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Abstract Poor and variable crop responses to fertil-

izer applications constitute a production risk and may

pose a barrier to fertilizer adoption in sub-Saharan

Africa (SSA). Attempts to measure response variabil-

ity and quantify the prevalence of non-response

empirically are complicated by the fact that data from

on-farm fertilizer trials generally include diverse

nutrients and do not include on-site replications. The

first aspect limits the extent to which different studies

can be combined and compared, while the second does

not allow to distinguish actual field-level response

variability from experimental error and other residual

variations. In this study, we assembled datasets from

41 on-farm fertilizer response trials on cereals and

legumes across 11 countries, representing different

nutrient applications, to assess response variability

and quantify the frequency of occurrence of non-

response to fertilizers. Using two approaches to

account for residual variation, we estimated non-

response, defined here as a zero agronomic response to

fertilizer in a given year, to be relatively rare, affecting

0–1 and 7–16% of fields on average for cereals and

legumes respectively. The magnitude of response

could not be explained by climatic and selected topsoil

variables, suggesting that much of the observed

variation may relate to unpredictable seasonal and/or

local conditions. This implies that, despite demon-

strable spatial bias in our sample of trials, the

estimated proportion of non-response may be repre-

sentative for other agro-ecologies across SSA. Under

the latter assumption, we estimated that roughly

260,000 ha of cereals and 3,240,000 ha of legumes

could be expected to be non-responsive in any

particular year.

Keywords Absolute response � Cereals � Fertilizer
intensity based-response � Legumes �
Representativeness

Introduction

Low agricultural productivity, recurrent food short-

ages and high prevalence of food insecurity in sub-

Saharan Africa (SSA) have led to repeated calls to

intensify agriculture, with a particular focus on
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addressing the widespread soil fertility depletion in

agricultural lands (UN Millennium project 2005;

Sanchez 2010; Shapouri et al. 2010; Andriesse and

Giller 2015; Binswanger-Mkhize and Savastano

2017). Sustainable agricultural intensification is

viewed as a prerequisite for combatting food insecu-

rity and reversing the trend of natural resource

degradation (Tittonell and Giller 2013; Vanlauwe

et al. 2014; Zurek et al. 2015), and an increased use of

mineral fertilizers is considered to be an essential part

of the solution (IFDC 2006; Sanchez 2010; Holden

2018). Despite efforts to enhance the use of fertilizers

in the region (Druilhe and Barreiro-Hurle 2012; Jayne

et al. 2018), average application rates remain very low,

with recent studies reporting an average fertilizer use

around 14 kg ha-1 (Bonilla Cedrez et al. 2020),

though there is a wide variability between countries,

with averages of some countries surpassing

50 kg ha-1 (Liverpool-Tasie et al. 2017; Sheahan

and Barret 2017). While the accessibility to fertilizers

remains a main constraint to the widespread use of

fertilizers by smallholder farmers, the production risk

associated with poor crop responses caused by vari-

able weather conditions (Mafongoya et al 2007) and/

or by local edaphic constraints (e.g. limited soil

rootable zone or water holding capacity and soil

organic matter) i.e. the so-called non-responsive soils

(Vanlauwe et al. 2010), could discourage farmers to

invest in fertilizers (Holden 2018; Schut and Giller

2020). A lack of crop response to the application of

fertilizers represents an obvious economic loss to

farmers and, if enduring, may make fertilizer applica-

tion unattractive to farmers and potentially harmful to

the environment. Determining the rate of incidence of

non-response to fertilizer is needed to understand the

magnitude of the problem, and this requires on-farm

observations on the variability in yield responses.

While there is a diverse literature reporting on

response variability observed in on-farm trials per-

formed at different spatial scales across SSA (Tittonel

et al. 2007; Kihara et al. 2016; Zingore et al. 2007;

Ronner et al. 2016; Njoroge et al. 2017; Ichami et al.

2019; Roobroeck et al. 2021; Garba et al. 2018;

Wortmann et al. 2017), few quantify the proportion of

fields that fail to show an appreciable response in a

given year. Two methodological issues make the

quantification of non-response in on-farm data more

challenging than it may seem. First, quantifying

inadequate yield response in a dataset on fertilizer

responses requires a measure against which observa-

tions can be compared. For single nutrient fertilizers,

the agronomic efficiency (AE), the amount of extra

produce per quantity of nutrient applied, which is

commonly reported while assessing response to inputs

(Olk et al. 1999; Ngome et al. 2013; Kaizzi et al. 2012;

Vanlauwe et al. 2016; Kamanga et al. 2014; Xu et al.

2014; Adiele et al. 2020) provides such a measure.

However, an equivalent metric does not exist for

multi-nutrient fertilizers which are typically used in

on-farm trials and by farmers in SSA, often with

varying rates for the different nutrients, and which are

expected to illicit different yield responses to the same

total amount of fertilizer. One solution is to restrict

comparisons to cases where the same fertilizer is

applied, but this obviously limits the scope and

applicability of such analyses, given that various

types of fertilizers are used in SSA. Another option is

to look at economic efficiencies only, since these can

be calculated on any type of fertilizer (Jayne and

Rashid 2013), but the variation in response is then

determined to a large extent by differences in input

prices (Bonilla Cedrez et al. 2020), which can vary

over space and time, therefore requiring additional

estimates of agronomic response for proper interpre-

tation and translation to current conditions.

The second issue relates to the lack of on-site

replication that tends to characterize on-farm trials

(Bielders and Gérard 2015; Njoroge et al. 2017; Shehu

et al. 2018). Regardless of how response is quantified,

the observed variation in response not only reflects

field-level variation due to rainfall, soil nutrient status

or other biotic and abiotic factors, but is also

determined by variation between experimental plots

caused by random agronomic and experimental fac-

tors that are not repeatable at the field scale. The lack

of on-field replicates implies that the random plot-

level variation, which will be referred to as residual

variation here, is confounded with the field-to-field

variation, leading to an overestimation of the latter

(Vanlauwe et al. 2016) and consequently, to inflated

estimates of the proportion of non-response. Simply

stated, even if all fields in a study have the same

positive response to inputs, large residual variation

will cause a proportion of control-treatment compar-

isons to yield negative observed responses by random

chance. Only when the amount of residual variation is

known or can be estimated from on-site replicates,

then it is possible to determine what proportion of
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fields are truly non-responsive in a given season

(Vanlauwe et al. 2016).

Together, the inability to account for residual

variation and the lack of general measures of fertilizer

response may thwart efforts to quantify the extent of

non-response in SSA. Here we applied two simple

approaches to address one or both limitations. The first

uses published averages of residual variation to obtain

corrected estimates of response variation from sets of

non-replicated on-farm trials. The second aims at

overcoming both limitations simultaneously by using

a random regression approach that, under simplified

assumptions, measures response from the yield

increase as a linear function of a general measure of

the fertilizer application intensity (Janssen

1998, 2011) while estimating the residual variation

as the deviation from this linear relationship.

The main objective of this paper is to provide an

estimate of the prevalence of non-response to fertil-

izers in trials performed across SSA using various

types of fertilizers, accounting for residual variation.

In addition, we performed spatial analyses of the

results to evaluate if inferred effects of climatic and

edaphic factors suggest the existence of repeatable pat-

terns of non-response. The latter is of relevance since a

lack of trial repetitions on the same field over different

seasons does not allow effects of location-specific

factors to be directly assessed.

Methods

Dataset

The on-farm fertilizer response data included in this

study were obtained from on-going or completed

projects at the time of acquisition. Within projects, on-

farm trials performed in a single season on the same

crop were grouped into separate collections of trials

called studies here. The main criterion for selection of

trials to include in the dataset was the presence of a

control and a fertilizer treatment conducted side by

side. There was no further selection made in regards to

the type of fertilizer used, therefore the dataset

included fertilizers of diverse nutrient compositions.

Both published and non-published data were assem-

bled per project, and generally included geographic

coordinates. Crops evaluated in the studies were

cereals (maize, sorghum) or legumes (soybean, bush

bean, climbing bean, groundnut, cowpea). In total, 41

studies (14 for cereals and 27 for legumes) were

included, from 11 countries including 6 for cereals and

10 for legumes, with data for specific countries and

crops covering one to three separate seasons

(Table S1). In total, 515 fields were included for

cereals and 3930 for legumes, though one project

conducted in Nigeria, in four States, accounted for

more than half (2578) of the legume fields. In fertilizer

treatments, the ranges of N and P rates were

100–140 kg N ha-1 and 30–50 kg P ha-1 for cereals,

and 0–36 kg N ha-1 and 18–69 kg P ha-1 for

legumes.

Measures of fertilizer response

Absolute response

As mentioned above, fertilizer response can be

assessed using the agronomic efficiency (AE) (Hutton

et al. 1956; Vanlauwe et al. 2010; Ichami et al. 2019),

calculated as the yield increase per unit of nutrient

applied in the fertilizer or: DY
Fappl

, with DY ¼ yf � yc;

where Fappl is the quantity of specific nutrient applied

(usually in kg ha-1) and yf and yc are the yields with

and without the application of that nutrient (usually in

kg ha-1). Since this measure does not extend to multi-

nutrient fertilizers, we defined the absolute response as

DY ¼ yf � yc. Although useful for describing the

response to any fertilizer, single or multi-nutrients, it

has little comparative value, since its magnitude

depends on the specifics of the fertilizer (amount and

composition).

Relative response

One way to overcome the challenge of obtaining

comparable values of response across different fertil-

izer formulations, is to define Fappl such that it

accounts for differences in fertilizer nutrient compo-

sition to adequately express the total amount of

applied nutrients simultaneously. Here, we refer to

such a general measure as fertilizer application

intensity, to express the fact that a single measure of

the magnitude of application is used. We adopted an

agronomic measure of application intensity that is

available in the literature (Janssen 1998, 2011). Based

on a popular framework for quantifying soil fertility
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(QUEFTS, Janssen et al. 1990), the so-called Crop

Nutrient Equivalent (CNE) expresses the total nutrient

input as the equivalent amount (kg) of nitrogen that

would need to be applied to achieve an equivalent

yield response if other nutrients and water were not

limiting (i.e. available in balanced proportions). Using

CNE as measure of fertilizer application intensity, it is

possible to obtain a universal definition of fertilizer

response as the additional yield (in kg) per unit of CNE

(in kg N equivalent).

The calculation of CNE while simple, requires

agreement on parameter values and its interpretation

depends on several assumptions on crop nutrient

responses implicit in the QUEFTS framework (Jans-

sen et al. 1990, see supplement S1a for details). Within

this framework, CNE is expected to have an approx-

imately linear relation with yield for balanced fertil-

izer, which is convenient when using a regression

approach to estimate the fertilizer response as

described below. Although a strictly linear response

to balanced fertilizer may not occur in practice, and

alternative nutrient response functions do not share

this property (e.g. Greenwood et al. 1971), we expect

deviations of linearity to be moderate at the nutrient

levels considered here. Alternatively, alternative

measures derived from non-linear response functions

could be proposed but would require additional

agreement on efficiency of parameters and reference

levels for soil nutrients.

Estimating field-specific response and its

variability

To estimate the extent of non-response to fertilizers, it

is imperative to estimate field-level response and its

variability, and to separate this variation by account-

ing for plot-level residual variation as much as

possible. Since individual fields are typically not

replicated across years, it is important to emphasise

that field-level variation represents response variation

among fields in a given year, and provides no measure

of variation in long-term responsiveness of specific

fields or locations. Both statistical methods used here

are based on the use of linear mixed models (Hender-

son 1982), which have the advantage over standard

general linear models because, in addition to the

residual error term, they can contain other normally

distributed random effects. In our case, this offers the

possibility of modelling field-level variation in

fertilizer response separately from the residual varia-

tion. This means that response variation inferred from

the data, represented by field-level random effects, can

be larger or smaller depending on the magnitude of the

plot-level residual variation. For the same amount of

observed response variation, larger residual variation

will cause the model to infer less variation at the field

level. The inferred values of field-level response and

their variation can therefore be corrected for plot-level

residual variation. Such correction is missing when

using standard linear models or observed differences

between control and treated plots, leading to overes-

timation of field-level variation.

For the absolute response calculated per study, we

applied a relatively crude method to adjust estimates

of plot-level residual variation by using fixed values

derived from existing studies that included some form

of field-level replication. Based on average values in

the literature, the plot-level residual variation (i.e. the

residual error) was set to 697 kg ha-1 for cereals (

Njoroge et al. 2017; ten Berge et al. 2019; De Laune

et al. under review; Kamanga et al. 2014) and

250 kg ha-1 for legumes (Ronner et al. 2016; van

Heerwaarden et al. 2018). For comparison, we also

used a model where the residual error was fixed at 0,

which corresponds to the observed paired differences

between control and fertilized plots, without correc-

tion for plot-level residual variation.

For the relative response (as a function of fertilizer

application intensity as measured by CNE), a slightly

more sophisticated approach was used in which the

plot-level residual variation was estimated from the

dataset itself (see van Heerwaarden et al (2018) for a

description of a similar approach and the Supplement

S1b for details). Briefly, since part of the trials in the

dataset contain several blends or rates of fertilizer on

the same field, it was possible to apply a regression

approach to quantify the fertilizer response using CNE

as a covariate. Conceptually, on each field a regression

line was fit to model yield as a linear function of CNE.

The inferred slope for each field was then taken as a

general measure of response, equivalent to the agro-

nomic efficiency. Under the assumption that the yield

is indeed linear with respect to CNE, the field-level

deviations from each regression line can be considered

as the residual, and can be used to estimate the plot-

level residual variation. By using a mixed linear model

and incorporating the field-level slopes as a random

effect, two things are achieved. First, these statistical
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models are robust to unbalanced data and an estimate

of plot-level residual variation is obtained even if not

all fields have more than two fertilizer treatments.

Second, the variation in slopes inferred from such a

model is automatically adjusted for the amount of

residual variation, providing a more accurate assess-

ment of the actual field-level response variability and

non-response than would be obtained from standard

regression models. Although attractive, it is important

to point out two caveats of this approach. First, the

assumption of a linear relation between yield and

fertilizer application intensity is likely to be com-

monly violated to some extent, which means that plot-

level residual variation may be overestimated and,

consequently, field-level response variation may be

underestimated. Second, we currently assume a single

level of residual variation for the entire dataset, an

assumption that if violated could lead to inaccurate

estimates of field-level variation in some areas.

Spatial representativeness and geospatial patterns

in responsiveness

Two types of spatial analysis were performed on the

dataset: an evaluation of potential spatial bias in the

selection of our trial sites and an analysis of the

geospatial patterns of responsiveness. All georefer-

enced trial locations were linked to geospatial infor-

mation consisting of freely available spatial raster

layers, namely a set of 250 m resolution maps of

predicted topsoil properties and soil nutrient levels

(Hengl et al. 2015, 2017) and a crop mask produced by

the African Soil Information Service project (AfSIS)

and 30 s resolution maps representing bioclimatic

variables (Fick and Hijmans 2017) (See Supplement

Table S2 for details). For the crop mask, only pixels

with a larger than 50% probability of being under crop

cover were retained as cropped sites.

The evaluation of spatial representativeness was

performed as follows: for both crop types, a training

dataset was compiled by combining the trial locations,

and associated geospatial data, with an equal number

of non-trial locations sampled at random from the crop

mask sites. A random forest model (Breiman and

Random 2001) was then fit to this training data,

resulting in a predictive model for the probability of a

new location to be classified as a trial location. This

model was then applied to all retained cropped sites,

where the site-specific probability of being classified

as a trial location was used as a probability weight

determining the chance of a location to end up in a

random sample subject to the same spatial and

environmental biases as the current set of trial

locations. Site selection bias is expected to cause a

skewed distribution of these probabilities, since sites

with high environmental similarity to the trial loca-

tions would have the highest selection probabilities,

whereas in the absence of such bias the distribution of

selection probabilities should be uniform.

We used this principle to quantify spatial and

environmental sampling bias by resampling all

cropped sites with replacement and quantifying the

proportion of sites that ended up in the final sample. In

the case of uniform selection probabilities, the

expected proportion of sites that end up in a sample

of size n is 63%. This follows from the fact that

random site selection can be treated as a set of

Bernoulli trials for which the probability of inclusion

of each individual site is given by:

pselected ¼ 1� 1� 1

n

� �n

� 1� e�1 ¼ 0:632

Spatial bias in the set of trial locations was therefore

quantified by comparing the actual proportion of sites

that ended up in the sample to this theoretical value.

Proportions below 0.63 are evidence of spatial bias.

The second analysis aimed to establish if pre-

dictable geospatial patterns were present in the

fertilizer responses. The estimated field-level relative

fertilizer responses were first tested for spatial struc-

ture using Moran’s test for spatial autocorrelation

(implemented in the spdep package). Association with

geospatial variables was evaluated by fitting a random

forest model with all variables and comparing the

predictive ability with that of a model with geographic

coordinates as only explanatory variables. Predictive

ability was thereby defined as the correlation between

the out of bag (OOB) predictions with the observed

fertilizer response vector.

Defining threshold for non-response

We define non-response simply as cases where the

yield differences between fertilized and unfertilized

treatments are not significantly different from 0 or

significantly lower than 0. For the regression approach

used here, this translates to a zero or negative slope
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with respect to the fertilizer application intensity

(CNE).

Results

Mean response, response variability,

and prevalence of non-response

Absolute response

Absolute responses to inputs in cereals averaged

1365 kg ha-1 (Table 1), ranging from 599 to

2279 kg ha-1 for sorghum in Mali in 2009 and maize

in Malawi in 2011 respectively (Supplement

Table S3a). In legumes, the average response to

applied fertilizers was 252 kg ha-1 (Table 1) with a

range from-27 kg ha-1 in groundnut in Zimbabwe to

671 kg ha-1 in climbing bean in Rwanda in 2012

(Supplement Table S4a).

Variations in the absolute response for different

studies are shown for cereals and legumes in Fig. 1,

and Supplement Figures S1 and S2. For cereals, the

proportion of non-responsive fields was generally very

low when taking into account the residual variation,

with a mean of only 0.9% and an average 95%

confidence interval from 0.4 to 6.5% (Table 1). In fact,

for the majority of studies, the mean and the lower

confidence limit for the percentage of non-response

were zero (Table S3b). The largest proportion of non-

response was observed in trials in Kenya in 2004, the

only study in which the lower confidence boundary of

non-response was above 0 (6.8%). Not surprisingly,

ignoring the residual variation led to higher estimates

of non-response, with a mean of 4.9% and a

confidence interval from 2.2 to 16.1% (Table 1,

Supplement Table S3a).

For legumes, the mean proportion of absolute,

residual-corrected non-response was relatively high

(7.4%), with a confidence interval from 2.0 to 27.8%

(Table 1). The highest proportion of non-response

(50%) was found in the groundnut study in Zimbabwe,

associated with a mean response close to 0

(Table S4b). Only 5 out of 27 studies had a proportion

of non-response above 5% at the lower confidence

limit, whereas 6 studies had a zero percent non-

response at the upper confidence limit. Not correcting

for residual error, again led to a substantially higher

mean proportion of non-response of 17% with a

confidence interval from 11.8 to 33.7% (Table 1,

Supplement Table S4a).

Relative response

In terms of the relative response to the fertilizer

application intensity defined by CNE, the mean

response was 5.8 kg grain kg-1 CNE for cereals,

ranging from 2.8 to 9.8 kg grain kg-1 CNE (Table 1,

Table 1 Means of the proportion (%) of non-responsive fields

as defined by absolute agronomic response, and relative

agronomic response for cereals and legumes based on a dataset

from 41 on-farm studies conducted in sub-Saharan Africa. The

mean predicted values are indicated in grey (mid). Q2.5 and

Q97.5 indicate the lower and upper 95% confidence limits

respectively, averaged over studies

Proportion non-responsive fields % Response

Absolute,

empiricala
Absolute. accounting

for residual variationb
CNEc Absolute

kg grain

CNE kg grain

kg– 1 CNE

Cereal Q2.5 2.2 0.4 0

Mid 4.9 0.9 0 1365 5.8

Q97.5 16.1 6.5 7.5

Legume Q2.5 11.8 2.0 7.3

Mid 17.0 7.4 15.9 252 4.9

Q97.5 33.7 27.8 34.7

aThe residual variation is not accounted for, assume residual error = 0;
bBased on a residual error of 695 kg ha-1 for cereals and 250 kg ha-1 for legumes, estimated from existing studies;
cThe crop nutrient equivalent (CNE) is used as fertilizer application intensity
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Supplement Table S5). The corresponding values for

legumes were 4.9 kg grain kg-1 CNE with a range of

-0.67 to 13.5 kg grain kg-1 CNE (Table 1, Supple-

ment Table S6).

Variations in the relative response for different

studies are shown in Fig. 2, and in Supplement

Figure S3 for cereals and Figure S4 for legumes, and

indicate that, for all cereal studies, the lower confi-

dence boundary non-response was 0.

The estimated proportions of non-response in

cereals were very low, with a mean of 0% and a

confidence interval of 0 to 7.5% (Table 1). This upper

limit was similar to that of the absolute response

corrected with fixed residual error. For legumes, the

mean proportion of non-response was 15.9%, some-

what higher compared to that in residual error-

corrected absolute response, but not significantly so

considering the width of the 95% confidence interval.

Fig. 1 Cumulative distributions, with 95% confidence inter-

vals, of predicted absolute fertilizer response for maize in

Malawi (mz.mlw09) and Soybean in Ghana (Sy.gh11). Black

represent the ‘‘empirical’’ distribution assuming zero residual

error. Red represent the distribution under the assumption of a

residual error of 697 kg ha-1 for cereals and 250 kg ha-1 for

legumes. mz.mlw09 refers to maize grown in 2009 season in

Malawi; Sy.gh11 to soybean grown in 2011 season in Ghana.

Other studies are presented in Supplement Figure S1 for cereals

and Figure S2 for legumes

Fig. 2 Cumulative distributions, with 95% confidence inter-

vals, of predicted relative fertilizer response for maize in

Malawi (mz.mlw09) and Soybean in Ghana (Sy.gh11). mz.ml-

w09 refers to maize grown in 2009 season inMalawi; Sy.gh11 to

soybean grown in 2011 season in Ghana. Other studies are

presented in Supplement Figure S3 for cereals and Figure S4 for

legumes
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Spatial representativeness and spatial patterns

in response

A spatial bias was evident in the selection of both

cereal and legume trial locations but was more

pronounced in the latter (Fig. 3). In both cases, the

probability of being a trial site was highest around the

actual trial locations, but for legumes, the large

number of trial locations belonging to a single soybean

study caused a clear bias towards Nigeria. This was

reflected in a representativity measure of only 35 out

of 63 percent for legumes, compared to 51 out of 63

percent for cereals, indicating that a spatial sampling

bias was present. The extent to which this spatial bias

is expected to affect the overall estimates of non-

response would depend on the relation between

Fig. 3 Probability of cropped locations of sub-Saharan Africa to be a trial site based on the locations of trials used in the studies for

cereals or legumes. A = cereals, B = Legumes. Black crosses indicate the location of trials used in the studies
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response estimates and geospatial factors. After cor-

recting for individual study, the response variation

showed evidence of spatial auto-correlation in

legumes (p\ 0.0001) but not in cereals

(p = 0.5249). In both cases, random forest predictions,

using the full set of geospatial covariates, explained

only a negligible amount of variation in relative

response, 0.5 and 4% for cereals and legumes respec-

tively, the same prediction accuracies as observed for

a model with latitude and longitude only. This implies

that there was no predictable spatial or environmental

variation in the observed fertilizer responses in our

data and suggests that there is no reason for estimates

of non-response to be different if our study included

trials located elsewhere. Hence, under the assumption

of representativity, we attempted to provide a rough

estimate of the total cropping area in sub-Saharan

Africa that would be expected to be non-responsive to

fertilizer application. Taking published estimates of

total cropland areas planted to cereals as 52 million ha

(van Ittersum et al. 2016) and to legumes as 27 million

ha (Abate et al. 2012), and average levels of non-

response (absolute with correction for residual error,

and CNE relative response combined) of 0.5 and 12%

found in the present study, respectively for cereals and

legumes, the point estimate of the total area of non-

response to fertilizers for the two crop types would be

260,000 ha for cereals and 3,240,000 ha for legumes.

When ignoring plot-level residual variation (abso-

lute response without accounting for residual error or

empirical response), the average non-response of 4.9%

for cereals and 17% for legumes would lead to

corresponding point estimates of total non-responsive

area of 2,548,000 ha and 4,590,000 ha respectively.

Discussion

Prevalence of non-response to fertilizers

The present study used different statistical approaches

to quantify the field-level variability in crop response

to fertilizers from a collection of nonreplicated on-

farm trials in SSA.

Our results show that while significant variations in

response exist for both crops, actual agronomic non-

response is relatively rare among on-farm trials and

most probably below 1% and 15% of fields respec-

tively for cereals and legumes. For cereals, accounting

for plot-level residual error, either by fixing it to

published values or by estimating it using our regres-

sion approach, produced low estimates of non-re-

sponse compared to simple, empirical estimates of

non-response, which do not consider the residual error.

Studies have reported agronomic non-responses for

maize in the range of 10–21% fields (Shehu et al.

2018; Ichami et al. 2019; Kihara et al. 2016). These

proportions are higher than the mean in our study

(Table 1) but mostly within the upper confidence

limits in the option of non-consideration of residual

error (Supplement Table S3a). Without residual error

correction, only 3 studies had the mean proportion

non-response within the reported range, whereas none

of the studies was in that range when the residual error

was considered (Supplement Table S3a&b). It seems

therefore that although non-response exists, its mag-

nitude may be lower than often reported, as long as

residual variation is considered in the analysis.

The occurrence of agronomic non-response was

more pronounced in legumes regardless of the

approach used, and the wide confidence interval

makes all approaches relatively similar. Studies

reporting non-response to fertilizers in legumes are

rare and information on that topic scanty. In on-farm

fertilizer trials conducted in DR Congo, Kenya,

Nigeria and Tanzania, Roobroeck et al (2021) reported

18–62% non-responsive fields for soybean, when non-

response was defined as a failure to increase the yield

of unfertilized control above 150 kg ha-1. Ronner

et al (2016), using 10% yield increase as the increase

needed for a treatment effect to be visible for farmers,

reported 10–40% fields which did not reach that

benchmark in Northern Nigeria. These ranges are

probably not very different if a common threshold for

non-response could be used. Defining a universal

benchmark for response could improve the estimation

of the occurrence of non-response in legumes.

Regardless of the crop, the range in the proportions

of non-response estimated using the regression

approach, with CNE as measure of general fertilizer

application intensity, was similar to that when a fixed

residual error was considered (Table 1). The regres-

sion-based approach solves two limitations to the

quantification of fertilizer response variation. First, it

implements a single measure of fertilizer application

intensity that can be used for data on all types of

fertilizers (single, multi-nutrient). Second, it avoids

inflating variability by estimation plot-level residual
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variation from the regression model. Although attrac-

tive, there are obvious limitations to this approach.

First, by using a single measure of application

intensity the interpretation of response is not always

straightforward, since a soil may be unresponsive for

single nutrients only, requiring caution when inter-

preting results. Second, the use of CNE implies

assumptions on crop nutrition, including a linear

response at lower nutrient rates, that may not be

entirely accurate and involve crop specific parameters

that may be adjusted over time, potentially making

published values of agronomic efficiency obsolete.

Nonetheless, we consider this approach to have

promise as a basis for diagnosing general problems

that inhibit crop responses to nutrient applications

using the type of nonreplicated data that is typically

available in the African smallholder context.

Representativeness of trial locations and spatial

patterns of non-response

One may question the extent to which our reported

proportions of non-response is representative for sub-

Saharan Africa, considering that our trial locations

only cover a relatively small portion of the target

region. Indeed, on one hand, we found a rather strong

spatial bias in our sample of trials, particularly in the

case of legumes. On the other hand, we could not

predict any meaningful amount of response variation,

after correcting for individual studies, based on

climatic and environmental covariables. This lack of

obvious dependence on environmental factors sug-

gests that data from other parts of the region can be

expected to yield similar outcomes, although results

may vary considerably between individual studies,

especially for legumes. Therefore, accepting the

current average level of non-response as representa-

tive, we can provide a rough estimate of non-

responsive cultivated area as 260,000 ha and

3,240,000 ha for cereals and legumes respectively,

though there was a wide confidence interval for the

proportion of non-response. Failing to account for

plot-level residual variation (i.e. relying on simple

empirical response data) would result in estimates that

are tenfold higher for cereals and 1.4-fold higher for

legumes.

The fact that variation in responses to fertilizers

was not explained by any climatic or topsoil factors

suggests that the variation primarily reflects transient

weather or field-level soil effects, implying that the

data used does not allow to identify and target specific

areas of high or low fertilizer efficiency, something

that has been reported in other studies (Ronner et al.

2016). In fact, studies trying to identify the biophysical

properties (soil, rainfall) that cause non-response to

fertilizers have generated inconsistent results, attrib-

uted to the interactions between factors (Roobroeck

et al. 2021; Kihara et al. 2016). Zingore et al (2007)

reported that low soil organic C was the main cause of

the non-response in their study. In opposite, non-

responsive fields in Kihara et al (2016), and Shehu et al

(2018), had relatively higher soil organic C than the

responsive fields, even though they did not show high

yields in the unfertilized treatments. The two studies

attributed non-response to imbalanced soil nutrients,

including secondary and micronutrients, but other, not

considered factors likely also play an important role.

Conclusions

The two approaches used here demonstrate that it is

possible to account for plot-level residual variation in

non-replicated on-farm trials, and that using a general

measure of fertilizer application intensity allows for

joint analysis and comparison of disparate datasets on

nutrient responses. Our study also identifies some

clear limitations that further research will hopefully

help to overcome. First, the estimates of plot-level

residual variation would improve by making specific

adjustments to on-farm trial designs for this purpose.

The need for sufficient coverage of geographic and

farming systems heterogeneity thereby has to be

balanced with that for estimates of residual variation.

Options include the inclusion of duplicate plots for

certain treatments or increasing the number of eval-

uated nutrient levels. Even applying a small number of

on-site replications across the study region could be an

option in this regard. Second, while our regression

approach for estimating fertilizer response is attrac-

tive, it works best when the relation between the

measure of application intensity and yield is expected

to be linear. While this may be true for CNE under

some assumptions, there is a clear need to look

critically at what type of nutrient response functions

might perform best in this regard and validate them

empirically if possible. Third, the relatively strong

spatial bias reported for our dataset is a reminder of the
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need for better sampling design when setting up on-

farm nutrient response trials. Logistic and organiza-

tion constraints very often lead to clustered and

spatially unrepresentative trial sites. While it does

not necessarily invalidate the outcomes, it is obvious

that a systematic sampling approach that ensures

proper representation of a pre-defined target area

would hold many advantages in terms of analysis and

extrapolation of results, an aspect that some recent

initiatives are considering (e.g. African Cassava

Agronomy initiative (https://acai-project.org) and

which should be widely adopted.
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