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Mistake Bounds on the Noise-Free Multi-Armed Bandit

GameI

Atsuyoshi Nakamuraa,∗, David P. Helmboldb, Manfred K. Warmuthb

aHokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo 060-0814, Japan
bUniversity of California at Santa Cruz, USA

Abstract

We study the {0, 1}-loss version of adaptive adversarial multi-armed bandit
problems with α(≥ 1) lossless arms. For the problem, we show a tight bound
K − α − Θ(1/T ) on the minimax expected number of mistakes (1-losses),
where K is the number of arms and T is the number of rounds.

Keywords: computational learning theory, online learning, bandit
problem, mistake bound

1. Introduction

We study a game, which we call the noise-free multi-armed bandit game.
This game is the {0, 1}-loss version of an adversarial multi-armed bandit
problem with α(≥ 1) lossless arms. It is a T -round game. In each round t,
the adversary sets losses `t,i(∈ {0, 1}) for each arm i, then the player chooses
an arm it from the K arms, and finally, the loss `t,it of the chosen arm is
revealed to the player. The player is said to make a mistake if `t,it = 1.
The player’s objective is to minimize the expected number of mistakes over
the T rounds while the adversary’s objective is to maximize the expected
number of mistakes. If the adversary were unconstrained, it could set each
`t,i to 1, forcing T mistakes. However, here the adversary must ensure that
at least α arms remain loss free (i.e. at the end of the game there are some
α js such that

∑T
t=1 `t,j = 0). We call the situation with this constraint on
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the adversary the noise-free setting. A trivial upper bound on the minimax
number of mistakes is K − α because any clever player will not re-choose an
arm that has been observed to have loss.

There have been many studies on the adversarial multi-armed bandit
problem [2, 3, 4]. To the best of our knowledge, however, the problem in the
noise-free setting has not been studied yet. Many people might wonder if the
noise-free setting is interesting.

In fact, after a little consideration, we can find the minimax strategy in
the case of the full-information (all losses revealed at each trial) and oblivious
adversary settings: in the case with α = 1, for T ≥ K − 1, the minimax ex-
pected number of mistakes in the noise-free setting is

∑K
i=2(1/i) = Θ(logK)

for the full-information version of the problem and (K − 1)/2 for the oblivi-
ous adversary version of the problem. (See the detailed analyses in Sec. 5.1
and Sec. 5.2). Note that a nice adversary’s algorithm [2] for the (noisy)
multi-armed bandit problem is known and can be modified for the noise-free
problem with one lossless arm, but it is an oblivious adversary algorithm, so
the expected number of mistakes forced by that adversary cannot be lower
bounded by any value larger than (K − 1)/2. The lower bound of (K − 1)/2
for an oblivious adversary leaves a large uncertainty on the minimax expected
number of mistakes in the K-armed bandit game with one lossless arm: it is
far from the trivial upper bound of K − 1. Our analysis significantly closes
this gap, yielding both upper and lower bounds of K − 1 − Θ(1/T ), and
exactly matching bounds for the two-arm case.

Determining the minimax adaptive adversary strategy in the noise-free
setting is non-trivial. An adaptive adversary does not decide which arms will
be lossless at the beginning, but needs only ensure that at least α arms remain
lossless throughout. Setting 1-losses to some arms restricts the choice of
eventual lossless arm, and there are cases where it is better for the adversary
to maintain flexibility by keeping the number of remaining lossless arms.
For example, in the noise-free 2-armed bandit game with one lossless arm,
consider a player who chooses each arm i with equal probability at t = 1,
and continues to choose the same arm i until it makes a mistake. The player
then switches to choosing the other arm, which must be a lossless arm by the
constraint on the adversary. This player has an expected number of mistakes
of 1/2 if the adversary sets any loss to 1 at the first t = 1 trial. But If the
adversary sets both losses to zero at trial t = 1, it can see which arm is
chosen by the player and can force a mistake in trial t = 2.

A natural strategy for the player is choosing an arm uniformly at random

2



from the arms with no observed 1-loss so far, but this is not the best strategy.
Its expected number of mistakes is 1−1/2T in a T -round 2-armed game with
one lossless arm when the adversary selects one arm to have loss 1 at every
trial (and the other arm always has loss 0). To reduce the expected number
of mistakes the player can instead adopt a gradually sticking strategy: choose
one arm uniformly at random when t = 1, and at each time t > 1, choose the
same arm as the previous trial with probability t/(t+1) and choose the other
arm with probability 1/(t+ 1). This gradually sticking strategy reduces the
expected number of mistakes to 1−1/(T +1) against the above non-adaptive
adversary. Lemma 2 implies that this player’s expected number of mistakes
is also bounded by 1 − 1/(T + 1) when matched against any adversary for
the 2-armed game.

We analyze expected mistake bounds for the T -round K-armed bandit
game with an adaptive adversary in the case with α(≥ 1) lossless arms. We
design both the player’s and adversary’s algorithms and prove a tight bound
K−α−Θ(1/T ) on the minimax expected number of mistakes by analyzing the
expected number of mistakes for those algorithms. Our algorithms repeatedly
call algorithms for a novel survival game as subroutines. The survival game
G(T,K, k) is a simpler version of a noise-free K-armed bandit game with T
rounds and a more restricted adversary. The adversary starts with the all-
zero loss vector, and at any round can set the arms’ losses to any 0-1 vector
with exactly k ones. However, once the adversary changes to a non-zero
vector of losses, it must keep using that loss setting for the remainder of the
trials. The goal of the player is to maximize the probability of never making
a mistake over the T trials, while the adversary’s goal is to maximize the
probability that at least one mistake is made. By analyzing algorithms for the

survival game, we prove an upper bound

(
K − 1
k

)
/

(
T +

(
K
k

)
− 1

)
and a

lower bound (K−k)/(K+ (T − 1)k) on the minimax no-mistake probability

for the problem, where K is the number of arms and

(
K
k

)
=

K!

k!(K − k)!
.

This paper is organized as follows. In Sec. 2, we explain necessary notions
and notations for describing our algorithms and their analyses and define
the noise-free multi-armed bandit game and the survival game. We first
analyze the no-mistake probability bounds for the survival game in Sec. 3,
then analyze mistake bounds for the noise-free multi-armed bandit game in
Sec. 4. In Sec. 5, we analyze the mistake bounds for the full-information and
oblivious adversary version of the problem, and compare the bounds for our
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setting (adaptive adversary version of the problem) with those. We conclude
the paper with an open problem in Sec. 6.

2. Problem Setting

For any natural numbers i, j with i ≤ j, [i..j] denotes the set {i, . . . , j}
and we let [j] denote [1..j]. For any sequence x1, . . . , xn, we let x[b..e] denote
its contiguous subsequence xb, . . . , xe. We use x[b..b−1] for the null sequence,
that is, the sequence with no element.

The noise-free multi-armed bandit problem we consider here is the {0, 1}-
loss version of an adversarial multi-armed bandit problem with α(≥ 1) loss-
less arms. It is a T -round game between a player and an adversary. There
are K arms (of slot machines): arm 1, . . . , arm K. At each time t = 1, . . . , T ,
the adversary picks a loss `t,i ∈ {0, 1} for each arm i ∈ [K]. Let `t ∈ {0, 1}K
denote the K-dimensional vector (`t,1, . . . , `t,K). The player, who does not
know `t, chooses arm It and suffers loss `t,It . We say that the player makes
a mistake at time t when `t,It = 1.

We allow the player to use a randomized strategy, so at each time t the
player’s choice It is a random variable. Let it denote a realization of random
variable It. We call (it, `t,it) a player’s observation at time t and denote it
by ot. Each player’s choice It can depend only on his/her past observations
o[1..t − 1]. The adversary is allowed to behave adaptively: the adversary’s
decision `t can depend on both the player’s past choices i[1..t − 1] and the
adversary’s past decisions `[1..t− 1]. We also assume that the adversary has
sufficient power to analyze the algorithm and determine the probabilities of
its possible choices.

The player’s and the adversary’s objectives are minimization and maxi-
mization, respectively, of the player’s expected number of mistakes, E(

∑T
t=1 `t,It).

We evaluate the minimax expected number of mistakes for player’s minimiz-
ing and adversary’s maximizing strategy.

We further introduce the following notions and notations for description
of algorithms and analyses. For any set S ⊆ [K], define 1S to be the K-
dimensional {0, 1}-vector whose ith component is 1 if and only if i ∈ S,
and let 0 denote 1∅. Then, any loss vector `t can be represented as 1S for
S = {i | `t,i = 1}. We say that arm i is polluted at time t if `s,i = 1 for some
s ∈ [1..t− 1], and that arm i is clean at time t otherwise. A polluted arm is
said to be dirty if the loss of the arm has been already revealed to the player.
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Note that the adversary can distinguish clean arms from polluted arms but
the player cannot.

We also consider a following simpler variant of the noise-free multi-armed
bandit problem. A survival game G(T,K, k) is a noise-free K-armed bandit
problem with T rounds in which the adversary can change his/her loss vectors
to some 1S with |S| = k only once and must pick zero vectors until then,
where | · | is the number of elements in set ‘·’. The game is over when
the player makes a mistake. In this problem, we evaluate the minimax no-
mistake probability, which coincides with one minus the expected number
of mistakes in this case (since the survival game stops when the algorithm
makes a mistake).

We first analyze mistake bounds for the survival game, then prove mistake
bounds for the noise-free multi-armed bandit game making use of the results
on the survival game.

3. No-Mistake Probability Bounds for the Survival Game

In this section, we show upper and lower bounds on the no-mistake prob-
ability for survival game G(T,K, k).

First, we analyze the player’s algorithm GradSticking(T,K, k) (Algo-
rithm 1) to prove a lower bound for the G(T,K, k) survival game. Choosing
an initial arm according to uniform distribution, algorithm GradSticking
gradually increases its probability of repeating the previously chosen arm;
the probability that the arm chosen at time t − 1 is also selected at time t,
becomes larger as t becomes larger.

We state the following general facts about the algorithm’s mistake proba-
bilities, which are used not only for analysis of the survival game but also for
that of the noise-free bandit game in the next section. Note that the lemma
holds for a more general adversary than the adversary in the survival game:
the survival game adversary corresponds to using m = 1 and k1 = k in the
lemma.

Lemma 1. Let 0 = t0 < t1 < t2 < · · · < tm < tm+1 = T + 1. Assume the
adversary’s loss vectors 1St at time t satisfy:

1. S0 = ∅
2. if t is not one of the ti’s then St = St−1
3. if t is one of the ti’s, then St ⊃ St−1. Let ki = |St| − |St−1|.
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Algorithm 1: Player GradSticking(T,K, k)

input : T :the number of rounds, K: number of arms,
k: number of 1s in a changed loss vector

initialize: i0 ← 1

for time t = 1, . . . , T do
Select it ∈ [K] as

it =


it−1 with probability

1 + (t− 1)k

K + (t− 1)k
and

j with probability
1

K + (t− 1)k
for j 6= it−1.

Receive `t,it ∈ {0, 1}.
if `t,it = 1 then

return /* Game over with a mistake */

end

end
return /* Game over without a mistake */

Then, for each time t = 1, . . . , T , if algorithm GradSticking(T,K, k) makes
no mistake at times 1, . . . , t−1 (i.e. conditioning on `t′,It′ = 0 for all t′ < t),
we have for time t

its no-mistake probability


≥
K −

∑i
j=1 kj

K + (t− 1)k
when t = ti and

=
(t− 1)k +K −

∑i
j=1 kj

K + (t− 1)k
when ti < t < ti+1.

(Proof) For t = ti, the adversary can set his/her loss vector to 1St so that St
contains the previously chosen arm it−1. Since the no-mistake probability is
minimized in this case, it is at least

K −
∑i

j=1 kj

K + (t− 1)k
.

For ti < t < ti+1, the assumption that GradSticking(T,K, k) makes no mis-
take at time t − 1, means it−1 6∈ St−1. Furthermore, St−1 = St in this case.
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Thus the algorithm’s no-mistake probability is

(t− 1)k +K −
∑i

j=1 kj

K + (t− 1)k
.

�

For this algorithm, we obtain a lower bound on the no-mistake probability
shown in Theorem 1 below.

Theorem 1. In the survival game G(T,K, k), algorithm GradSticking(T,K, k)

makes no mistake with probability at least
K − k

K + (T − 1)k
.

(Proof) Assume that the adversary changes his/her loss vector to 1S at some
time t0. Then, any k-sized set S that contains it0−1 maximizes the probability
that algorithm GradSticking makes a mistake. For such S, the probability
that algorithm GradSticking makes no mistake is (using Lemma 1)

K − k
K + (t0 − 1)k

· K + (t0 − 1)k

K + t0k
· · · K + (T − 2)k

K + (T − 1)k
=

K − k
K + (T − 1)k

.

�

Since the no-mistake probability is ((K − k)/K)T when arms are always
chosen according to the uniform distribution and the adversary uses 1S from
the beginning, we know that no-mistake probability is improved significantly
by gradually increasing the probability of repeating the previously chosen
arm. Does Algorithm GradSticking(T,K, k) increase these probabilities in
the best possible way?

Consider a player algorithm that chooses arm j with probability pj|i(t) at
time t right after arm i is chosen at time t−1. The arm-selection probabilities
of algorithm GradSticking(T,K, k) satisfies the following two conditions C1
and C2.

C1 The probability pj|i(t) depends on time t and the arm i that is chosen
at time t− 1, but does not depend on the choices before time t− 1.

C2 p1|1(t) = p2|2(t) = · · · = pK|K(t) ≥ 1/K for all t ∈ {1, 2, . . . , T}.

7



The following theorem says that GradSticking(T,K, k) is optimal among
the algorithms using arm-selection probabilities satisfying conditions C1 and
C2, so there is no better schedule for increasing the probability of repeating
the previously chosen arm under the constraint of those conditions.

Theorem 2. For survival game G(T,K, k), any algorithm using arm-selection
probabilities that satisfy conditions C1 and C2, makes no mistake with prob-

ability at most
K − k

K + (T − 1)k
in the worst case.

(Proof) As in the proof of Theorem 1, consider the adversary’s strategy that
changes his/her loss vector to 1S at time t0. The adversary wants to use set
S that minimizes the probability that the player makes no mistake, which is∑
it0 ,...,iT 6∈S

pit0 |it0−1(t0)× · · · × piT |iT−1
(T )

=
∑

it0 ,...,iT−1 6∈S

pit0 |it0−1(t0)× · · · × piT−1|iT−2
(T − 1)×

∑
iT 6∈S

piT |iT−1
(T ). (1)

Under Condition C1, the minimum of probability
∑

iT 6∈S piT |iT−1
(T ) for each

iT−1 6∈ S can be maximized using a probability distribution

pj|i(T ) =
1− p(T )

K − 1
for j 6= i,

where p(t) is the probability of sticking, p(t) ≡ p1|1(t) = · · · = pK|K(t) for
t = 1, . . . , T . Then, the right-hand side of Eq. (1) is upper bounded by∑
it0 ,...,iT−1 6∈S

pit0 |it0−1(t)× · · · × piT−1|iT−2
(T − 1)×

(
p(T ) + (K − k − 1)

1− p(T )

K − 1

)

=
∑

it0 ,...,iT−1 6∈S

pit0 |it0−1(t)× · · · × piT−1|iT−2
(T − 1)× kp(T ) + (K − k − 1)

K − 1

=
∑

it0 ,...,iT−2 6∈S

pit0 |it0−1(t)× · · · × piT−2|iT−3
(T − 2)

∑
iT−1 6∈S

piT−1|iT−2
(T − 1)

× kp(T ) + (K − k − 1)

K − 1

(2)
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The minimum of probability
∑

iT−1 6∈S piT−1|iT−2
(T − 1) for each iT−2 6∈ S can

be maximized similarly, and applying the same argument repeatedly, the
right-hand side of Eq. (2) (and thus the probability of no mistake) is upper
bounded by

(K − k)
1− p(t0)
K − 1

T∏
t=t0+1

kp(t) + (K − k − 1)

K − 1
≡ q(t0). (3)

Note that
∑

it0 6∈S
pit0 |it0−1 ≤ (K − k)((1 − p(t0))/(K − 1)) even for the

best player’s strategy because the adversary can set S so as to include
arm it0−1. Let q(t0) denote Expression (3). The player wants to maximize
mint0=1,...,T q(t0). Only q(1) depends on probability p(1), and q(1) is maxi-
mized as a function of p(1) ∈ [1/K, 1] by setting p(1) = 1/K. Assume that
min{q(1), . . . , q(t′)} is maximized by setting p(t) = (1+(t−1)k)/(K+(t−1)k)
for t = 1, . . . , t′. Consider maximization problem of min{q(1), . . . , q(t′ + 1)}.
This problem is equivalent to the maximization problem of

min{min{q(1), . . . , q(t′)}, q(t′ + 1)}.

Probability q(t′ + 1) does not depend on p(t) for t = 1, . . . , t′, so the max-
imization in terms of p(t) for t = 1, . . . , t′ affects only the maximization of
min{q(1), . . . , q(t′)}, which is done by setting p(t) = (1 + (t− 1)k)/(K + (t−
1)k) for t = 1, . . . , t′ from the assumption. Note that, in such setting,

min{q(1), . . . , q(t′)} =q(1) = · · · = q(t′)

=
K − k

K + (t′ − 1)k

T∏
t=t′+1

kp(t) + (K − k − 1)

K − 1

holds. As a function of p(t′ + 1), min{q(1), . . . , q(t′)} is increasing but q(t′ +
1) is decreasing, so min{min{q(1), . . . , q(t′)}, q(t′ + 1)} is maximized when
min{q(1), . . . , q(t′)} = q(t′ + 1), that is, in the case with

1

K + (t′ − 1)k
· kp(t

′ + 1) + (K − k − 1)

K − 1
=

1− p(t′ + 1)

K − 1
.

By solving this equation, we get p(t′ + 1) = (1 + t′k)/(K + t′k). Therefore,
by mathematical induction, we know that min{q(1), . . . , q(T )} is maximized
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by setting p(t) = (1 + (t− 1)k)/(K + (t− 1)k) for t = 1, . . . , T , and in that
case,

min{q(1), . . . , q(T )} =
K − k

K + (T − 1)k

holds. �

Next, we prove an upper bound on the no-mistake probability for the sur-
vival game G(T,K, k) by analyzing an adversary’s algorithm that generates
loss vectors `t adaptively. Algorithm Wait&Sticking(T,K, k) (Algorithm 2)
is an adversary algorithm for survival game G(T,K, k). At each time t ∈ [T ],
if the previous loss vector was the waiting loss vector, `t−1 = 0, then it ex-
amines the algorithm to calculate the best time c∗ ∈ [t, T ] to change the loss
vector. If this best time is the current time (c∗ = t), then it sets `t to the loss
vector `c∗ minimizing the no-mistake probability. Here, the best time c∗ to
change the loss vector is that time c ∈ [t, T ] where the no-mistake probability
can be minimized by changing to the best (for the adversary) loss vector at
time c and sticking to it from then on.

We use the following function in the statement of the theorem: for three
natural numbers T,K, k, define F (T,K, k) as

F (T,K, k) ≡

(
K − 1
k

)
T +

(
K
k

)
− 1

.

Theorem 3. In the survival game G(T,K, k), the Wait&Sticking(T,K, k)
adversary forces the no-mistake probability of any player algorithm to be at
most F (T,K, k).

(Proof) Consider the probability of finishing without a mistake after we fix
the set S of lossy arms during time b. Let R = T − b+ 1 (so T = b+R− 1)
denote the remaining time, including time b, and

pb,S(o[1..b− 1], R) = P

{
b+R−1∑
t=b

`t,It = 0

∣∣∣∣∣ O[1..b− 1] = o[1..b− 1]
`b = · · · = `b+R−1 = 1S

}

for any natural number b, observation sequence o[1..b− 1] ∈ ([K]× {0})b−1
and S ⊆ [K]. For c ∈ [b..b+R− 1], let pc(o[1..b− 1], R) denote the value pc
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Algorithm 2: Adversary Wait&Sticking(T,K, k)

recall that O is the random variable for the loss observations, o is its
realization, `t is the loss vector at time t, and I is the sequence of arm
choices.
input : T : number of rounds, K: number of arms,

k: number of 1s in a changed loss vector

S∗ ← ∅ ; /* best arms to assign loss, initially undecided */

for time t = 1, . . . , T do
if S∗ = ∅ then /* still waiting */

pmin = 2
for c = t, . . . , T do

pc ←

EI[t..T ]

 min
S ⊆ [K]
|S| = k

P


T∑
s=c

`s,Is = 0

∣∣∣∣∣∣∣∣
O[1..t− 1] = o[1..t− 1],
I[t..c− 1],
`t = · · · = `c−1 = 0,
`c = · · · = `T = 1S




if pc < pmin then
c∗ ← c, pmin ← pc

end

end
if c∗ = t then /* stick now */

S∗ ←

arg min
S⊆[K],|S|=k

P

{
T∑
s=t

`s,Is = 0

∣∣∣∣∣ O[1..t− 1] = o[1..t− 1],
`t = · · · = `T = 1S

}
end

end
`t ← 1S∗
Observe the player’s choice it
if `t,it = 1 then

return /* Game over with a mistake */

end

end
return /* Game over without a mistake */

that is set in Wait&Sticking(b+R− 1, K, k) at time b, namely,

pc(o[1.., b− 1], R)
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=EI[b..b+R−1]

 min
S⊆[K],|S|=k

P


b+R−1∑
t=c

`t,It = 0

∣∣∣∣∣∣∣∣
O[1..b− 1] = o[1..b− 1],
I[b..c− 1],
`b = · · · = `c−1 = 0,
`c = · · · = `b+R−1 = 1S


 .

Then,

pc∗(o[1..0], T ) = min
c∈[T ]

pc(o[1..0], T )

≥P

{
T∑
t=1

`t,It = 0

∣∣∣∣∣Wait&Sticking(T,K, k) chooses `1, . . . , `T

}
holds. We prove that

pc∗(o[1..b− 1], R) ≤ F (R,K, k)

holds for any natural number b, observation sequence o[1..b − 1] ∈ ([K] ×
{0})b−1 and for any natural number R of remaining time. It suffices to prove
the inequality∑

S⊆[K],|S|=k

pb,S(o[1..b− 1], R) +
b+R−1∑
c=b+1

pc(o[1..b− 1], R) ≤
(
K − 1
k

)
(4)

because pc∗(o[1..b− 1], R) is the minimum of the terms on the left hand side
of the inequality, and the average of these terms is at most(

K − 1
k

)/(
R +

(
K
k

)
− 1

)
when Ineq. (4) holds.

We prove Ineq. (4) by mathematical induction on R for any fixed b. When
R = 1, for any natural number b and any o[1..b− 1] ∈ ([K]× {0})b−1,

pb,S(o[1..b− 1], 1) =P

{
`b,Ib = 0

∣∣∣∣ O[1..b− 1] = o[1..b− 1]
`b = 1S

}
=P {Ib 6∈ S | O[1..b− 1] = o[1..b− 1]}

holds. Thus, Ineq. (4) holds because∑
S⊆[K],|S|=k

pb,S(o[1..b− 1], 1) +
b∑

c=b+1

pc(o[1..b− 1], 1)

=
∑

S⊆[K],|S|=k

P {Ib 6∈ S | O[1..b− 1] = o[1..b− 1]} =

(
K − 1
k

)
.
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Here, the last equality holds because there are just

(
K − 1
k

)
size-k subsets

of [K] \ {i} for each arm i ∈ [K]. Assume that Ineq. (4) holds for any
natural number b when there is R time remaining. When there is R+ 1 time
remaining we have:

∑
S⊆[K],|S|=k

pb,S(o[1..b− 1], R + 1) +
b+R∑
c=b+1

pc(o[1..b− 1], R + 1)

=
∑

S⊆[K],|S|=k

∑
i 6∈S

P{Ib = i}pb+1,S((o[1..b− 1], (i, 0)), R)

+
b+R∑
c=b+1

∑
i∈[K]

P{Ib = i}pc((o[1..b− 1], (i, 0)), R)

=
∑
i∈[K]

P{Ib = i}× ∑
i 6∈S⊆[K],|S|=k

pb+1,S((o[1..b− 1], (i, 0)), R)

+ min
S⊆[K]

pb+1,S((o[1..b− 1], (i, 0)), R) +
b+R∑
c=b+2

pc((o[1..b− 1], (i, 0)), R)


≤
∑
i∈[K]

P{Ib = i}× ∑
S⊆[K],|S|=k

pb+1,S((o[1..b− 1], (i, 0)), R) +
b+R∑
c=b+2

pc((o[1..b− 1], (i, 0)), R)


≤
∑
i∈[K]

P{Ib = i}
(
K − 1
k

)
=

(
K − 1
k

)

holds, where the last inequality is due to the assumption that Ineq. (4) holds
when there is R time remaining. Therefore, Ineq. (4) holds for all natural
numbers b and R. �

Remark 1. By Theorem 1 and 3, the minimax no-mistake probability P ∗(T,K, k)
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for survival game G(T,K, k) can be bounded as

1

1 +
kT

K − k

≤ P ∗(T,K, k) ≤ 1

1 +
T − 1(
K−1
k

) +
k

K − k

.

The upper bound coincides with the lower bound when k = 1; both the values
are (K − 1)/(T +K − 1). However, the difference between the coefficients of
T in the denominators can be significant when K � k ≥ 2 :

k

K − k
≈ k

K
while

1(
K − 1
k

) ≈ k!

Kk
.

4. Mistake Bounds for the Noise-Free Bandit Game

In the survival game G(T,K, k), the adversary is restricted to change
his/her loss vector just once, from the zero vector to a vector with k 1’s.
How much does the no-mistake probability increase when this restriction
is removed? We answer this question for player GradSticking(T,K, 1) in
Lemma 2, which will be used to prove an upper bound on the expected
number of mistakes for the noise-free multi-armed bandit game. The follow-
ing proposition (proven in Appendix A) is necessary for proving the lemma.
Here m represents the number of times that the adversary augments the loss
vector.

Proposition 1. For any integers m ≥ 1, K > m, and T ≥ m,

m∏
i=1

(K −∑i
j=1 kj

K + ti − 1

) ∏
ti<t<ti+1

(
K −

∑i
j=1 kj + t− 1

K + t− 1

)
=

∏m
i=1

[(
K −

∑i
j=1 kj

)∏ki−1
h=1

(
K −

∑i
j=1 kj + ti − 1 + h

)]
∏K−1

h=K−β(T + h)
(5)

holds for any integers k1, ..., km ≥ 1 with
∑m

i=1 ki = β < K and any integers
1 ≤ t1 < · · · < tm < tm+1 ≡ T + 1.
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For notational convenience, define Q(K,T, α) as

Q(K,T, α) =
K−1∏
h=α

h

T + h
=

T∏
h=1

α− 1 + h

K − 1 + h

for any natural numbers K, T and α < K. Note that asymptotic behavior
of Q(K,T, α) with respect to T is Θ(1/TK−α) for fixed K, and that with
respect to K is Θ(1/KT ) for fixed T .

Lemma 2. Algorithm GradSticking(T,K, 1) makes no mistakes over T trials
with probability at least Q(K,T, α) in the K arm, T round noise-free multi-
armed bandit game with α lossless arms.

(Proof) Until it makes a mistake, Algorithm GradSticking(T,K, 1) is sym-
metric in its choice of arms: at each time t the previously chosen arm has the
same probability of being re-pulled regardless of which arm was previously
chosen, and each other arm has the same lesser probability of being chosen.
We exploit these symmetries in the following argument.

Consider an arbitrary adversary. Without loss of generality, we assume
that the adversary always sets the loss of polluted arms to 1. Let t1 < t2 <
. . . < tm be the m times that the adversary pollutes arms (sets an arms loss
to 1 for the first time), and for 1 ≤ i ≤ m let ki be the number of newly-
polluted arms at time ti. Although technically m and the ti and ki values
may be random variables depending on the adversaries randomization or the
the particular arms chosen previously by the algorithm, we will bound the
probability of no mistake for each realization, and thus the average of any
distribution induced by a particular adversary.

Since the number of clean arms at time ti + 1 is K −
∑i

j=1 kj ≥ α,
by Lemma 1 the probability that the algorithm makes no mistake at time

ti, given that it has not previously made a mistake, is at least
K−

∑i
j=1 kj

K+ti−1 .
Similarly, the probability that the algorithm makes no mistake at some time t

between ti and ti+1 (when no arms become polluted) is at least
K−

∑i
j=1 kj+t−1
K+t−1 .

Furthermore, the probability that the algorithm makes no mistake at times
before t1 is 1. Note that we define tm+1 ≡ T + 1 for notational convenience.
Therefore, the probability the algorithm never makes a mistake over all T
trials is at least

m∏
i=1


(
K −

∑i
j=1 kj

K + ti − 1

) ∏
ti<t<ti+1

(
K −

∑i
j=1 kj + t− 1

K + t− 1

) . (6)
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Algorithm 3: Player GradStickingSub(b, e, AD)

input : b: beginning time, e: ending time, AD: dirty arm set
output : t: game-over time, it: 1-loss arm
initialize: ib−1 ← 1st arm in [K] \ AD, KD ← K − |AD|
for time t = b, . . . , e do

Select it ∈ [K] \ AD as

it =


it−1 with probability

1 + t− b
KD + t− b

and

j with probability
1

KD + t− b
for j 6= it−1.

Receive `t,it ∈ {0, 1}.
if `t,it = 1 then

return (t, it) /* Game over with a mistake */

end

end
return (e, ie) /* Game over without a mistake */

If
∑m

j=1 kj < K−α, the value of Expression (6) can be decreased by increasing
any of k1, . . . , km. Thus, the value is minimized when

∑m
j=1 kj = K − α. In

that case, by Proposition 1, it is equal to∏m
i=1

((
K −

∑i
j=1 kj

)∏ki−1
h=1

(
K −

∑i
j=1 kj + ti − 1 + h

))
∏K−1

h=α (T + h)
.

Since ti ≥ 1 for all i = 1, . . . ,m, this is lower bounded by

K−1∏
h=α

h

T + h
= Q(K,T, α).

�

Player Algorithm GradStickingSub(b, e, AD) (Algorithm 3) is a version of
GradSticking(T,K, 1) in which the interface is modified so as to be usable as
a subroutine. In GradStickingSub(b, e, AD), the set of dirty arms AD is given
as input, and the algorithm prevents those dirty arms from being chosen.
The following corollary of Lemma 2 holds trivially.
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Algorithm 4: Player RepGradSticking(T,K)

parameter: T : number of trials, K: number of arms
initialize : t← 0, AD ← ∅
repeat

(t, i)← GradStickingSub(t+ 1, T, AD)
AD ← AD ∪ {i}

until t = T ;

Corollary 1. In the noise-free K-armed bandit game with α noiseless arms,
let AD be the set of dirty arms at the beginning of trial b. Then, from time b
to e, Algorithm GradStickingSub(b, e, AD) makes no mistakes with probability
at least Q(KD, T

′, α), where KD = K−|AD| is the number of non-dirty arms
and T ′ = e− b+ 1 is the number of rounds.

Player algorithm RepGradSticking (Algorithm 4) repeatedly calls Grad-
StickingSub. Each call to Algorithm GradStickingSub returns at the end
time T or the first time t(< T ) when a mistake is made. In the latter case,
the arm i that became dirty due to the mistake is added to the dirty arm set
AD, and GradStickingSub is re-called with the beginning time t+ 1 and the
new dirty arm set.

The following theorem shows an upper bound on the expected number of
mistakes for the noise-free multi-armed bandit game.

Theorem 4. The expected number of mistakes made by player algorithm
RepGradSticking(T,K) is at most

min{T,K−α}∑
j=1

j∏
i=1

(1−Q(K − i+ 1, T − i+ 1, α))

≤min{T,K − α} −
min{T,K−α}∑

j=1

Q(K − j + 1, T − j + 1, α) (7)

in noise-free multi-armed bandit game with α lossless arms.

(Proof) By Corollary 1, algorithm RepGradSticking(T,K) makes a mistake
at least once with probability at most 1−Q(K,T, α) by calling GradStickingSub(1, T, ∅).

17



With the same argument, it further makes a mistake at least once more
with probability at most (1−Q(K,T, α))(1−Q(K − 1, T − 1, α)) by calling
GradStickingSub the second time. Continuing the same argument, algorithm
RepGradSticking(T,K) makes at most

min{T,K−α}∑
j=1

j∏
i=1

(1−Q(K−i+1, T−i+1, α)) ≤ T−
min{T,K−α}∑

j=1

Q(K−j+1, T−j+1, α)

mistakes. �

Remark 2. Note that the dominant non-constant minus-term of the right-
hand side of Ineq. (7) is Q(α + 1, T −K + α + 1, α) = α/(T −K + 2α + 1)
when T ≥ K −α, and Q(K −T + 1, 1, α) = α/(K −T + 1) otherwise. Thus,
the righthand side of Ineq. (7) is asymptotically K −α−Ω(α/T ) for fixed K
and T − Ω(α/K) for fixed T .

Remark 3. From the way of the proof of Theorem 4, we know that player
algorithm RepGradSticking(T,K) suffers at most k mistakes with probability

at least 1−
k+1∏
i=1

(1−Q(K−i+1, T−i+1, α)) for 0 ≤ k ≤ max{T−1, K−α−1}.

Note that the dominant term of this probability lower bound is Q(K − k, T −
k, α) =

∏K−k−1
h=α

h
T−k+h = Θ(1/TK−k−α), which rapidly converges to 0 when

T →∞ for any k < K − α.

Next we give our adversary algorithm for noise-free multi-armed bandit
problem. It is based on the adversary algorithm for the survival game and
uses information about the player through expectations over its arm choices.

Adversary Algorithm Wait&StickingSub(b, e, AP , k) (Algorithm 5) is a
version of Wait&Sticking(T,K, k) that is modified so as to be usable dur-
ing time period [b..e] ⊆ [T ] in the noise-free K-armed bandit game with T
rounds. During time period [b..e], Wait&StickingSub changes its loss vector
only once, from 1AP to 1AP∪S∗ where S∗ is a k-sized set of clean arms at
time b. For the player, this game is more difficult than the survival game
G(e−b+1, K−|AP |, k) when there is at least one polluted but non-dirty arm.
However, we obtain the following corollary of Theorem 3 without exploiting
this added difficulty.
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Algorithm 5: Adversary Wait&StickingSub(b, e, AP , k)

input : b: beginning time, e: ending time, AP : polluted arm set,
k: number of 1s in a changed loss vector

output : t: game-over time, S∗: set of arms whose loss is set to 1
initialize: AC ← [K] \ AP
S∗ ← ∅
for time t = b, . . . , e do

if S∗ = ∅ then
pmin = 2
for c = t, . . . , T do

pc ←

EI[t..T ]

 min
S ⊆ AC
|S| = k

P


T∑
s=c

`s,Is = 0

∣∣∣∣∣∣∣∣
O[1..t− 1] = o[1..t− 1],
I[t..c− 1],
`t = · · · = `c−1 = 1AP ,
`c = · · · = `T = 1AP∪S




if pc < pmin then
c∗ ← c, pmin ← pc

end

end
if c∗ = t then

S∗ ←

arg min
S⊆AC ,|S|=k

P

{
T∑
s=t

`s,Is = 0

∣∣∣∣∣ O[1..t− 1] = o[1..t− 1],
`t = · · · = `T = 1AP∪S

}
end

end
`t ← 1AP∪S∗
Observe the player’s choice it
if `t,it = 1 then

return (t, S∗) /* Game over with a mistake */

end

end
return (e, S∗) /* Game over without a mistake */

Corollary 2. In the the noise-free K-armed bandit game with T rounds, ad-
versary algorithm Wait&StickingSub(b, e, AP , k) forces any player algorithm
to have a no-mistake probability during time period [b..e] upper bounded by
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F (e− b+ 1, K − |AP |, k).

Algorithm RepeatW&S(K,T ) (Algorithm 6) is an adversary algorithm
for the noise-free multi-armed bandit game. First, the algorithm parti-
tions the whole range of times [1..T ] into m time periods [1..t1 − 1], [t1..t2 −
1], . . . , [tm−1..T ]. To simplify the indexing, we define t0 ≡ 1 and tm ≡ T + 1.
The algorithm also allocates a number of arms to each time period by
picking numbers k1, . . . , km with

∑m
i=1 ki = K − α. Then, for each pair

([ti−1..ti − 1], ki), the algorithm calls Wait&StickingSub(ti−1, ti − 1, AP , ki)
where AP is the set of arms polluted so far. When Wait&StickingSub returns
back before time ti−1, RepeatW&S updates the set AP of polluted arms and
uses the loss vector `t = 1AP for the remainder of the period.

The solution to the following optimization problem is used by the adver-
sary to obtain a partition of the whole time period [1..T ] and a division of
K − 1 that are difficult for any algorithm.

Problem 1. Given two integers T ≥ 1 and K ≥ 2, find two natural number
sequences t0, . . . , tm and k1, . . . , km that minimize

m∑
i=1

F (ti − ti−1, K −
i−1∑
j=1

kj, ki)

subject to

1 ≤ m ≤ K − α, (8)

1 = t0 < t1 < · · · < tm = T + 1 and (9)

k1 + · · ·+ km = K − α. (10)

The following theorem gives a lower bound on the expected number of
mistakes in the nose-free multi-armed bandit game.

Theorem 5. The adversary algorithm RepeatW&S(K,T ) forces the expected
number of mistakes made by any player algorithm to be at least

m−
m∑
i=1

F (ti − ti−1, K −
i−1∑
j=1

kj, ki)

for any positive integers m, t0, . . . , tm, k1, . . . , km satisfying (8),(9) and (10).
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Algorithm 6: Adversary RepeatW&S(K,T )

parameter: K: number of arms, T : number of trials
initialize : t0, . . . , tm, k1, . . . , km ← the solution of Problem 1,

AP ← ∅
for i = 1, . . . ,m do

(t′, S)← Wait&StickingSub(ti−1, ti − 1, AP , ki)
AP ← AP ∪ S
for t = t′, . . . , ti − 1 do

`t ← 1AP
Observe the player’s choice it

end

end

(Proof) By Corollary 2, within each call of Wait&StickingSub(ti−1, ti−1, AP , ki),
the expected number of mistakes made by any player algorithm is at least
1−F (ti− ti−1, K−

∑i−1
j=1 kj, ki). Thus the total expected number of mistakes

is at least m−
∑m

i=1 F (ti − ti−1, K −
∑i−1

j=1 kj, ki). �

The following corollary says that the upper and lower bounds shown in
this section are equal when α = K − 1.

Corollary 3. The minimax expected number of mistakes for the noise-free
K-armed bandit game with T rounds and α = K − 1 lossless arms is

1− K − 1

T +K − 1
.

(Proof) By Theorem 4, the minimax expected number of mistakes is upper
bounded by

1−Q(K,T, α) = 1− K − 1

T +K − 1

for any T ≥ 1 and K ≥ 2 in the (K − 1)-lossless-arm case (α = K − 1). For
α = K − 1, natural numbers m, t0, . . . , tm, k1, . . . , km that satisfy (8),(9) and
(10) are uniquely determined: m = 1, t0 = 1, t1 = T + 1, k1 = 1. So by
Theorem 5, the minimax expected number of mistakes is lower bounded by

1− F (T,K, 1) = 1− K − 1

T +K − 1
.
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For general K larger than 2, concrete lower bounds on the expected num-
ber of mistakes for the noise-free K-armed bandit game are shown in the
following two corollaries which can be derived from Theorem 5.

Corollary 4. RepeatW&S[K,T ] forces any player algorithm to make an ex-
pected number of mistakes at least

T

(
1−

( α
K

)1/T)
−
(
K
α

)(T−1)/T − 1

K
((

K
α

)1/T − 1
) (11)

when T ≤ K − α− 1, and, for each 1 ≤ h ≤ K − α, at least

HK −Hα+h + h− A2(h)(B(h) + 4h)

2B2(h)
(12)

when T ≥ h(h−1)
2

+K − α. Here Hn is the nth harmonic number and

A(h) =2
h∑
j=1

√
α + j − 1

B(h) =2T − 2(K − α) + (2α + h+ 1)h.

(Proof) For the first bound we have T ≤ K−α−1. Let m = T , and consider
positive integers t0, . . . , tm satisfying

t0 = 1, t1 = 2, t2 = 3, ..., tm−1 = T, tm = T + 1.

Then, starting from the expected mistake bound in Theorem 5,

m−
m∑
i=1

F (ti − ti−1, K −
i−1∑
j=1

kj, ki) =T −
T∑
i=1

F (1, K −
i−1∑
j=1

kj, ki)

=T −
T∑
i=1

(
K −

∑i−1
j=1 kj − 1

ki

)
(
K −

∑i−1
j=1 kj

ki

)
=T −

T∑
i=1

K −
∑i

j=1 kj

K −
∑i−1

j=1 kj
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expected mistakes are forced. By the inequality of arithmetic and geometric
means, we have

T −
T∑
i=1

K −
∑i

j=1 kj

K −
∑i−1

j=1 kj
≤ T − T

( α
K

)1/T
with equality if and only if

K −
∑i

j=1 kj

K −
∑i−1

j=1 kj
=
( α
K

)1/T
(13)

for all i = 1, . . . , T . Unfortunately, k1, . . . , kT that satisfy (13) are not inte-
gers. As an approximate solution, use k1, . . . , kT that satisfy

K −
i∑

j=1

kj =
⌈
αi/TK(T−i)/T⌉ ,

then

T −
T∑
i=1

K −
∑i

j=1 kj

K −
∑i−1

j=1 kj
=T −

T∑
i=1

dαi/TK(T−i)/T e
dα(i−1)/TK(T−i+1)/T e

≥T −
T−1∑
i=1

αi/TK(T−i)/T + 1

α(i−1)/TK(T−i+1)/T
− α

α(T−1)/TK1/T

=T

(
1−

( α
K

)1/T)
−
(
K
α

)(T−1)/T − 1

K
((

K
α

)1/T − 1
)

completing the proof of the first bound.
For the second bound, consider an arbitrary integer h in [1, K − α] and

assume that T ≥ h(h−1)
2

+K−α. We will partition the times into m = K−α
periods where one arm will become polluted in each period and the first
K − h− α periods are length 1. More precisely, let the ti period boundaries
be

ti =

{
ti−1 + 1 (i = 1, . . . , K − α− h)
ti−1 + Ti + 1 (i = K − α− (h− 1), . . . , K − α)

where the Ti’s are non-negative integers to be optimized later subject to

h∑
i=1

TK−α−(i−1) = T − (K − α). (14)
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We define t0 ≡ 1 for convenience, and set the arm budgets for each period to
1, i.e. ki = 1 for i ∈ [m].

Then, from the theorem, the adversary forces every player to have an
expected number of mistakes at least

m−
m∑
i=1

F (ti − ti−1, K −
i−1∑
j=1

kj, ki)

=
K−α−h∑
i=1

(1− F (1, K − i+ 1, 1)) + h−
K−α∑

i=K−α−(h−1)

F (Ti + 1, K − i+ 1, 1)

=
K−α−h∑
i=1

1

K − i+ 1
+ h−

K−α∑
i=K−α−(h−1)

K − i
K − i+ 1 + Ti

=HK −Hα+h + h−
h∑
i=1

α + i− 1

α + i+ TK−α−(i−1)
(15)

holds. Let

f(TK−α−(h−1), . . . , TK−α) =
h∑
i=1

α + i− 1

α + i+ TK−α−(i−1)

By solving the problem of maximizing f(TK−α−(h−1), . . . , TK−α) subject to
Constraint (14) using the method of Lagrange multipliers, we obtain

TK−α−(i−1) =
B(h)

√
α + i− 1

A(h)
− (α + i) for i = 1, . . . , h. (16)

All the TK−α−(i−1) are non-negative because

B(h)
√
α + i− 1

A(h)
− (α + i)

=
2T − 2(K − α) + (2α + h+ 1)h

2
∑h

j=1

√
α + j − 1

√
α + i− 1− (α + i)

≥ 2(α + h)h

2
∑h

j=1

√
α + j − 1

√
α + i− 1− (α + i)

≥ 2(α + h)h

h
√

2(2α + h− 1)

√
α + i− 1− (α + i)
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=

√
2(α + h)2(α + i− 1)

2α + h− 1
− (α + i)

=

√
(α + i)2 +

(h− i) {(α + i− 2)(3α + 2h+ i) + 2(α + h)}+ (α + i)2(i− 1)

2α + h− 1

− (α + i) ≥ 0

holds for i = 1, . . . , h. Here, the first inequality holds because T ≥ h(h−1)
2

+

K − α and the second inequality holds by inequality
∑h

j=1

√
α + j − 1 ≤

h
√

2α+h−1
2

. Due to the integrality constraints, instead of the (real-valued)

TK−α−(i−1) defined by Eq. (16), we use a rounded version TK−α−(i−1) defined
as follows:

i+ 1 + TK−α−(i−1) =

⌊
i∑

j=1

B(h)
√
α + j − 1

A(h)

⌋
−

⌊
i−1∑
j=1

B(h)
√
α + j − 1

A(h)

⌋
.

Then,

h∑
i=1

α + i− 1

i+ 1 + TK−α−(i−1)
<

h∑
i=1

α + i− 1
B(h)
A(h)

√
α + i− 1− 1

=A(h)
h∑
i=1

α + i− 1

B(h)
√
α + i− 1− A(h)

=
A2(h)

2B(h)
+
A2(h)

B2(h)
h+

A3(h)

B2(h)

h∑
i=1

1

B(h)
√
α + i− 1− A(h)

≤A
2(h)

2B(h)
+
A2(h)

B2(h)
h+

A2(h)

B2(h)
h

=
A2(h)(B(h) + 4h)

2B2(h)
(17)

holds. Here, the first inequality uses⌊
i∑

j=1

B(h)
√
α + j − 1

A(h)

⌋
−

⌊
i−1∑
j=1

B(h)
√
α + j − 1

A(h)

⌋
>
B(h)

√
α + i− 1

A(h)
− 1

and the second inequality uses the fact that

B(h)
√
α + i− 1− A(h) ≥ B(h)− A(h) ≥ A(h),
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which can be implied from the inequalities

A(h) ≤ h
√

2(2α + h− 1)

and

B(h) =2

{
T − (K − α)− h(h− 1)

2

}
+ 2(α + h)h

≥2(α + h)h

=h
√

2(2α + h− 1) ·

(√
2(2α + h− 1)

2
+

h+ 1√
2(2α + h− 1)

)

≥h
√

2(2α + h− 1) · 2
√
h+ 1

2
≥ 2h

√
2(2α + h− 1).

By Eq. (15) and Ineq. (17), Bound (12) holds in this case. �

Corollary 5. RepeatW&S[K,T ] forces the expected number of mistakes made
by any player algorithm to be at least

K − α− (K + α− 1)(K − α)2(2T + (K + α + 3)(K − α))

(2T + (K + α− 1)(K − α))2

for T ≥ (K + α− 1)(K − α)/2.

(Proof) This corollary can be derived from Bound (12) of Corollary 4 with
h = K − α and the fact that

A2(K − α) = 4

(
K−α∑
j=1

√
α + j − 1

)2

≤4(K − α)
K−α∑
j=1

(α + j − 1)

=2(K + α− 1)(K − α)2.

�

Remark 4. By Theorem 4 and Corollary 5, the minimax expected number
of mistakes for the noise-free K-armed bandit problem with T rounds is

K − α−Θ

(
1

T

)
.
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5. Comparison with variations on the model

In this section we first examine two variations of the noise-free multi-
armed bandit game and prove minimax expected mistake bounds for them.
The first variation is the full-information setting, where the entire loss vector
`t is revealed to the algorithm each time, so this variation is not a bandit
setting. The second variation is when the adversary is oblivious, and thus
must assign losses to arms independent of the player’s strategy. We close
the section by contrasting these minimax bounds with those from previous
section, and making some concluding remarks.

5.1. Full-information Setting

In the full-information setting the whole `t is revealed at every time t
regardless of which arm is selected by the player. This is not a bandit setting,
so we call it the “noise-free multi-armed full-information game” and call both
bandit and full-information games noise-free multi-armed games. In this case,
the minimax number L∗(K,T, α) of mistakes satisfies

L∗(K,T, α) = max
0 < k1, . . . , km

m = min{T,K − α}∑m
i=1 ki = K − α

m∑
i=1

ki

K −
i−1∑
j=1

kj

, (18)

which can be proved by induction on T . For T = 1 and any K > 0, the
adversary’s best strategy is to set `1 to 1S for the arm set S consisting of the
K−α arms having the largest probabilities of being selected by the algorithm.
The player’s corresponding minimization strategy is to choose each arm with
equal probability, so the minimax number of mistakes is (K−α)/K, satisfying
Eq. (18).

Assume that Eq. (18) holds for T = T0 and any K > 0. Consider the
game with T = T0 + 1. When the losses of k arms are set to 1 at time 1, the
minimax expected number of mistakes from time 2 on is L∗(K − k, T0, α),
and by the inductive assumption,

L∗(K − k, T0, α) = max
0 < k1, . . . , km

m = min{T0,K − k − α}∑m
i=1 ki = K − k − α

m∑
i=1

ki

K − k −
i−1∑
j=1

kj

.

The minimax number L∗(K − k, T0, α) depends on k, but not on which set
of k-arms is assigned loss at time 1, and the adversary’s best strategy is to
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assign loss at time 1 to the k arms with highest probability of being selected
at that time by the player. The best counter for this adversary’s strategy is
for the player to select an arm uniformly at random, so

L∗(K,T0 + 1, α) = max
0<k<K

(
k

K
+ L∗(K − k, T0, α)

)

= max
0 < k, k1, . . . , km

m = min{T0,K − k − α}
k +

∑m
i=1 ki = K − α


k

K
+

m∑
i=1

ki

K − k −
i−1∑
j=1

kj


= max

0 < k1, . . . , km
m = min{T0 + 1,K − k1 − α+ 1}∑m

i=1 ki = K − α

m∑
i=1

ki

K −
i−1∑
j=1

kj

.

We can show

max
0 < k1, . . . , km

m = min{T0 + 1,K − k1 − α+ 1}∑m
i=1 ki = K − α

m∑
i=1

ki

K −
i−1∑
j=1

kj

= max
0 < k1, . . . , km

m = min{T0 + 1,K − α}∑m
i=1 ki = K − α

m∑
i=1

ki

K −
i−1∑
j=1

kj

because min{T0 + 1, K−k1−α+ 1} ≤ min{T0 + 1, K−α} for k1 > 0 and for
m < min{T0 +1, K−α}, any k1, . . . , km > 0 with

∑m
i=1 ki = K−α, there are

k′1, . . . , k
′
m+1 > 0 with

∑m+1
i=1 k′i = K − α such that m ≤ min{T0 + 1, K − α}

and
m∑
i=1

ki

K −
i−1∑
j=1

kj

<
m+1∑
i=1

k′i

K −
i−1∑
j=1

k′j

(19)

holds. Such k′1, . . . , k
′
m+1 can be constructed as follows. Since m < K − α,

there is at least one ki that is larger than 1. Divide such ki into k′i > 0
and k′i+1 > 0, that is, k′i + k′i+1 = ki. Then, consider sequence k′1, . . . , k

′
m+1

defined as k′1 = k1, . . . , k
′
i−1 = ki−1, k

′
i, k
′
i+1, k

′
i+2 = ki+1, . . . , k

′
m+1 = km. For

sequences k1, . . . , km and k′1, . . . , k
′
m+1, Ineq. (19) holds because

ki
K −K0

<
k′i

K −K0

+
ki − k′i

K −K0 − k′i
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holds, where K0 =
∑i−1

j=1 ki =
∑i−1

j=1 k
′
i. Thus Eq. (18) holds for T = T0 + 1

and anyK > 0. Therefore, minimax number L∗(K,T, α) of mistakes becomes

max
0 < k1, . . . , km
m = K − α∑m
i=1 ki = K − α

m∑
i=1

ki

K −
i−1∑
j=1

ki

=
K∑

i=α+1

1

i
= Θ

(
log

K

α

)

for T ≥ K − α, and

max
k1, . . . , km ∈ [K − α]

m = T∑m
i=1 ki = K − α

m∑
i=1

ki

K −
i−1∑
j=1

kj

≤ max
k1, . . . , km ∈ (0,K − α)

m = T∑m
i=1 ki = K − α

m∑
i=1

ki

K −
i−1∑
j=1

kj

=T

(
1−

( α
K

)1/T)
for T < K − α, where the right-hand side of the inequality is maximized
among (k1, . . . , km) of m-dimensional space of real numbers instead of natural
numbers. (The last equality holds when ki = K(1−(α/K)1/T )(α/K)(i−1)/T .)

5.2. Oblivious Adversary Game

Oblivious adversary strategies cannot depend on the past choices of a
randomized player. In effect, this means that the adversary might as well
(randomly) pick which arms will remain lossless at the start of the game.
The safest strategy is to select α lossless arms, which we call a∗1, . . . , a

∗
α, from

the uniform distribution over the K arms. The adversary can maximize the
loss of the best players by always setting the loss of each other arm to 1, so
at each time t ∈ [T ], `t = 1S where S = [K] \ {a∗1, . . . , a∗α}. For this best
adversary, the player’s best strategy is to repeatedly choose a non-dirty arm
uniformly at random, and keep playing that arm until the player makes a
mistake. Analyzing the interaction of these best strategies, the probability
of making exactly m mistakes is

K − α
K

× K − α− 1

K − 1
× · · · × K − α−m+ 1

K −m+ 1
× α

K −m
=

α

K

α−1∏
i=1

K −m− i
K − i

when m < min{T,K − α} and

K − α
K

× K − α− 1

K − 1
× · · · × K − α−m+ 1

K −m+ 1
=

α−1∏
i=0

K −m− i
K − i
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when m = min{T,K − α}. Let m0 = min{T,K − α}. Then, the minimax
expected number of mistakes, L∗(K,T, α), for the oblivious adversary is

α
∑m0−1

m=1 m
∏α−1

i=1 (K −m− i) +m0

∏α−1
i=0 (K −m0 − i)∏α−1

i=0 (K − i)

=

∑m0−1
m=1 m

(∏α−1
i=0 (K −m− i)−

∏α
i=1(K −m− i)

)
+m0

∏α−1
i=0 (K −m0 − i)∏α−1

i=0 (K − i)

=

m0−1∑
m=1

α−1∏
i=0

(K −m− i)− (m0 − 1)
α∏
i=1

(K −m0 + 1− i) +m0

α−1∏
i=0

(K −m0 − i)∏α−1
i=0 (K − i)

=
1

α+1

∑m0−1
m=1

(∏α−1
i=−1(K −m− i)−

∏α
i=0(K −m− i)

)
+
∏α−1

i=0 (K −m0 − i)∏α−1
i=0 (K − i)

=
1

α+1

(∏α−1
i=−1(K − 1− i)−

∏α
i=0(K −m0 + 1− i)

)
+
∏α−1

i=0 (K −m0 − i)∏α−1
i=0 (K − i)

=
K−α
α+1

∏α−1
i=0 (K − i)− K−m0+1

α+1

∏α−1
i=0 (K −m0 − i) +

∏α−1
i=0 (K −m0 − i)∏α−1

i=0 (K − i)

=
K−α
α+1

∏α−1
i=0 (K − i)− K−m0−α

α+1

∏α−1
i=0 (K −m0 − i)∏α−1

i=0 (K − i)

=
K − α
α + 1

− K − α
α + 1

α∏
i=0

K −m0 − i
K − i

=
K − α
α + 1

(
1−

α∏
i=0

K −m0 − i
K − i

)

=


K − α
α + 1

(
1−

α∏
i=0

K − T − i
K − i

)
(when T < K − α)

K − α
α + 1

(when T ≥ K − α).

5.3. Comparison

In the case with a large T , the above shows that the minimax expected
number of mistakes is Θ (log(K/α)) for the full-information setting and
(K − α)/(α + 1) for the oblivious adversary setting in the K-armed game.
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Table 1: Comparison of L∗(K,T, α), the minimax expected number of mistakes , for
variants of the noise-free multi-armed game with K arms and T rounds
Full-information

L∗(K,T, α)


≤ T

(
1−

(
α
K

)1/T)
(T < K − α)

=
∑K

i=α+1
1
i

= Θ
(
log K

α

)
(T ≥ K − α)

Bandit with an oblivious adversary

L∗(K,T, α) =


K−α
α+1

(
1−

∏α
i=0

K−T−i
K−i

)
(T < K − α)

K−α
α+1

(T ≥ K − α).
Bandit with an adaptive adversary

(T < K − α) T
(

1−
(
α
K

)1/T)− (Kα )
(T−1)/T

−1

K

(
(Kα )

1/T
−1
)

(
T ≥ (K+α−1)(K−α)

2

)
K − α− (K+α−1)(K−α)2(2T+(K+α+3)(K−α))

(2T+(K+α−1)(K−α))2

 ≤

L∗(K,T, α) ≤min{T,K − α} −
min{T,K−α}∑

j=1

Q(K − j + 1, T − j + 1, α),(
L∗(K,T, α) =K − α−Θ

(
1

T

))
where Q(K,T, α) =

∏K−1
h=α

h
T+h

=
∏T

h=1
α−1+h
K−1+h . For α = K − 1,

L∗(K,T, α) = 1− K − 1

T +K − 1
.

Therefore the K − α − Θ(1/T ) expected number of mistakes forced by the
adaptive adversary case is large in comparison, which indicates the power
of an adaptive adversary. Table 1 gives a more detailed comparison of the
bounds for the three different settings and includes the T < K − α case.
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5.4. Bounds from the Noisy Bandit Problem

In the general (noisy) bandit problem, the pseudo-regret [4]

min
i∈[K]

E

[
T∑
t=1

`t,It −
T∑
t=1

`t,i

]

is the most popular evaluation measure. In the noise-free case, the pseudo-

regret coincides with the expected loss E
[∑T

t=1 `t,It

]
, hence it coincides with

the expected number of mistakes in the case of {0, 1}-loss. For the noisy ban-
dit problem, a pseudo-regret lower bound min{

√
KT, T}/20 can be proved

for the [0, 1]-loss-version of the multi-armed bandit problem by a slight mod-
ification of the proof [2] for its [0, 1]-reward-version. This lower bound is
known to be optimal unless computational efficiency is not required [5].

The adversary with the pseudo-regret
√
KT/20 used in the proof [2] is an

oblivious adversary who generates losses `t,i for i ∈ K according to a Bernoulli
distribution with parameter 1/2, except a best arm i∗ selected according to
the uniform distribution whose loss is generated according to a Bernoulli
distribution with parameter 1/2− ε for some ε > 0. To achieve the pseudo-
regret

√
KT/20, ε must be set to

√
K/T/4, which means that the adversary

is very noisy; the parameter of the Bernoulli distribution for the best arm
is almost 1/2 when T is large enough compared to K. Setting ε to 1/2
corresponds to ensuring that there is a noise-free arm. Unfortunately, using
this setting of ε in the ε-dependent bound of [2] leads to a trivial (negative)
lower bound on the pseudo-regret. On the other hand, the optimal oblivious
adversary for the (α = 1) noise-free setting forces any player to have pseudo-
regret at least (K − 1)/2.

6. Concluding Remarks

The simple oblivious adversary analysis provides a (K−α)/(α+ 1) lower
bound on the minimax expected number of mistakes in the K-armed ban-
dit game with an adaptive adversary in the case with α(≥ 1) lossless arms.
Conversely, any sensible player will make at most one mistake on each arm,
giving a trivial K−α upper bound on the minimax expected number of mis-
takes. Our analysis of the noise-free multi-armed bandit game goes through
a simpler “survival game”, where the goals of the adversary/player are to
maximize/minimize the probability of making any mistake (rather than the
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expected number of mistakes). This analysis provides nearly matching up-
per and lower bounds on the minimax expected number of mistakes, showing
that it is K−α−Θ(1/T ) for the noise-free multi-armed bandit game, and we
obtain the exact minimax value of 1− K−1

T+K−1 when α = K− 1. However, for
larger K there is still a small gap between the upper and the lower bounds.
This gap on our bounds exists even in our bounds on the simpler survival
game. We conjecture that our lower bound of the survival game is tight,
but the correctness of this conjecture remains an open problem. Our player
algorithm does not make use of the number α of lossless arms. Whether α
can be used by the player to reduce the expected number of mistakes, is also
an open problem.
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Appendix A. Proof of Proposition 1

Recall that Proposition 1 states:
For any integers m ≥ 1, K > m, and T ≥ m,

m∏
i=1

(K −∑i
j=1 kj

K + ti − 1

) ∏
ti<t<ti+1

(
K −

∑i
j=1 kj + t− 1

K + t− 1

)
=

∏m
i=1

[(
K −

∑i
j=1 kj

)∏ki−1
h=1

(
K −

∑i
j=1 kj + ti − 1 + h

)]
∏K−1

h=K−β(T + h)
(A.1)

holds for any integers k1, ..., km ≥ 1 with
∑m

i=1 ki = β < K and any integers
1 ≤ t1 < · · · < tm < tm+1 ≡ T + 1.

(Proof) We prove Eq. (A.1) by mathematical induction on m. When
m = 1, then k1 = β, so the lefthand-side of Eq. (A.1) is equal to

K − β
K + t1 − 1

× K − β + t1
K + t1

× · · · × K − β + T − 1

K + T − 1

=
(K − β)(K − β + T − 1)!/(K − β + t1 − 1)!

(K + T − 1)!/(K + t1 − 2)!

=
(K − β)(K + t1 − 2)!/(K − β + t1 − 1)!

(K + T − 1)!/(K − β + T − 1)!

=
(K − β)

∏β−1
h=1(K − β + t1 − 1 + h)∏K−1
h=K−β(T + h)

,

which is the righthand-side of Eq. (A.1) for m = 1 and k1 = β. Thus,
Eq. (A.1) holds for any 1 ≤ k1 = β < K and any 1 ≤ t1 < t2 = T + 1 when
m = 1.

Assume now that the proposition holds when m = m0 ≥ 1, and consider
the case when m = m0 + 1 ≥ 2. Fix arbitrary K, T , k1, ..., km0+1, and
1 ≤ t1 < · · · < tm0+1 < tm0+2 = T + 1 satisfying the conditions of the
proposition. The lefthand-side of Eq. (A.1) can be factored into three terms:

m∏
i=1

(
K −

∑i
j=1 kj

K + ti − 1

) ∏
ti<t<ti+1

(
K −

∑i
j=1 kj + t− 1

K + t− 1

)

=

(
K − k1

K + t1 − 1

) ∏
t1<t<t2

(
K − k1 + t− 1

K + t− 1

)
(A.2)
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×
∏T

t=t2
((K − k1) + t− 1)∏T
t=t2

(K + t− 1)
(A.3)

×
m0+1∏
i=2

(
(K − k1)−

∑i
j=2 kj

(K − k1) + ti − 1

) ∏
ti<t<ti+1

(
(K − k1)−

∑i
j=2 kj + t− 1

(K − k1) + t− 1

)
.

(A.4)

Then, each term can be calculated as follows.

(A.2) =
(K − k1)(K − k1 + t2 − 2)!/(K − k1 + t1 − 1)!

(K + t2 − 2)!/(K + t1 − 2)!

=
(K − k1)(K + t1 − 2)!/(K − k1 + t1 − 1)!

(K + t2 − 2)!/(K − k1 + t2 − 2)!

=
(K − k1)

∏k1−1
h=1 (K − k1 + t1 − 1 + h)

(K + t2 − 2)!/(K − k1 + t2 − 2)!

(A.3) =
(K − k1 + T − 1)!/(K − k1 + t2 − 2)!

(K + T − 1)!/(K + t2 − 2)!

=
(K + t2 − 2)!/(K − k1 + t2 − 2)!

(K + T − 1)!/(K − k1 + T − 1)!

=
(K + t2 − 2)!/(K − k1 + t2 − 2)!∏K−1

h=K−k1(T + h)

(A.4) =

m0+1∏
i=2

(
(K − k1)−

i∑
j=2

kj

)
ki−1∏
h=1

(
(K − k1)−

i∑
j=2

kj + ti − 1 + h

)
(K−k1)−1∏

h=(K−k1)−(β−k1)

(T + h)

Note that the last equality uses the m = m0 inductive assumption. Thus,

(A.2)× (A.3)× (A.4) =

∏m0+1
i=1

(
K −

∑i
j=1 kj

)∏ki−1
h=1

(
K −

∑i
j=1 kj + ti − 1 + h

)
∏K−1

h=K−β(T + h)
,

proving the proposition when m = m0 + 1 and completing the induction. �
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