divided by that N application (kg). 

In a previous working paper by Hijbeek et al. (2020) a methodology was explored for 

benchmarking N use efficiency and related GHG emissions. Afterwards, new insights 

were gained on the relation between N application, N-AE and attainable yields (van 

Grinsven et al., 2021; accepted). These insights showed that N-AE is highly dependent 

on the attainable yield for given circumstances. Based on this observed dependency, 

in this working paper we propose an alternative manner for N benchmarking.  

The proposed benchmarking method relies on insights from long-term experiments 

using mineral fertilizer N application only. From a circularity perspective, it is 

beneficial to first (re-) use available organic amendments (such as manure or 

compost) and only then complement these with mineral fertilizers to fulfill crop 

nutrient requirements (de Boer and van Ittersum, 2018). Nevertheless, this will 

depend on the type of amendments and its N-uptake efficiency. While the application 

of mineral fertilizers can be attuned to enhance N uptake and reduce N losses, this is 

less so for organic amendments. Organic amendments on the other hand can improve 

soil fertility and water holding capacity by improving the soil structure and supply 

other (potentially deficient) nutrients and possibly increase water infiltration and 

water holding capacity, rootability, workability, organic carbon stocks or disease 

suppressiveness. As such, these two N sources could be used complementarily and 

increase each other’s use efficiency. If the crop N uptake from an organic amendment 
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is however very low, it might be better used for an alternative purpose (such as feed 

or energy source) to prevent N losses to the environment. More insight is therefore 

needed into the N-uptake efficiency of different organic amendments and the extent 

to which organic amendments can enhance the efficiency of mineral fertilizer N use. 

The crop N-uptake efficiency from organic amendments can be expressed as the 

Nitrogen fertilizer replacement value (NFRV), which is a comparison between the 

effectiveness of a kg N applied as organic amendment, compared to a kg N applied as 

mineral fertilizer. In this working paper, we explore the N efficiency of organic and 

mineral fertilizer N using two data sets on cereal experiments: one from Europe and 

one from Sub-Saharan Africa. Finally, using the same European data set, we assess if 

the N-AE of mineral fertilizer N can be improved adding organic amendments.  
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A new method to benchmark yield N response 

curves and agronomic N use efficiency  

Based on principles used in the Quantitative Evaluation of the Fertility of Tropical Soils 

QUEFTS approach (Janssen et al., 1990), ten Berge et al. (2019) proposed a method to 

calculate long term minimum N-input requirements for target crop yields. The 

method presumes equilibrium between soil N status and annual N-input rate, as well 

as the returning of crop residues. It postulates that, at best, an annual N-input rate 

equal to the N uptake in total aboveground biomass suffices to attain the 

corresponding target yield. Hence the qualification ‘minimum nutrient requirement’. 

In addition, above authors presented a method to calculate local short term N input 

requirement, by combining N-AE observed in local field trials with soil N supply 

estimates inferred from national statistics on crop yields and fertilizer application. 

This ‘short-term’ method ignores the above conditions of soil equilibrium and return 

of crop residues.  

In both above methods (short and long term), N-AE is presumed to decrease slightly 

with higher N input, but the response curve is unaffected by the level of potential or 

attainable yield. This implies that N requirement (N from soil and fertilizer) for a given 

target yield is similar for two locations, even when they have different potential or 

attainable yields. The above was considered reasonable at the time of publication, 

given that insufficient information was available for sub-Saharan Africa (SSA) to 

parameterize a possible dependence of N-AE on potential or attainable yield levels. 

This situation (insufficient SSA data) remains so today. 

Nevertheless, recent work by van Grinsven et al. (2021; accepted) spurred further 

refinement of above approaches. The authors of the latter study combined a number 

of long-term trials to assess whether a generic (global) N – yield response curve for 

cereals could be formulated and, if so, what its shape would look like. The authors 

defined the top (or plateau) of the response curves - where yields are not limited by N 

supply - as the attainable yield (Ymax). This differs from the potential yield in a given 
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location, which is the maximum yield estimated using crop growth models based on 

soil and climate data (van Ittersum and Rabbinge, 1997). Following, the authors 

defined the relative yield (Yr) as the ratio between yield and Ymax. 

Based on the extensive data set from global long-term trials, N-input requirements 

turned out to be more closely related to relative yields than to absolute yields. This 

implies a clear positive effect of Ymax on N-AE. The corresponding relation by van 

Grinsven et al. (2021; accepted) is expressed in Eq. 1, where Y is the grain yield 

expressed in kg/ha, Ymax is the attainable yield expressed in kg/ha and Nav is the 

available N (soil N supply combined with mineral fertilizer N application) expressed in 

kg N/ha. Here, soil N supply is estimated by extrapolating a yield N response curve to 

the left side of the x-axis, thereby expressing the crop N uptake in mineral fertilizer N 

equivalents.  

Y = Ymax *(-0.0187 * Nav
2 + 8.768 * Nav)    (Eq. 1) 

Depending on the location, Ymax will be determined both by biophysical factors such 

as soil type and climate, and by agronomic management related aspects such as the 

crop variety, time of sowing, seed quality, weeding and pest and disease incidences.  

For our current purposes (i.e., spatial differentiation and benchmarking of N input 

requirements for target yields), biophysical factors affecting Ymax can be collectively 

represented by a single parameter, namely water-limited yield potential (Yw) as 

calculated by crop growth models from spatial biophysical data (van Ittersum et al., 

2013). When the agronomic management is perfect, Ymax equals the Yw value in the 

given location. Using this approach, observed response curves and N-AE values for a 

certain amount of N application can be compared to the theoretically best attainable 

values, by combining spatially differentiated Yw value with the ‘generic response 

curve’ as proposed by van Grinsven et al. (2021; accepted). Using a selection of long 

term European experimental data collected by Hijbeek et al. (2017) for which water-

limited yields (Yw) could be derived from www.yieldgap.org, we made such 

comparisons for trials with maize, wheat or barley (Figure 1). In each of these trials, N 

treatments were always accompanied with sufficient P and K. 
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Figure 1. Observed and theoretical optimal response curves for wheat, maize, 

and barley in eight long-term experiments in Europe 

Given a certain N application and potential yield, observed N-AE can thus be 

compared to the values they could theoretically reach. For each of the response 

curves in Figure 1, observed and theoretical potential N-AE at an application of 100 kg 

mineral fertilizer N/ha are calculated according to Equation 2. 

𝑁𝐴𝐸 =  𝑦𝑖𝑒𝑙𝑑𝑁𝑃𝐾−𝑦𝑖𝑒𝑙𝑑𝑃𝐾
𝑁𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛

      (Eq. 2) 
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We further define the ratio between the attainable yield (observed plateau; Ymax) and 

the water-limited yield potential (modelled Yw), as the ‘degree of good agronomy’; 

the latter is also in included in Table 1. 

Table 1. Overview of experiments included, crop types, potential yields, 

attainable yields, observed agronomic N use efficiencies (N-AE), potential N-AE 

and the ratio between the two 

Experiment Crop Potential 
yield 
(t/ha) 

Attainable 
yield (t/ha) 

Degree of 
good 
agronomy1 (-) 
agronomy 
(Ymax / Yw) 

Observed n-
ae  

(Kg yield/kg 
N applied)2 

Potential n-ae  

(Kg yield/kg N 
applied)1 

Ratio observed 
and potential 
N-ae (-) 

Grabow Wheat 8.06 7.19 0.89 37.7 45.2 0.83 

 Barley 6.15 3.86 0.63 15.3 31.4 0.49 

Keszthely Barley 7.79 4.88 0.63 20.6 40.7 0.51 

Madrid Wheat 5.30 4.31 0.81 20.2 30.1 0.67 

 Barley 6.26 4.30 0.69 15.6 36.4 0.43 

Muncheberg Wheat 9.00 4.83 0.54 33.4 56.2 0.59 

Novi Sad Maize 10.54 10.09 0.96 19.0 31.8 0.60 

Speyer Wheat 9.33 6.33 0.68 32.0 53.8 0.60 

 Barley 7.60 5.66 0.75 32.8 45.9 0.71 

Sproda Wheat 9.09 6.77 0.74 34.6 50.3 0.69 

 Barley 7.82 2.74 0.35 6.9 29.8 0.23 

Vienna Wheat 8.77 5.53 0.63 19.3 39.5 0.49 

 Barley 6.48 5.98 0.92 23.3 31.1 0.75 

1Degree of good agronomy is defined as attainable yield divided by water-limited potential yield (Ymax / 

Yw) 

2AtAt 100 kg N/ha 
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N use efficiency of organic vs mineral fertilizers 

The presented generic response curve by van Grinsven et al. (2021; accepted) in the 

previous chapter is based on the application of mineral N fertilizer. To understand the 

N- input requirements when organic inputs are used instead of mineral fertilizers, one 

needs to quantify the Nitrogen Fertilizer Replacement Value (NFRV) of organic 

amendments (Schröder, 2005). The apparent NFRV of an organic amendment 

expresses the amount of mineral fertilizer N needed for the same yield relative to the 

amount of N applied as organic amendment. The NFRV at similar yield can thus be 

expressed by Eq. 3.  

𝑁𝐹𝑅𝑉 =  𝑁𝑚𝑖𝑛𝑒𝑟𝑎𝑙 𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑠𝑒𝑟  𝑡𝑜 𝑜𝑏𝑡𝑎𝑖𝑛 𝑌
𝑁𝑜𝑟𝑔𝑎𝑛𝑖𝑐 𝑎𝑚𝑒𝑛𝑑𝑚𝑒𝑛𝑡  𝑡𝑜 𝑜𝑏𝑡𝑎𝑖𝑛 𝑌

      (Eq. 3)   

It can be argued that we should call the above ratio ‘apparent NFRV’, for it being 

based on equal yield instead of equal N uptake. In addition, it should be noted that 

other benefits from the amendment – rather than N – may be the cause of better 

crop performance and yield, included in the NFRV. In the remainder of the text, we 

keep to NFRV for brevity. 

If the NFRV of an organic amendment is below 1, crops use N applied in mineral 

fertilizer more efficiently than N applied in the organic amendment in the years of 

application and measurement. If the NFRV is above 1, it is the other way around: N 

applied as organic amendment is used more efficiently than N applied as mineral 

fertilizer. If the NFRV is below 0 (i.e., a negative yield response to the amendment), 

plant available N is reduced due to N immobilization. This may be caused by the 

organic amendment immobilizing rendering it less available for crop uptake. NFRV 

values of organic amendments depend on a wide range of factors, such as the 

application method, soil, and climate (Schröder, 2005), but also on the chemical 

characteristics of the organic amendment (Delin et al., 2012) and the duration of 

application (Gutser et al., 2005). To optimize N application, farmers need to 

understand the NFRV of their organic amendment. Underestimation of NFRV of an 

organic amendment gives a risk of excess N application which can lead to 
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environmental losses. Similarly, overestimation of the NFRV may lead to insufficient N 

application with adverse effect on yields.  

In this paper, we compare the NFRV of different organic amendments across two 

continents (Europe and sub-Saharan Africa) for a range of organic amendment types. 

The European data is from Hijbeek et al. (2018) and the African data is from Gram et 

al. (2020).   

Observed nitrogen fertilizer replacement values in European 
cereal experiments 

Based on eight long-term cereal experiments across Europe, the variation in NFRV 

was calculated for farmyard manure (FYM), straw, and a combination of straw and 

green crop residues, both with and without mineral fertilizer N (at low and high N 

rates; Figure 2). All underlying field experiments were long term.  The mean duration 

of the FYM treatments was 29 years, the mean experimental duration of the straw 

treatments was 34 years and the mean experimental duration for the combined 

application of straw and green crop residues was 11 years. NFRV was preferably 

determined as a mean value over the last two crop rotations for which data was 

available. 

At low N supply, NFRV was 0.53 for FYM, 0.12 for straw and 0.14 for a combined 

application of straw and green crop residues (Figure 2a). Only for FYM was the NFRV 

significantly different from zero (p < 0.0001). At higher N supply (when organic 

amendments are applied in combination with mineral fertilizer N), the values for 

NFRV increased, but the variation also increased considerably (Figure 2b). For FYM, 

the mean NFRV was 1.13, for straw 0.35 and when straw was combined with green 

crop residues the mean NFRV was 0.94. There was no significant difference between 

the mean NFRV of the different organic amendments. 

While in some cases, the NFRV approaches the value of 1 (having a similar efficiency 

of mineral fertilizer N), the majority of the observed NFRV was lower than 1 (Figure 

2a, b).  
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Figure 2. Boxplot of observed Nitrogen Fertilizer Replacement Value (NFRV) for 

FYM (farmyard manure), straw and straw & green crop residues at eight long-

term European field experiments (N =38). Dashed lines refer to NFRV=0 and 1. 

Observed nitrogen fertilizer replacement values in African 
maize experiments 

Based on 20 short- and long-term maize field experiments across sub-Saharan Africa 

(Figure 3), NFRV was calculated for five types of organic amendments, namely three 

categories of crop residues (with different N, lignin or phenol content), sawdust and 

compost plus FYM (Table 2). 

Figure 3. Map of Africa with sites of trials  

Table 2. Classification of organic input for the data set from sub-–Saharan Africa 
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Class N content 
(%) 

Lignin 
content (%) 

Phenol 
content (%) 

Origin of crop residues  

Crop residue I > 2.5 <15 <4 Cajanus cajan, Crotalaria juncea, Crotalaria 
ochroleuca, Gliricidia sepium, Glycine max, Lablab 
purpureus, Parkia biglobosa, Tithonia diversifolia   

Crop residue II > 2.5 >15 <4 Azadirachta indica, Calliandra calothyrsus, 
Leucaena leucocephala spp., Senna siamea, 
Mucuna pruriens 

Crop residue III <2.5 <15 NA Arachis hypogaea, Brachystegia spiciformis, 
Coffee, Maize residues, Millet residue, Sorghum 
residue, Triticum aestivum 

Sawdust  <2.5 >15 NA - 

Compost + 
Manure  

NA NA NA - 

Mean NFRV were between 0 and 1 for crop residues type I and II and for compost and 

manure (0.4, 0.66 and 0.6 respectively). For crop residue type III and sawdust, the 

mean NFRV was negative (-0.69 and -3.3), indicating an immolization of N. For 

manure, the observed NFRV in sub-Saharan Africa was comparable to Europe but 

overall, observed variation was larger than for the European field experiments, with 

NFRV ranging between -5.3 and +4.7. 

 

Figure 4. Boxplots of NFRV for different types of organic amendments (see Table 

2) across 20 trials in sub-Saharan Africa, N = 107. Based on a subset of the 

underlying data from Gram et al (2020). Dashed lines refer to NFRV=0 and 1 
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After a longer duration, NFRV may increase due to residual N supply. As the 

underlying experiments from sub-Saharan Africa contained both short and long-term 

trials, we assessed whether a time-effect could be found (Figure 5). No significant 

difference was found between the different experiment durations (p=0.54).  

 

Figure 5. Observed NFRV after different time periods across 20 trials in sub-

Saharan Africa, N = 107. Based on a subset of the underlying data from Gram et al 

(2020). Dashed lines refer to NFRV=0 and 1. 
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Influence of organic amendments on agronomic 

use efficiency of mineral fertilizer N 

Integrated Soil Fertility Management (ISFM) promotes the combined use of organic 

and mineral fertilizers to enhance synergistic effects (Palm et al., 1997; Vanlauwe et 

al., 2010). One way to assess if indeed such synergistic effects exist, is to assess 

whether the use of organic amendments increases the N-AE of mineral fertilizer N. 

Thus, a comparison between the N-AE of mineral fertilizer N with and without organic 

amendments is needed. This comparison can be done either at similar yield levels, or 

at similar N rates (Figure 6). In this study, we used both methods and compared the 

outcomes.   

 

Figure 6. Conceptual illustration of comparing agronomic N use efficiency (N-AE) 

with and without organic amendments at equal mineral fertilizer N application 

(A) or at equal yields (B) 

The analysis was performed on a similar European dataset of long-term experiments 

(Hijbeek et al 2017), focusing on cereals. At an application rate of 50 kg mineral 

fertilizer N/ha, the N-AE of mineral fertilizer was found to be 31.33 kg additional grain 

yield per kg N applied. This N-AE decreased on average 17.3% when the mineral 

fertilizer N was applied together with organic amendments (such as FYM, slurry, 

straw, or a combination of straw and green crop residues; Table 3). 

  



14 

Table 3. Change in N-AE of mineral fertilizer-N for cereals (maize, barley, wheat 

and rye) when mineral fertilizers at rate of 50 kg N/ha are combined with organic 

amendments. 

Organic 
amendment 

N-AE without 
organic amendment 
(Additional kg grain 
yield/kg N) 

N-AE with organic 
amendment 
(Additional kg grain 
yield/kg N) 

Δ N-AE 
(%) 

p-value 
(t.test) 

sample 
size 
(N) 

FYM 30.50 24.03 -18.14 0.06 32 

Slurry 31.43 23.31 -29.84 0.25 10 

Straw 28.57 23.68 -17.08 0.35 18 

Straw and green 
crop residues 

35.64 31.63 -10.94 0.28 20 

Across all 
amendment types 

31.33 25.76 -17.26 0.01 80 

The comparison at similar mineral fertilizer N rates is not completely fair as the total 

available N will be larger when organic amendments are added (Figure 6A). As such, 

the decrease in N-AE when organic amendments are added may be due to 

diminishing returns at higher total N supply. We therefore also assessed the change in 

N-AE at similar yields (i.e., the N-AE was assessed at a similar yield level when mineral 

fertilizer N was applied either with or without organic amendment).  

Table 4. Change in N-AE (of mineral fertilizer-N) for cereals (maize, barley, 

wheat and rye) when mineral fertilizers are combined with organic amendments, 

assessed at similar yield levels. 

Organic amendment N-AE without 
organic amendment 
(Additional kg grain 
yield/kg N) 

N-AE with organic 
amendment 
(Additional kg 
grain yield/kg N) 

Δ N-
AE 
(%) 

p-value 
(t.test) 

sample size 
(N) 

FYM 38.61 35.65 -6.52 0.53 32 

Slurry 42.09 39.44 -10.11 0.76 7 

Straw 40.64 35.32 -20.15 0.52 19 

Straw and green crop 
residues 

40.16 39.50 -3.88 0.87 20 

Across all amendment 
types 

39.81 36.90 -9.49 0.33 78 

When assessed at similar yield level, the N-AE of mineral fertilizer N application does 

not significantly change when combined with an organic amendment (Table 4). When 

comparing the N-AE at equal yield however, the control yield (without N application) 

may be lower for the mineral fertilizer only treatments, possibly leading to a higher N-
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AE value (Figure 6B). Assessing the marginal N-AE (slope of the response curve) at 

equal yield levels might therefore be a next methodological improvement, which we 

will take in a next step.  
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Conclusion and recommendations  

In this working paper we have presented ongoing work on monitoring, benchmarking, 

and improving the efficiency of different N sources, either as mineral fertilizers or as 

organic amendments, with the aim to increase our understanding on how N can be 

used at highest efficiency to produce cereals with minimum GHG emissions. 

We have shown that it is possible to benchmark observed yield – N response curves in 

different locations with a theoretically best curve, using a generic response curve and 

potential yield. This method might be useful to explore where current N-AE values are 

low, based on the amount of N applied, and identify where (geographically) the 

largest potential for improvements in agronomy of the crop may be situated. A 

limitation of the proposed approach is the required data on soil N supply, potential 

yield and attainable yields. Currently, this information is sparsely available which 

might be a barrier for uptake of this method.  

We have also shown that N supplied by mineral fertilizers is taken up more efficiently 

by cereals than from organic sources, with variation depending on the type of organic 

amendment. Variation was larger for sites in Africa than Europe, which makes 

targeted fertilizer strategies less straightforward. In further work, we aim to 

investigate which factors drive this variability.  

Finally, we have shown that combining organic amendments with mineral fertilizer 

does not increase the N-AE of the mineral fertilizer N, or at least not so in Europe, 

perhaps due to the increased total N availability leading to diminishing returns. In 

future research, we aim to disentangle effects of organic amendments on the 

efficiency of mineral fertilizer N use, while extending our analysis to tropical regions.  
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