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Abstract 
 

Ethiopian smallholders are increasingly threatened by climate change and ongoing land degradation. 

Aiming at adapting to locally varying environmental and socio-economic challenges and improving 

the sustainability and resilience of agricultural livelihoods, a set of locally appropriate climate smart 

agriculture (CSA) practices have been tested by farmers on a voluntary basis between 2019 and 2021 

in two Climate-Smart Landscapes as part of the IFAD-EU project “Building livelihoods and resilience 

to climate change in East & West Africa”. To address the dual challenges of environmental change 

and declining food security we aimed at assessing and quantifying environmental impacts of CSA 

practices tested in this project. To do so, we calculated yield differences of major crops grown by 

both adopting and non-adopting farms as basis for assessing associated deviations in land use, water 

use efficiency, overall (and where applicable irrigation) water use as well as greenhouse gas 

emissions. After one year, relative differences in median crop yields between specific practices and 

practice combinations showed very mixed results in both regions. There was, however, a slight trend 

of combined practices performing somewhat better than single practices. This finding is congruent 

with previous reports, as multi-year adaptation periods might be required in order to observe 

patterns in farm performance and health. Our survey-based results further underline the urgent 

need for more quantitative rather than empirical assessment and documentation of various 

environmental and productivity indicators. Finally, we provide a basis for discussing how resulting 

relative changes in environmental impacts of CSA can potentially be transferred and applied to 

comparable agricultural landscapes in other parts of sub-Saharan Africa.  
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Climate smart agriculture, environmental impact assessment, food system sustainability, climate 
adaptation 
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Introduction 

Lying approximately 40% above global average (Samberg et al. 2016), rainfed, small-scale, 

subsistence farming is producing 96% of all crops in Ethiopia (CSA 2021a). Farms in Ethiopia’s diverse 

and vulnerable landscapes, however, are increasingly threatened by climate related changes such as 

greater variability in the expected onset and cessation of rainfall but also heavy rains, storms/strong 

winds, low temperatures, frost and droughts (Zegeye 2018). In the Ethiopian highlands with their 

steep topography farmers also experience soil erosion and declining soil fertility. Soil erosion by 

water is the most widespread form of land degradation in Ethiopia. Estimated average soil losses 

range between 3.4 and 84.5 t/ha/yr (Abera et al. 2020). These extreme conditions are likely to lead 

to a further increase in crop failures, pest and disease outbreaks, and water scarcity in the near 

future.  In combination with expected population growth (Bekele and Lakew 2014), these challenges 

might possibly prevent Ethiopia from achieving its goal to reach and sustain food security. Over the 

last four decades, Ethiopia and international  donors have invested substantial resources in 

developing and promoting sustainable land management practices as part of efforts to improve 

environmental conditions, ensure sustainable and increased agricultural production, and reduce 

poverty (Kassie 2009). As of this year, a comprehensive national roadmap for climate smart 

agriculture (CSA) lays out principles and pathways and required measures towards jointly addressing 

food security and climate change by tackling trade-offs and synergies between sustainably boosting 

agricultural productivity, building resilience and adaptive capacity to climate change, and reducing 

greenhouse gas (GHG) emissions to mitigate climate change where possible (Eshete et al. 2020, 

Rosenstock et al. 2016).  

In order to adapt to locally varying challenges and improve the sustainability and resilience of 

agricultural livelihoods, a set of locally appropriate CSA practices have been tested between 2019 

and 2021. Over the course of one year smallholders participated on a voluntary basis in two Climate-

Smart Landscapes as part of the IFAD-EU project “Building livelihoods and resilience to climate 

change in East & West Africa”. These Climate-Smart Landscapes are located in the Ethiopian 

highlands within the Woredas, Doyogena (Southern Nations, Nationalities, and Peoples' Region 

(SNNPR)) and Basona Werana (Amhara) (Fig. 1). At approximately 2,400m altitude, Doyogena lies in 

the cool subhumid tropics with mean air temperatures ranging between 13 and 20°C and 1,000-

1,400mm of precipitation yearly. Basona Werana, at approximately 3,000m altitude, has a tropical 

cool semiarid climate with mean air temperatures ranging between 8 and 36 °C and 400-700mm of 

annual rainfall. In Ethiopia, there are two rainfall seasons, Belg (the short rainy season) from January 

to March and Meher (main rainy season) from June to October. 
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Figure 1: Location of climate smart landscapes in Doyogena (SNNPR) and Basona  
Werana (Amhara). Source: Report on the RHoMIS household survey for CCAFS Ethiopia 2020/21 

 

In Basona Werana, the average size of surveyed farms was approximately 1.5 ha, while in Doyogena 

median farm size amounted to 0.5 ha in. In both regions, farms were rarely larger than 2 ha. Median 

cultivated land amounted to 1 ha in Basona Werana with a median household size of 6.5 and 0.5 ha 

in Doyogena with a median household size of 4.0. Total livestock holdings were 4.3 and 2.6 heads, 

respectively. Crop diversity was generally lower in Basona Werana than in Doyogena with barley, 

wheat, faba beans and Irish potatoes being the primary staple crops. In Doyogena, enset makes also 

an important contribution to regional crop production. In both regions the use of chemical fertilizers 

as well as spreading manure is common. Almost all surveyed farms practice tilling and only a few 

farms have access to irrigation. Soil erosion or poor soil fertility have been reported by about 50% of 

farms. Crop residues are mostly used for animal feed and/or to fertilize soils, with a preference for 

animal feed in Basona Werana. A few farms in Doyogena also used wheat residues for construction. 

Objectives  
 

Main objective 

Addressing the dual challenges of climate change and declining food security and supporting the 

transformation of Ethiopia’s agricultural systems makes it necessary to assess and quantify the 

environmental impacts on land, water resources and GHG emissions of CSA practices in the various 

agroclimatic zones of Ethiopia. Besides evaluating changes in adaptive capacities of participating 

households, data collected on major crops grown by both adopting and non-adopting households 
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provide the basis for calculating relative deviations between practices in land use, water use 

efficiency, overall (and where applicable irrigation) water use as well as GHG emissions. Baseline data 

adopted from national statistics will provide the context for practices being used in different 

agroclimatic zones. Finally, this analysis will also provide a basis for discussing how resulting relative 

changes in environmental impacts potentially can be transferred and applied to comparable 

agricultural landscapes in other parts of sub-Saharan Africa.  

Specific objectives 

 

 Assessing and quantifying relative differences in crop yields of barley, faba bean, wheat, and 

Irish potatoes between farms, which did not adopt and those that adopted one or more CSA 

practice. 

 Calculating baseline water needs, both irrigation and rainwater use and estimating relative 

changes based on practice-specific yield differences. 

 Calculating baseline GHG emissions and integrating impacts of chemical fertilizer use, 

livestock emissions and additional effects of agroforestry practices to estimate overall site-, 

crop- and practice-specific farm emissions. 

Methodology 

 

Land use and changing yield patterns 

Annual farm-specific data on major crop yields (barley, faba beans, Irish potato, wheat), associated 

use of tillage, irrigation, intercropping or agroforestry along with quantitative information fertilizer 

use and livestock stocks of control and beneficiary farms have been collected in each of the two 

Woredas using the RHoMIS (Hammond et al. 2016, Van Wijk et al. 2020) and the GeoFarmer1 

(Eitzinger et al. 2019, Bonilla-Findji et al. 2020 and 2021) tools between 2019 and 2021. Zonal 

average yields for these crops from Ethiopia’s annual reports on area and production of major crops 

(Meher season) for the years of 2019-21 (CSA 2020a and 2021a) as well as the annual farm 

management report (CSA 2020b and 2021b) provided comparative baseline values. Overall, these 

reports include information on average yields, fertilizer use, improved seed and irrigation rates for 51 

food crops as well coffee, khat and hops.  

 

                                                 
1 This was done in the context of the implementation of the CSA monitoring Framework deployed across the 

CCAFS climate-smart Village network. 
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The same number of farms surveyed for RHoMIS have also been surveyed for the CSA Monitoring 

project. Complementary, the GeoFarmer tool collected data on baseline agricultural practices and 

information on tested CSA practices overlap in both raw datasets. Identical farm IDs allowed to 

combine these complementary sets’ information, creating the basis for assessing the environmental 

impacts of CSA in two agroclimatic zones of Ethiopia. Table 1 presents the total number of practices 

and associated crops and/or livestock. 

 

Table 1+2: List of tested CSA practices 2019-21 

Doyogena 
 

 Theme Practice Crop/ Livestock 

1 Water and Soil 
Management 

Terraces with Desho grass (Pennisetum 
pedicellatum) a soil and water conservation 
measure 

Wheat, faba beans, Irish potato, 
barley, cabbage* 

2 Animals Controlled grazing Sheep**, cattle, donkey** 

3 Genetic improvement Improved wheat seeds (high yielding, 
disease resistant & early maturing) 

Wheat 

4 Genetic improvement Improved bean seeds (high yielding) Faba beans 

5 Genetic improvement Improved potato seeds (high yielding, bigger 
tuber size) 

Potato 

6 Crop management Cereal/potato-legume crop rotation (Nitrogen 
fixing & non-N fixing) 

Wheat, faba beans, Irish potato, 
barley 

7 Soil management Residue incorporation of wheat or barley  Wheat, barley 

8 Soil management Green manure: vetch and/or lupin during off-
season (N fixing in time)  

Vetch, lupin* 

9 Animals Improved breeds for small ruminants 
(Sheep) 

Sheep** 

10 Agroforestry Agroforestry (woody perennials and crops) Vegetables*, enset*, poultry, 
cattle 

11 Animals Cut and carry for animal feed.  Desho grass* 

 
*No yields collected by RHoMIS for analysis 
**No livestock outputs reported by RHoMIS 

 
Basona Werana 

 

 Theme Practice Crop/ Livestock 

1 Water and soil 
conservation 

Terraces (soil bunds): Soil and water 
conservation structures  

Wheat, faba beans, Irish 
potato, barley 

2 Water and soil 
conservation 

Terraces (soil bunds) with biological 
measures (phalaris and tree lucerne) 

Wheat, faba beans, Irish 
potato, barley 

3 Water and soil 
conservation 

Trenches Wheat, faba beans, Irish 
potato, barley 

4 Integrated nutrient and 
water management 

Enclosures No related crop 

5 Water and soil 
conservation 

Percolation pits No related crop 

6 Water and soil 
conservation 

Check-dams (gabion check-dams and 
wood check-dams) 

No related crop 

7 Water and soil 
conservation 

Gully rehabilitation No related crop 

 

Updated from the year 2000, Ethiopian livestock feed efficiencies for 2010 (Herrero et al. 2013) were 

averaged on a zonal level by running zonal statistics in order to derive median values applied to 
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modelled livestock numbers for poultry, sheep, goats and cattle (GLW 3 - Gridded Livestock of the 

World 2 for 2010 (Gilbert et al. 2018)). These modelled feed efficiencies match reported livestock 

numbers and animal-source food supply for year 2018/19 (CSA 2019). Associated regionally specific 

dry matter grass intakes have been multiplied by regional pasture yields quantified for major 

agroclimatic zones by the APSIMx-Grange model to derive pastureland requirements of current 

Ethiopian ruminant stocks (Godde et al. 2020).  

Water use 

Long-term (1983-2018) crop water requirements have been estimated globally as blue (irrigation) 

and green (rain) water needs by Chiarelli et al. (2020). Zonal statistics have been used to extract 

zonal water requirements in mm/yr for major crops in both zones, North Shewa and Kembata 

Tembaro. Applying calculated median crop yields allowed to quantify total current crop water needs 

as m3/t on a local level for each practice (combination). Regarding faba beans, average values for 

pulses have been applied. Mostly used for poultry, freshwater use for livestock feed stemming from 

cereals was included in overall crop water use calculations. Drinking water needs for all types of 

livestock have been adopted from Sileshi et al. (2003). Using information for annual actual 

evapotranspiration from the USGS FEWS NET Data Portal (USGS 2021), green water use for pasture 

within a specific agroclimatic region was calculated by determining median evapotranspiration in 

2018 for zones with at least 50% grass/shrubland cover and dividing by regionally specific pasture 

yields. No blue water needs have been attributed to natural pasturelands.  

Greenhouse gas emissions  

The Cool Farm Tool (CFT v0.11.49, Hillier et al. 2011) was used to calculate zonally specific GHG 

emissions as CO2 equivalent from crop production. To do so, local soil information was gathered by 

integrating information on predominant soil texture, median soil organic matter and bulk densities as 

well as soil PH and soil drainage (Solomon et al. 2016). As no zonal information was available for 

North Shewa (Amhara) and Kembata Tembaro, respectively, data from the closest available zones, 

North Wollo and Wolayita have been adopted. Where applicable, zonal chemical fertilizer 

application/availability rates (kg/ha) for each crop have been adopted from the RHoMIS database 

(urea, NPS, DAP and mixes). In comparison, the CSA farm practices report 2019/20 (CSA 2020) 

provided baseline context information on current zonal fertilizer use. The Cool Fam Tool provides 

default values for effects of mulching/green manure/crop residues and reduced tillage. Assessing 

effects besides yield changes of crop rotation practices on overall crop emissions, (expected) changes 

on soil organic matter would have to be entered manually in order to capture potential carbon 

offsets. To estimate the potential impact of agroforestry practices, we used the Cool Farm Tool’s 
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feature for calculating land conversion effects to narrow down probable impacts on total GHG 

emissions/ sequestration using a range of 20-40% forest cover of tropical mountain forests for both 

Doyogena and North Shewa. In comparison to other tropical forests, tropical mountain forests show 

lower carbon sequestration rates. Regional/zonal methane and nitrous oxide (incl. manure) 

emissions from ruminants as well as poultry have been adopted from Herrero et al. (2013).  

Quantifying impacts of climate smart agricultural practices 

Processing and aggregating comprehensive information on farm outputs and associated natural 

resource use, incl. data on relative changes in crop yields, water use efficiency (product produced or 

economic yield per unit water, incl. rainfall), and overall GHG emissions for a number of Ethiopian 

farms, some of which using CSA practices, allowed for a quantitative comparison of three major 

environmental impacts of CSA practices for various approaches to climate smart farming. 

Additionally, a literature review of recent Ethiopian studies documenting impacts of CSA practices as 

well as more general information from tropical cool subhumid and semiarid agroclimatic zones of 

sub-Saharan Africa from the Evidence for Resilient Agriculture (ERA) database (ICRAF 2021) added to 

the discussion on the extent of environmental impacts of various practices. Quantitative information 

on CSA practices included in the ERA database are agroforestry (pruning/alleycropping), reduced 

tillage, mulching, crop rotation, irrigation, and water harvesting. Additionally, some information 

exists for combined practices, i.e. agroforestry-reduced tillage, crop rotation-reduced tillage, crop 

rotation-mulch-reduced tillage, crop rotation-green manure, crop rotation-green-manure-mulch, 

crop rotation-irrigation, mulch-reduced tillage, mulch-water harvesting and irrigation-mulch. 

Irrigation and water harvesting (single and combined) are practices for which most data are currently 

available in the database. Overall, information for cool tropical climates in which both zones fall are, 

however, still very limited. 

Results 

Overall impacts of tested CSA practices on crop yields 

Combining information from the RHoMIS dataset with that on crop-specific CSA practices tested in 

this project revealed that for a small number of crops and livestock species no quantitative data had 

been collected. In Doyogena, this included cabbage, vegetables, enset, vetch and desho grass as well 

as sheep and donkeys. In Basona Werana, insufficient amounts of data had been collected for Irish 

potatoes. Overall, we matched 514 crop data points for Basona Werana and 104 crop as well as 193 

livestock data points for Doyogena. General farming practices in both zones are characterized by 

little to no irrigation, widespread use of tillage and a small share of agroforestry practices. 

Information on the use of improved seeds did not match well between the GeoFarmer and RHoMIS  
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surveys. The majority of farms reported crop residue incorporation. There was, however, a large 

overlap between the specifically tested CSA practice of crop residue incorporation in this project and 

more general farm management information in RHoMIS. In Doyogena, sample sizes of farms testing 

particular practices for particular crops were especially small. After one year of testing, relative 

differences in median crop yields between specific practices or combinations of practices showed 

very mixed results in both regions (Figure 2 and 3). In comparison to baseline values, reported wheat 

yields in Doyogena have been smaller for all but two out of thirteen practice (combinations), where 

only crop rotation and crop rotation in combination with terraces and improved seed varieties 

seemed to have an overall positive impact. Yet, other practice combinations including crop rotation 

reported overall declines in yields. For barley, Irish potatoes and faba beans a more positive picture 

emerged. Regarding barley, four out of six practice (combinations) reported yield increases; three 

out of these were combinations including crop rotation. Similarly, reported potato yields seemed to 

increase when including crop rotation, but did not for the other three out of six tested practice 

(combinations). Both crop rotation and improved seed varieties appeared to also have a positive 

impact on median yields, with four out of six practice (combinations) suggesting yield increases. 

Sample sizes for baseline and tested practice (combinations) have been considerably larger in Basona 

Werana. Overall, both wheat and barley show mostly reduced yields after testing terraces and water 

harvesting practices, with wheat showing declines in four and barley in five out of seven tested 

practice (combinations). Water harvesting practices, however, suggest an overall positive effect in 

regard to barley yields. In contrast, testing the same seven practice (combinations) for faba beans, 

four suggest a positive and only two a negative impact on median yields. In both regions we 

observed a trend of combined practices tending to have stronger effects on crop yields than single 

practice interventions. Appendix Tables 5+6 (a-c/d) include all assessed site-, crop- and practice-

specific impacts on yields, water use, GHG emissions and associated livestock efficiencies. 
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Figure 2: Deviations in yields in relation to non-adopting farms in Doyogena. Practice 1: Terraces, 3-5: Genetic 
improvement, 6: Crop rotation, 7: Crop residue incorporation. 

 

 
Figure 3: Deviations in yields in relation to non-adopting farms in Basona Werana. Practice 1: Terraces, 2: 
Terraces with biological measures, 3: Trenches. Average deviation in crop yields from all three practices and 
combinations was zero. 
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In regard to impacts on livestock productivity, milk yields in Doyogena have been reported solely for 

cattle. Practice 2 tested controlled grazing techniques. Surveyed milk yield in the RHoMIS database 

have been rounded to the full liter (per animal or day), thus smaller impacts could not be detected. 

We further distinguished cattle in local and (local) improved breeds as reported by RHoMIS in order 

to differentiate between effects of different breeds and practices. For local breeds, no significant 

impact of controlled grazing has been reported (Figure 4). For improved breeds, however, during the 

good season 4 l/animal/day (2 l/animal/ day during the bad season) have been reported with 

controlled grazing and only 3 l/animal/day (1 l/animal/day during the bad season) for current 

practices, suggesting a positive impact throughout the year, potentially as a result of proper re-

growth of pasture and hence larger feed availability. 

Figure 4: Impact of controlled grazing practices on milk yields of cattle in Doyogena. 

 

Associated effects on water use 

No farm in Doyogena reported irrigating surveyed crops. In Basona Werana, a small share of farms 

(21%) reported to irrigate faba beans. This means that reported differences in crop yields in 

Doyogena are the sole factor impacting overall water use, as green water needs have been calculated 

per hectare of cropland for each specific crop divided by associated median yield. The same 

methodological approach applied to barley and wheat in Basona Werana. Similarly, green and blue 

water needs of partially irrigated faba beans have been solely determined by changes in cop yields. 

We have not been able to assess any potential additional effect on water use efficiency through 
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changed farming practices as actual water use has not been measured and documented for each 

practice (combination). 

Associated effects on GHG emissions 

Based on baseline crop emissions per ha of cropland, total practice-specific GHG emissions have 

been calculated by adding average fertilizer use, relative share of land under agroforestry as well as 

relative share of farm-associated livestock (cattle, sheep, goat, chicken; no regionally specific 

livestock efficiencies were available for donkeys and horses). Total livestock numbers have been 

allocated equally according to total hectares of cultivated land (for each practice (combination)), 

from which crop-specific shares have been calculated based on share of cropped area. These shares 

have been added to overall farm emissions in order to assess overall emissions per ha cultivated land 

from crop (and animal-source food) production for each practice (combination). 

Discussion and learnings 

We found a large discrepancy between average crop yields reported in the annual CSA reports (CSA 

2020a and 2021a) and the local data collected for the RHoMIS database (see Appendix Tables 5+6 a-

c/d). Also when averaging yields across the entire country, yields reported by RHoMIS remain below 

that of annual CSA reports, e.g. median RHoMIS wheat yields have been averaged to reach only 40% 

of those reported by CSA statistics. Several factors might have contributed to these discrepancies: a 

high variability of crop yields across the entire country due to large differences between local agro-

ecological conditions (compare Kenea et al. 2021), errors in the collection and processing of 

information, for example due to the use of four spatial units in the RHoMIS survey, but also a 

potentially systematic overestimation of land area that has been cultivated (Desiere and Jolliffe 2018, 

Abay 2019, Reynolds 2015) and/or underreporting of crop yields by farmers, for example in order to 

attract technical or financial support. Other (not reported) confounders include total sample size of 

surveyed farms, small sample size of farms testing specific practices, deviating fertilizer use, locally 

occurring crop pests, or deviating sowing dates and precipitation patterns between surveyed farms. 

In the case of improved varieties, reported lower yields also might have been due to a lack of 

irrigation and/or under-/overfertilization. 

We found no correlation between fertilizer use and final reported yields. Overall, reported fertilizer 

rates are considerably and sometimes implausibly high for particular farming practice 

(combinations), which also meant that for a number of practice (combinations) carbon sequestration 

through agroforestry practices shoed only limited counteracting effects. Reported total amounts of 

fertilizers might have been referring to purchases rather than actual application rates but have 
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strong impacts on overall crop emissions. Regarding livestock emissions, a national level comparison 

between the Tier 2 Inventory report (CGIAR 2020) shows that cattle emissions that have recently 

been estimated are somewhat higher than in our dataset, while small ruminant emissions have been 

estimated to lie somewhat lower. Adopting spatially continuously available data from Herrero et al. 

(2013), however, allowed us to calculate zonal rather than only national feed, water and emission 

efficiencies. 

As modelled site-, crop- and practice-specific resource efficiencies in this report are solely based on 

differences in final crop yields, other potentially positive/counteracting impacts such as increases in 

soil carbon contents or water holding capacities could not be quantified without data from 

comparative, local quantitative soil analyses. For example. Yaekob et al. (2020) found that within 

three years runoff and soil loss could be reduced by on average 27 and 37%, respectively, due to soil 

and water conservation (SWC) practices tested in Ethiopia’s central highlands. Tadesse et al. (2021) 

showed that after a period of 3, 6 and 10 years a combination of SWC structures combined with 

biological measures, hedgerow planting, crop residue management, grazing management, crop 

rotation, and perennial crop-based agroforestry systems led to a significant increase in wheat yields, 

soil carbon contents and soil moisture in southern Ethiopia. Kassie (2009) reported empirical results 

for increased crop productivity after three years from a combination of stone bunds and reduced 

tillage in test sites in Tigray and Amhara. Similarly, a meta-analysis by Abera et al. 2020 found an 

increase in average crops yields as well as land restoration as result of a combination of bunds and 

biological measures but also enclosures. In this study, single interventions, however, showed 

negative effects on productivity. An IFAD report (Richards et al. 2019) estimating impacts on total 

GHG emissions from various CSA practices shows a varying yet consistent negative effect on final 

GHG emissions, which also included impacts of green manure and crop residue management. This 

stands in contrast to our baseline calculations with the CFT, as corresponding changes in soil carbon 

and therefore final GHG emissions cannot be modelled without available locally measured soil 

carbon information at this point. These previous and overall positive findings hence show only a 

partial overlap to our project results. The discrepancy might be explained by previous studies being 

conducted for not only one but rather a period of 3-10 years, and thus sufficient time for adaptation 

was given to reveal mid- to long-term positive impacts not only on crops yields per se but also soil 

health and land restoration, which in turn led to increased carbon sequestration (and storage). 

Besides the set of improved practices being tested for the CSA monitoring project, RHoMIS surveys 

additionally collected data on the share of agroforestry practices among all surveyed farms. Being 

recorded as yes/no option, we hence assumed a full extend of agroforestry practices over any farm’s 
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cropland that reported the use of agroforestry. This information, however, did not match with data 

on agroforestry from farms growing enset and cabbage in this project, as no RHoMIS farm 

information matched these criteria. While the total number of farms using agroforestry practices 

remains small, particularly in Basona Werana, those farms reported on average lower crop yields 

than farms not using agroforestry. Table 3 displays differences in crop yields between practices for 

both regions. Similarly, these findings might reflect short- rather than mid- to long-term effects due 

to required adaption periods.  

Table 3: Comparison of major crop yields from non-agroforestry vs. agroforestry systems, with farms using 
agroforestry reporting lower average yields. 

 No agroforestry Agroforestry 

Doyogena n 
total land 

[ha] 
median yield 

[t/ha] n 
total land 

[ha] 
median yield 

[t/ha] % difference 

Barley 20 5 0.89 2 1 0.89 0.00 

Faba beans 13 4 1.33 9 2 1.07 -19.55 

Wheat 109 15 0.89 43 8 0.80 -10.11 

White potato 27 9 2.67 16 5 1.60 -40.07 

Basona Werana 

Barley 330 278 0.93 11 16 0.87 -7.07 

Faba beans 123 66 0.20 3 0.38 0.40 100.00 

Wheat 160 111 0.89 6 2.35 0.56 -37.50 

 

Also in contrast to our observations, the ERA database offers additional information on potential 

impacts of improved farming practices, which (mostly) have not been tested in this project. Based on 

data reported and integrated by agronomic studies on various practices across sub-Saharan Africa, 

Table 4 shows that most improved practices are expected to result in higher crop yields, with only 

three out of nineteen applicable practices showing an expected decrease in yields.  
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Table 4: Expected crop-specific relative yield changes reported by the ERA database for cool tropical semi-humid 
(Doyogena) and semi-arid (Basona Werana) climates. 

Practice 

Crop yield 
change [%] 

Improved 
varieties Irrigation Mulch 

Mulch-Water 
Harvesting 

Reduced 
Tillage 

Water 
Harvesting 

Doyogena 

Barley - - - - - -2.46 

Maize - 19.91 39.92 46.81 26.64 64.47 

Onion - -1.06 - - - - 

Teff - - - - - 90.00 

Wheat 124.29* - 32.55 127.74 - 59.98 

Basona Werana 

Barley - - 12.17 - - 86.88 

Maize - 24.06 - - - - 

Onion - 28.85 - - - - 

Peas - - - - - 26.83 

Potato - -25.97 - - - - 

Teff - 98.79 - - - - 

Wheat - - - - - 12.62* 

       

*Tested in this project (Practice 3, respectively), reporting lower than baseline yields in this project. 

Conclusions and recommendations 

Reducing soil loss, enhancing water utilization and improving agricultural productivity are the major 

challenges for the Ethiopian agricultural sector in order to restore landscapes, adapt to climate 

change and reach food security. Testing a set of CSA practices in two distinct landscapes in Amhara 

and SNNPR revealed that after only one year of application, respectively, no general patterns in 

regard to crop yield changes and associated natural resource efficiencies could be detected. This 

finding is in line with previous reports (IITA 2020) and as our literature review suggests, multiple 

years of adaptation to new agricultural practices might be required before positive overall changes 

can be observed. The primary goal of CSA practices is not necessarily to increase crop yields, but 

rather improve mitigation and adaption to environmental change in the most vulnerable landscapes 

of sub-Saharan Africa. These measures, however, ultimately can also lead to increase in farm 

productivity. Kassie (2009) states that it is difficult to empirically measure effects from technology 

adoption based on non-experimental observations. Productivity differences may not result from the 

adoption of specific land management practices but might rather stem from differences both in 

observed and unobserved household and plot characteristics of adopters and non-adopters of CSA 

practices. 
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This project underlines the urgent need for multi-year quantitative assessment and documentation 

of various environmental and productivity indicators as a number of confounders might have 

contributed to the various findings and lack of clearly detectable trends. Regional mitigation and 

adaptation require data on the suitability of specific practices in various agro-ecological regions. 

Overall, findings from testing sustainable land management practices suggest that one-size-fits-all 

recommendations are not appropriate, indicating a need for careful agro-ecological targeting when 

developing, promoting, and scaling up such practices (Kassie 2009). Correct management and 

monitoring are needed to ensure practices function as indented, which in turn can reduce the 

likelihood of decreasing or fluctuating crop yields (Wolka et al. 2013). The main barriers currently 

limiting a wide adoption of CSA practices in Ethiopia include inadequate law enforcement, lack of 

incentives, inadequate and unreliable extension, and weather information (Wassie and Pauline 

2018). 

A comparison of our findings to previous findings in the literature on CSA practices in Ethiopia and 

sub-Saharan Africa in general suggests that general mid- to long-term effects from quantitatively 

monitored sites can potentially be adopted for various landscapes according to their agroclimatic 

suitability. Beside regional climate and soil conditions, local farming preferences such as use of 

tillage, agroforestry, chemical fertilizers or varying crop residue uses, however, have to be taken into 

consideration when aiming at comparing local environmental impacts. Currently, the ERA database 

points to a lack of systematically collected and published data from agronomic studies on major and 

minor food crops grown in cool tropical areas of sub-Saharan Africa. Our short-term results based on 

surveys, however, so far do not indicate significant and extrapolatable differences between adopting 

and non-adopting farms. 
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Table 5a: Environmental impact of CSA practices on wheat production in Doyogena 
 

Practice 

zonal 
average 
(2019-21) 

baseline  
(non-
adopters) 

1 
Terraces 

 
 

3 
Improved 
varieties 

 

6  
Crop 

rotation 
 

7  
Crop 

residues 
 

1+3 
 
 

1+6 
 
 

1+7 
 

 

1+3+6 
 
 

1+3+7 
 

 

1+3+6+7 
 
 

1+6+7 
 
 

3+6 
 
 

3+7 
 
 

n - 35 29 16 5 1 12 7 5 6 15 12 8 1 10 

Median yield [t/ha]   2.92 1.17 0.95 0.67 1.33 0.13 1.13 1.05 0.86 1.75 0.8 0.8 0.9 0.71 0.53 

% difference to  
non-adopters   -19 -43 14 -89 -3 -10 -27 49 -32 -32 -23 -39 -55 

Baseline water use 
[m3/t]* 1,978.11 4,936.57 6,064.58 8,663.68 4,331.84 43,318.42 5,096.28 5,500.75 6,738.42 3,300.45 7,219.74 7,219.74 6,417.54 8,134.91 10,897.72 

Fertlizer use [t/ha] 0.03 2.91 1.29 0.67 1.6 0.07 3.27 0.05 3.82 0.17 0.11 0.52 0.78 0.07 0.59 

Crop emissions incl. 
fertilizers and AF**  
[kg CO2eq/ha] 300.00 17,344.28 1,990.79 674.92 5,508.74 471.00 54,904.20 28,334.36 88,156.79 146.28 -1,861.26 -877.05 -545.52 345.00 1,153.34 

Sheep ratio*** - 0.74 0.48 0.34 0.13 0.00 0.65 0.47 0.00 0.00 0.47 1.72 0.00 2.00 0.43 

Total water use**** 
[m3/head/yr] - 1,559.50 1,019.93 724.65 274.32 0.00 1,381.04 998.19 0.00 0.00 998.49 3,643.89 0.00 4,237.27 902.04 

GHG emissions 
[kg CO2eq/ha] - 330.75 216.31 153.69 58.18 0.00 292.90 211.70 0.00 0.00 211.77 772.82 0.00 898.67 191.31 

Goat ratio*** - 0.13 0.00 0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.67 0.00 0.00 0.00 0.85 

Total water use**** 
[m3/head/yr] - 406.74 0.00 876.97 0.00 0.00 0.00 0.00 0.00 0.00 2,157.80 0.00 0.00 0.00 2,729.09 

GHG emissions 
[kg CO2eq/ha] - 86.52 0.00 186.54 0.00 0.00 0.00 0.00 0.00 0.00 458.99 0.00 0.00 0.00 580.51 

Cattle ratio*** - 1.47 1.28 1.71 0.65 0.00 1.30 1.18 1.11 1.28 1.01 2.15 1.00 1.00 0.85 

Total water use**** 
[m3/head/yr]  2,266.38 1,976.32 2,632.80 996.66 0.00 2,007.03 1,813.30 1,710.53 1,973.58 1,554.74 3,309.73 1,539.48 1,539.48 1,310.91 

GHG emissions 
[kg CO2eq/ha] - 1,715.15 1,495.63 1,992.45 754.25 0.00 1,518.87 1,372.27 1,294.49 1,493.56 1,176.59 2,504.73 1,165.04 1,165.04 992.07 

Poultry ratio*** - 1.42 1.64 1.23 0.26 0.00 2.61 0.82 0.93 1.28 2.29 1.86 0.00 1.00 1.28 

Total water use**** 
[m3/head/yr] - 0.09 0.11 0.08 0.02 0.00 0.17 0.05 0.06 0.08 0.15 0.12 0.00 0.07 0.08 

GHG emissions 
[kg CO2eq/ha] - 1.98 2.28 1.72 0.36 0.00 3.64 1.15 1.29 1.79 3.19 2.60 0.00 1.39 1.78 

*Green water  **AF = Agroforestry (assuming 40% mountain forest cover)  ***Head/ha cultivated land  **** Green + blue water 
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 Table 5b: Environmental impact of CSA practices on barley production in Doyogena 

*Green water  **AF = Agroforestry (assuming 40% mountain forest cover)  ***Head/ha cultivated land  **** Green + blue water 
*****Implausibly high 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Practice 

zonal 
average 
(2019-21) 

baseline  
(non-
adopters) 

1 
Terraces 

 
 

6  
Crop 

rotation 
 

7  
Crop 

residues 
 

1+6 
 
 

1+7 
 

 

1+6+7 
 
 

n - 7 6 1 1 2 7 1 

Median yield [t/ha]   2.18 0.89 1.07 0.57 0.67 1.63 1.51 2.4 

% difference to  
non-adopters   20 -36 -25 83 70 170 

Baseline water use 
[m3/t]* 1,787.06 4,377.29 3,640.92 6,834.72 5,814.61 2,390.05 2,579.99 1,623.25 

Fertlizer use [t/ha] 0.02 3.49 0.32 0.06 22.20***** 0.14 4.57 0.13 

Crop emissions incl. 
fertilizers and AF**  
[kg CO2eq/ha] 288.00 39,969.40 45.94 335.00 332.00 457.00 269,517.60 536.00 

Sheep ratio*** - 1.26 0.13 2.49 0.00 1.21 0.00 1.00 

Total water use**** 
[m3/head/yr] - 2,674.03 268.25 5,273.05 0.00 2,572.63 0.00 2,118.64 

GHG emissions 
[kg CO2eq/ha] - 567.13 56.89 1,118.34 0.00 545.62 0.00 449.33 

Goat ratio*** - 0.00 0.00 0.00 0.40 0.00 0.00 0.00 

Total water use**** 
[m3/head/yr] - 0.00 0.00 0.00 

.  
1281.98 

 0.00 0.00 0.00 

GHG emissions 
[kg CO2eq/ha] - 86.52 0.00 0.00 272.69 0.00 0.00 0.00 

Cattle ratio*** - 1.01 1.01 1.24 0.00 2.43 0.63 1.00 

Total water use**** 
[m3/head/yr]  1,554.44 1,559.35 1,915.80 0.00 3,738.74 974.93 1,539.48 

GHG emissions 
[kg CO2eq/ha] - 1,176.37 1,180.08 1,449.83 0.00 2,829.39 737.80 1,165.04 

Poultry ratio*** - 1.77 0.00 0.00 0.93 4.86 0.90 3.00 

Total water use**** 
[m3/head/yr] - 0.12 0.00 0.00 0.06 0.32 0.06 0.20 

GHG emissions 
[kg CO2eq/ha] - 2.46 0.00 0.00 1.30 6.77 1.26 4.18 
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Table 5c: Environmental impact of CSA practices on potato production in Doyogena 

 

Practice 

zonal 
average 
(2019-21) 

baseline  
(non-
adopters) 

1 
Terraces 

 
 

5  
Improved 
varieties 

 

1+5 
 

 

1+6 
 
 

1+5+6 
 

 

5+6 
 
 

n - 6 18 1 7 1 10 1 

Median yield [t/ha]   15.54 2.4 2.4 0.89 1.14 4.36 4.17 4 

% difference to  
non-adopters   0 -63 -52 82 74 67 

Baseline water use 
[m3/t]* 2.32 15.00 15.00 40.45 31.58 8.26 8.63 9.00 

Fertlizer use [t/ha] 0.00 0.1 0.17 0.04 0.01 0.39 0.26 0.8 

Crop emissions incl. 
fertilizers and AF**  
[kg CO2eq/ha] 265.00 -620.19 -570.60 323.00 -3,653.80 634.00 355.04 1,041.00 

Sheep ratio*** - 0.26 0.10 0.10 0.33 0.00 1.48 0.00 

Total water use**** 
[m3/head/yr] - 550.29 218.66 218.66 697.49 0.00 3,133.31 0.00 

GHG emissions 
[kg CO2eq/ha] - 116.71 46.38 46.38 147.93 0.00 664.53 0.00 

Goat ratio*** - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Total water use**** 
[m3/head/yr] - 0.00 0.00 0.00 

.  
0.00 0.00 0.00 0.00 

GHG emissions 
[kg CO2eq/ha] - 86.52 0.00 0.00 0.00 0.00 0.00 0.00 

Cattle ratio*** - 0.31 0.98 0.98 1.15 0.18 1.59 0.50 

Total water use**** 
[m3/head/yr]  479.83 1,509.45 1,509.45 1,773.89 279.91 2,451.92 769.74 

GHG emissions 
[kg CO2eq/ha] - 363.13 1,142.32 1,142.32 1,342.44 211.83 1,855.56 582.52 

Poultry ratio*** - 0.73 2.43 2.43 0.82 0.00 2.28 0.50 

Total water use**** 
[m3/head/yr] - 0.05 0.16 0.16 0.05 0.00 0.15 0.03 

GHG emissions 
[kg CO2eq/ha] - 1.01 3.38 3.38 1.15 0.00 3.17 0.70 

*Green water  **AF = Agroforestry (assuming 40% mountain forest cover)  ***Head/ha cultivated land  **** Green + blue water 
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 Table 5d: Environmental impact of CSA practices on faba bean production in Doyogena 

*Green water  **AF = Agroforestry (assuming 40% mountain forest cover)  ***Head/ha cultivated land   **** Green + blue water  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6a: Environmental impact of CSA practices on wheat production in Basona Werana 

Practice 

zonal 
average 
(2019-21) 

baseline  
(non-
adopters) 

1 
Terraces 

 
 

4  
Improved 
varieties 

 

6  
Crop 

rotation 
 

1+4 
 
 

1+6 
 

 

1+4+6 
 
 

n - 12 3 2 2 1 1 1 

Median yield [t/ha]   2.06 1.12 0.53 1.20 1.35 3.42 1.07 2.67 

% difference to  
non-adopters   -52.00 7.00 21.00 207.00 -5.00 139.00 

Baseline water use 
[m3/t]* 127.24 234.02 491.45 218.42 194.75 76.64 244.96 98.17 

Fertlizer use [t/ha] 0.02 3.67 0.09 0.20 0.26 0.57 0.06 0.33 

Crop emissions incl. 
fertilizers and AF**  
[kg CO2eq/ha] 338.00 79,554.25 -1,083.72 -2,092.75 -1,942.00 1,166.00 -4,024.00 -3,599.00 

Sheep ratio*** - 0.45 1.25 0.00 0.00 0.00 2.00 3.33 

Total water use**** 
[m3/head/yr] - 951.95 2,640.96 0.00 0.00 0.00 4,237.27 7,062.12 

GHG emissions 
[kg CO2eq/ha] - 201.90 560.11 0.00 0.00 0.00 898.67 1,497.78 

Goat ratio*** - 0.03 0.00 0.00 0.00 0.00 0.00 0.00 

Total water use**** 
[m3/head/yr] - 96.00 0.00 0.00 

.  
0.00 0.00 0.00 0.00 

GHG emissions 
[kg CO2eq/ha] - 20.42 0.00 0.00 0.00 0.00 0.00 0.00 

Cattle ratio*** - 0.45 1.75 0.75 0.30 0.71 1.00 1.67 

Total water use**** 
[m3/head/yr]  691.72 2,686.63 1,154.61 466.51 1,099.63 1,539.48 2,565.80 

GHG emissions 
[kg CO2eq/ha] - 523.48 2,033.18 873.78 353.04 832.17 1,165.04 1,941.74 

Poultry ratio*** - 0.90 2.74 0.75 0.00 0.00 0.00 0.00 

Total water use**** 
[m3/head/yr] - 0.06 0.18 0.05 0.00 0.00 0.00 0.00 

GHG emissions 
[kg CO2eq/ha] - 1.25 3.83 1.05 0.00 0.00 0.00 0.00 
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*Green water  **AF = Agroforestry (assuming 40% mountain forest cover)  ***Head/ha cultivated land  **** Green + blue water 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Practice 

zonal 
average 
(2019-21) 

baseline  
(non-
adopters) 

1 
Terraces 

 
 

2 
Terraces 

 
 

3  
Water 

harvesting 
 

1+2 
 
 

1+3 
 

 

1+2+3 
 
 

 
2+3 

n - 30 41 10 1 52 7 13 2 

Median yield [t/ha]   2.94 1.07 1.07 1.12 0.10 0.67 0.80 0.80 1.07 

% difference to  
non-adopters   0.00 5.00 -91.00 -38.00 -25.00 -25.00 0.00 

Baseline water use 
[m3/t]* 1,215.87 3,351.24 3,351.24 3,191.66 35,746.56 5,361.98 4,468.32 4,468.32 3,351.24 

Fertlizer use [t/ha] 1.40 0.15 0.62 0.66 0.00 0.46 0.10 0.17 0.06 

Crop emissions incl. 
fertilizers and AF** 
[kg CO2eq/ha] 3,099.00 500.00 1,245.68 2,122.00 261.00 942.62 411.00 264.00 346.00 

Sheep ratio*** - 4.07 5.63 4.20 7.50 4.51 1.70 4.31 4.00 

Total water use**** 
[m3/head/yr] - 11,454.25 15,841.08 11,813.34 21,099.77 12,703.94 4,784.66 12,140.15 11,262.83 

GHG emissions 
[kg CO2eq/ha] - 1,983.59 2,742.70 2,044.90 3,651.61 2,198.13 827.70 2,099.68 1,947.53 

Goat ratio*** - 0.59 0.83 0.80 3.50 0.62 0.20 2.00 0.00 

Total water use**** 
[m3/head/yr] - 2,522.16 3,531.31 3,404.92 14,896.53 2,637.39 851.23 8,512.30 0.00 

GHG emissions 
[kg CO2eq/ha] - 420.18 588.30 567.24 2,481.68 439.37 141.81 1,418.10 0.00 

Cattle ratio*** - 0.17 2.03 1.80 1.50 0.96 1.20 18.86 4.00 

Total water use**** 
[m3/head/yr]  348.24 4,092.04 3,628.14 3,024.07 1,938.04 2,420.24 38,040.17 8,070.78 

GHG emissions 
[kg CO2eq/ha] - 148.28 1,742.00 1,544.20 1,286.83 824.53 1,029.47 16,177.31 3,031.55 

Poultry ratio*** - 2.49 3.80 2.10 2.50 3.15 1.00 26.86 9.71 

Total water use**** 
[m3/head/yr] - 0.16 0.25 0.14 0.16 0.21 0.07 1.76 0.64 

GHG emissions 
[kg CO2eq/ha] - 3.26 4.97 2.75 3.27 4.12 1.31 35.15 12.72 
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 Table 6b: Environmental impact of CSA practices on barley production in Basona Werana 

*Green water  **AF = Agroforestry (assuming 40% mountain forest cover)  ***Head/ha cultivated land  **** Green + blue water 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Practice 

zonal 
average 
(2019-21) 

baseline  
(non-
adopters) 

1 
Terraces 

 
 

2 
Terraces 

 
 

3  
Water 

harvesting 
 

1+2 
 
 

1+3 
 

 

1+2+3 
 
 

 
2+3 

n - 64 94 13 4 106 15 41 5 

Median yield [t/ha]   2.56 0.98 0.95 0.80 0.61 0.89 0.60 1.07 1.60 

% difference to  
non-adopters   -3.00 -18.00 -37.00 -9.00 -39.00 9.00 63.00 

Baseline water use 
[m3/t]* 1,116.55 2,916.69 3,019.39 3,572.95 4,653.14 3,215.65 4,763.93 2,679.71 1,786.47 

Fertlizer use [t/ha] 0.10 0.09 0.39 1.29 0.02 0.28 0.08 0.10 1.84 

Crop emissions incl. 
fertilizers and AF** 
[kg CO2eq/ha] 471.00 121.46 900.37 2,658.00 -896.08 667.23 382.00 380.14 5,282.00 

Sheep ratio*** - 5.68 6.40 4.34 6.50 5.65 3.82 5.68 4.19 

Total water use**** 
[m3/head/yr] - 15,964.46 18,010.45 12,201.58 18,286.47 15,911.27 10,743.54 15,986.03 11,799.16 

GHG emissions 
[kg CO2eq/ha] - 2,764.65 3,118.30 2,112.11 3,164.73 2,753.08 1,858.53 2,764.83 2,040.27 

Goat ratio*** - 0.98 0.92 0.62 1.50 0.97 0.38 0.88 0.00 

Total water use**** 
[m3/head/yr] - 4,178.51 3,900.02 2,637.62 6,384.23 4,117.74 1,601.78 3,756.03 0.00 

GHG emissions 
[kg CO2eq/ha] - 696.12 649.72 439.41 1,063.58 685.99 266.85 625.73 0.00 

Cattle ratio*** - 1.38 1.77 1.35 0.88 1.65 2.04 2.01 2.48 

Total water use**** 
[m3/head/yr]  2,779.96 3,557.13 2,725.36 1,764.04 3,334.95 4,120.49 4,063.59 4,996.20 

GHG emissions 
[kg CO2eq/ha] - 1,183.69 1,514.28 1,159.96 750.65 1,418.83 1,752.67 1,728.12 2,124.29 

Poultry ratio*** - 0.12 0.15 0.13 0.12 0.17 0.11 0.21 0.41 

Total water use**** 
[m3/head/yr] - 0.53 0.64 0.58 0.54 0.72 0.49 0.92 1.80 

GHG emissions 
[kg CO2eq/ha] - 2.45 2.93 2.65 2.45 3.30 2.25 4.19 8.23 
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 Table 6c: Environmental impact of CSA practices on faba bean production in Basona Werana 

*Green + blue water  **AF = Agroforestry (assuming 40% mountain forest cover)  ***Head/ha cultivated land 

Practice 

zonal 
average 
(2019-21) 

baseline  
(non-
adopters) 

1 
Terraces 

 
 

2 
Terraces 

 
 

3  
Water 

harvesting 
 

1+2 
 
 

1+3 
 

 

1+2+3 
 
 

 
2+3 

n - 18 26 5 2 43 8 22 2 

Median yield [t/ha]   2.27 0.20 0.27 0.20 0.53 0.13 0.19 0.25 0.42 

% difference to  
non-adopters   33.33 0.00 166.67 33.33 -4.76 23.81 108.33 

Baseline water use 
[m3/t]* 671.54 5,916.98 4,215.34 5,694.59 2,858.41 8,988.91 6,524.38 5,378.25 2,128.50 

Fertlizer use [t/ha] 0.00 0.02 0.00 0.00 0.00 0.01 0.01 0.02 0.00 

Crop emissions incl. 
fertilizers and AF** 
[kg CO2eq/ha] 256.00 283.00 119.41 256.00 256.00 -11 232.02 397.00 283.00 256.00 

Sheep ratio*** - 5.15 3.63 4.00 10.80 4.69 4.24 4.36 2.00 

Total water use* 
[m3/head/yr] - 14,486.36 10,218.61 11,250.80 30,383.67 13,201.30 11,932.47 12,276.07 5,631.42 

GHG emissions 
[kg CO2eq/ha] - 2,508.68 1,769.23 1,947.53 5,258.32 2,284.18 2,064.20 2,123.19 973.76 

Goat ratio*** - 1.13 1.10 1.33 0.00 0.67 0.18 0.56 0.00 

Total water use* 
[m3/head/yr] - 4,809.21 4,675.77 5,674.87 0.00 2,871.15 784.54 2,403.47 0.00 

GHG emissions 
[kg CO2eq/ha] - 801.19 778.96 945.40 0.00 478.32 130.70 400.41 0.00 

Cattle ratio*** - 1.90 1.97 1.83 1.60 1.96 2.30 2.01 1.60 

Total water use* 
[m3/head/yr]  3,824.72 3,973.67 3,695.32 3,225.67 3,957.17 4,647.16 4,050.39 3,228.31 

GHG emissions 
[kg CO2eq/ha] - 1,628.53 1,691.61 1,572.79 1,372.62 1,683.55 1,976.70 1,722.50 1,372.62 

Poultry ratio*** - 2.76 2.14 2.00 5.20 2.42 1.75 2.89 0.80 

Total water use* 
[m3/head/yr] - 0.18 0.14 0.13 0.34 0.16 0.12 0.19 0.05 

GHG emissions 
[kg CO2eq/ha] - 3.61 2.80 2.62 6.81 3.17 2.29 3.78 1.05 


